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Propagators in Coulomb gauge from SU(2) lattice gauge theory
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A thorough study of 4-dimensional SU(2) Yang-Mills theory in Coulomb gauge is performed using
large scale lattice simulations. The (equal-time) transverse gluon propagator, the ghost form factor d�p�
and the Coulomb potential Vcoul�p� / d2�p�f�p�=p2 are calculated. For large momenta p, the gluon
propagator decreases like 1=p1�� with � � 0:5�1�. At low momentum, the propagator is weakly
momentum dependent. The small momentum behavior of the Coulomb potential is consistent with
linear confinement. We find that the inequality �coul � � is satisfied. Finally, we provide evidence that
the ghost form factors d�p� and f�p� acquire IR singularities, i.e., d�p� / 1=

����
p

p
and f�p� / 1=p,

respectively. It turns out that the combination g20d0�p� of the bare gauge coupling g0 and the bare ghost
form factor d0�p� is finite and therefore renormalization group invariant.
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I. INTRODUCTION

Quark confinement is the key property which dictates
the structure of matter at low temperatures and densities.
It is attributed to the low-energy regime of Quantum
Chromo Dynamics (QCD) and is, therefore, only acces-
sible by nonperturbative techniques. Lattice gauge theory
provides a gauge invariant regularization of Yang-Mills
theory, and corresponding numerical simulations do not
require gauge fixing.

More than 20 years ago, Mandelstam and G.’t Hooft
pointed out that gauge fixing might be convenient for
identifying the degrees of freedom which are relevant
for confinement. Over the recent past, evidence has been
accumulated by means of lattice simulations that topo-
logical obstructions of the gauge field, such as monopoles
and vortices, are responsible for confinement (see [1] for a
recent review). Nonperturbative approaches based on
Dyson-Schwinger equations (DSE) [2,3], variational
techniques [4–6] and flow equations [7,8] necessarily
involve gauge fixing. These approaches address QCD
Green functions which encode information on confine-
ment at low momenta.

In Landau gauge, it was firstly put forward by Gribov
[9] and further elaborated by Zwanziger [10] that quark
confinement is associated with a divergence of the ghost
form factor in the infrared limit. First indications that the
so-called horizon criterion for confinement is satisfied
were reported in [11]. Using truncated DSEs, strong
evidence for an IR divergent ghost form factor was re-
ported in [12,13]. Subsequently, many efforts were de-
voted to detect the low-energy behavior of the ghost form
factor by means of analytic [14–19] and lattice [20–22]
techniques. A good qualitative agreement between the
DSE and lattice results was found. Moreover, a tight
relation between the vortex picture of confinement and
the Gribov-Zwanziger criterion was given in [23].

Coulomb gauge is most convenient for a variational
approach to Yang-Mills Green functions [4–6]. The cor-
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responding Hamiltonian contains an instantaneous inter-
action between color sources, the so-called Coulomb
potential Vcoul�r�. Hence, Coulomb gauge QCD offers
the possibility to address the confining potential by
purely analytic considerations. It has been shown recently
[24] that the Coulomb potential is an upper bound of the
static quark-antiquark potential. In pure Yang-Mills the-
ory, both potentials are expected to be linearly rising at
large distances r, i.e., V � �r and Vcoul � �coulr, where
��coul� � is called (Coulomb) string tension. At present,
lattice simulations provide two different values for the
asymptotic Coulomb force: A calculation of the potential
involving the zeroth component of the gauge field yields
�coul � �2	 3�� [25,26], while �coul � � [27] is re-
ported if the Green function which defines the Coulomb
potential is directly evaluated.

The variational approach invokes a quasiparticle pic-
ture for the (transverse) gluons. The trial wave functional
generically is Gaussian, and the gluon dynamics is en-
coded in the (quasiparticle) gap function !QP (which is
derived in a gluonic quasiparticle picture from the inverse
of the instantaneous gluon propagator). It was recently
proposed to supplement the Faddeev-Popov determinant
(see below) to the wave functional in order to strengthen
the impact of configurations close to the Gribov horizon
[6]. The latter modification of the wave functional has
certainly a strong impact on the gap function at least at
small momenta: while it is suggested in [4] that !QP
approaches a constant in the IR limit, an IR divergence
was reported in [6]. Both approaches employ a truncation
of the resulting Dyson equations which does not account
for wave functional renormalization.

In the present paper, we perform a thorough lattice
investigation of the transverse gluon propagator, the ghost
form factor and the Coulomb potential. Our results sug-
gest that (at least in four dimensions) the equal-time
gluon propagator is weakly momentum dependent in the
IR regime. For the first time, wave-function renormal-
07-1  2004 The American Physical Society
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ization constants for the gluon and ghost fields are ob-
tained. Our lattice results indicate quite a sizable anoma-
lous dimension for the gluon propagator yielding
G�jpj� ! 1=jpj1�� where � � 0:5. Our results for the
Coulomb potential are compatible with linear confine-
ment and suggest that the inequality �coul � � is satis-
fied. We will find that the result �coul � �2	 3��,
reported in [25,26], cannot be ruled out by our data.

II. THE PARTITION FUNCTION

Let us briefly review the relation between the func-
tional integral formulation and the Hamilton formulation
of Coulomb gauge Yang-Mills theory following [28]. Our
starting point will be the generating functional for
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Euclidean Green functions in Coulomb gauge, i.e.,
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where Aa� are the gauge fields, Fa�� denotes the usual field
strength tensor and J�a is an external source. Det�	r � D
is the Faddeev-Popov determinant (D is the gauge
covariant derivative), and g0 the bare gauge coupling.
Equation (1) will serve as the starting point for the lattice
simulations reported in this work.
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Eliminating the nondynamical part of the gauge fields,
Aa0 , implements Gauss’s law in the partition function, i.e.,
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In this expression, B denotes the chromo-magnetic field
Bak � 	 1

2"ijkF
a
ij. Let us introduce the transverse and

longitudinal parts of the canonical momenta by �a �
�a

? 	 r�a. The integration measure factorizes, i.e.,
D� ’ D�?D�, and the integration over � cancels
the Faddeev-Popov determinant. One finally obtains
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: (3)

The Hamiltonian density H? gives rise to the Coulomb
gauge Hamiltonian H �

R
d3xH?:

H �
Z
d3x
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? �B2� � g0A? � J
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2C2
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where C2 is the quadratic Casimir of the gauge group
SU(2), i.e., C2 � 3=4. We have introduced the color
charge density by �x � �t;x�

"�x� � fabcAbi �x��
c
?i�x� � J0�x�: (5)

The ‘‘tree level’’ term which mediates the interaction
between color charges, i.e.,

V Coul�x; y� � 	C2g20M
	1�	��M	1j�x;y�; (6)

where� denotes the Laplace operator, will give rise to the
so-called Coulomb potential upon averaging over the
gauge fields. Thereby,

M � 	r �D (7)

is the Faddeev-Popov matrix.

III. THE NUMERICAL APPROACH

A. Setup

Configurations of a N4 cubic lattice with lattice spacing
a are generated using the standard Wilson action. A
lattice configuration is represented by a set of unitary
matricesU��x� 2 SU�2�. The size of the lattice spacing as
a function of theWilson) parameter is obtained from the
interpolating formula [22]

ln��a2� � 	
4*2

)0
)�

2)1
)20

ln
�
4*2

)0
)
�
�
4*2

)0

d
)
� c;

(8)

where

)0 �
22

3
; )1 �

68

3
: (9)

The first two terms on the r.h.s. of (8) are in accordance
with 2-loop perturbation theory. The term d=) represents
higher-order effects and the term c is a dimensionless
scale factor to the string tension. It was observed [22] that
the choice

c � 4:38�9�; d � 1:66�4� (10)

reproduces the measured value �a2 to very good
precision.

Two possible definitions of the gauge field Ab��x� in
terms of the link matrices are explored in the present
paper. Decomposing a particular SU(2) matrix by

U��x� � u0��x� � iua��x�,a; (11)
-2



PROPAGATORS IN COULOMB GAUGE FROM SU(2). . . PHYSICAL REVIEW D 70 074507
where ,a are the Pauli matrices, the standard definition of
the gauge field is given by

ag0A
b
��x� �O�a3� � 2ub��x�: (12)

Noticing that the continuum gauge fields actually trans-
form under the ajoint representation, the definition

ag0Ab��x� �O�a3� � 2u0��x�ub��x� (13)

accounts for this particular transformation property [29].
Note that both definitions coincide in the continuum limit
a! 0. In the context of minimal Landau gauge, both
definitions also coincided at the practical level within the
scaling window [22].

Finally, we define the momentum on the lattice for the
particular direction �

p�: �
2

a
sin�

*
N
n��; (14)

where 	N=2< n� � N=2 labels the Matsubara fre-
quency. This definition minimizes rotational symmetry
breaking for momenta close to the boundary of the
Brillouin zone.

B. Propagators and Coulomb potential

Once and for all, we choose a given time slice of the
four dimensional space-time by fixing t � t0, and con-
sider propagators which are defined within the emerging
3-dimensional hypercube.

The unrenormalized gluon propagator is defined by

G0abij �x	 y�: � hAai �x; t0�A
b
j �y; t0�i: (15)

The corresponding propagator in momentum space, i.e.,

G0abij �p� �
Z
d3xG0abij �x�eip�x;

is transversal by virtue of the gauge condition
@iA

i
a�x; t0� � 0 and diagonal in color space, i.e.,

G0abij �p� �
�
�ij 	

pipj
p2

�
�abG0�p�; (16)

G0�p� �
f0g�p�
jpj

: (17)

The dimensionless quantity f0g is the (bare) gluon form
factor. Since the gauge potential has energy dimension
one, the quantity G0�p� has the dimension of an inverse
energy.

The (bare) ghost propagator is defined as the expecta-
tion value of the inverse Faddeev-Popov operator M in
(7), i.e.,

D0ab�x	 y� � hM	1�Ajab
�x;y�i: (18)

Since Dab is diagonal in color space, we may write
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D0ab�p� � �abD0�p�; D0�p� �
d0�p�
jpj2

in momentum space. Thereby, we have introduced the
(bare) ghost form factor d0�p�. Since the quantity
hM	1�Aj�x;y�i has energy dimension 1, the ghost form
factor d0�p� is dimensionless and reduces to unity for a
free theory.

The Coulomb potential is given by the expectation
value of the expression (6):

V0Coul�x	 y��ab � 	C2g
2
0hfM

	1�A�	��M	1�Agi:

(19)

For the Fourier transform of the Coulomb potential, we
make the ansatz

V0Coul�p� � 	C2g20
d20�p�f�p�

jpj2
; (20)

where d0�p� is the bare ghost form factor. The dimen-
sionless function f�p� measures the deviation from the
factorization

hM	1�A�	��M	1�Ai � hM	1�Ai�	��hM	1�Ai;

(21)

in which case f�p� � 1.

C. Renormalization

Renormalization of Yang-Mills theories in four dimen-
sions implies that the bare coupling acquires a depen-
dence on the ultraviolet (UV) cutoff �UV, i.e.,

g0 ! g0��UV=�QCD�: (22)

Rather than the bare coupling constant, the Yang-Mills
scale parameter�QCD plays the role of the only parameter
of the theory. In the context of (quenched) lattice gauge
simulations the string tension � is widely used as the
generic low-energy scale. In this case, the cutoff depen-
dence of the bare coupling is implicitly given by the )
dependence of �a2�)� where ) � 4=g20 is related to the
cutoff by �UV � *=a�)�. Finally, the relation between
�a2 and ) is provided by the formula (8) which inter-
polates the calculated values.

In addition, wave-function renormalization constants
generically develop a dependence on �UV=�QCD. The
lattice bare form factors of the previous subsections, f0g
and d0, depend on the momentum p2 and on the UVcutoff
�UV (given in units of the string tension) or, equivalently,
on the lattice coupling ). The renormalized form factors
are obtained upon multiplicative renormalization

freng �p2; �2� � Z	1
3 �);��f0g�p2; )�; (23)

dren�p2; �2� � eZ	1
3 �);��d0�p2; )�; (24)

using the renormalization conditions
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freng ��2; �2� � 1; dren��2; �2� � 1: (25)

Finally note that the Coulomb potential VCoul�p� (20)
appears as a convolution of propagators. Let us factor
out the wave-function renormalization of the ghost fields,
and let us introduce the renormalization constant Zf of
the 4-point vertex function involving four ghost fields:

VrenCoul�p; �
2� � Z	1

f �);��eZ	2
3 �);��V0Coul�p; )�; (26)

where V0Coul is given in (19). If the theory is renormaliz-
able without a 4-ghost counter term at tree level, then

lim
)!1

Zf�);�� � constant; (27)

and the ‘‘factorization’’ function f�p�, which is implicitly
defined by (20), does not acquire an UV divergence. Since
a 4-ghost interaction is a marginal relevant term, it
cannot be excluded from the action by first principles.
We will find, however, that the lattice approach can be
consistently treated without such a counter term. Below,
we will suppress the superscript ‘‘ren’’ and only deal with
renormalized quantities.

Multiplicative renormalizability of the theory implies
that a rescaling of the data for each ) value (indepen-
dently of the momentum) is sufficient to let the form
factors fall on top of a single curve describing the mo-
mentum dependence of the corresponding renormalized
quantity. In practice, suitable ‘‘matching factors’’ are
determined which ‘‘collapse’’ data obtained at different
) on a single curve. The matching factors are then
directly related to the wave-function renormalization
constants. This procedure is described in detail in [30],
Sec. V.B.2, and [22].

D. Gauge fixing

Let us consider the time slice t0 in which we define the
transverse (equal-time) gluon propagator (15) and the
ghost propagator, respectively.

The lattice configurations are generated without any
preference for a particular gauge. Subsequently, the gauge
transformations %�x� are adjusted according to

FU�% �
X

~x;i�1...3

ReTr�1	U%i � ~x; t0�!
%
min; (28)

where

U%� �x� � %�x�U��x�%y�x���:

It is well known that the condition (28) fixes the gauge up
to gauge transformations which only depend on time, i.e.,
%�t�. Note, however, that the average over the unfixed
gauge degree of freedom does not affect the (equal-time)
gluon propagator. The same is true for the ghost
propagator.

The calculation of the noninstantaneous generalized
gluon propagator, i.e.,
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Ggenabij �x	 y; t	 t0�: � hAai �x; t�A
b
j �y; t0�i; (29)

would inevitably require complete gauge fixing, since the
residual gauge freedom would imply

Ggenabij �x	 y; t	 t0� � 0 for t � t0:

The standard procedure is to involve the gauge field Aa0�x�
for residual gauge fixing. An example is the Cucchieri-
Zwanziger condition [31]

Ft�% �
X
~x;t

ReTr�1	U%0 � ~x; t�!
%�t�
min: (30)

It is also possible to fix the residual gauge freedom with-
out incorporating Aa0�x�. In this case, the Aa0�x� integration
in Sec. II can still be performed, thereby enforcing
Gauss’s law (see (2)). The advantage is that the tight
relation between the functional approach (1) and the
Hamiltonian formulation (3) is preserved.

After averaging over the gauge fields, the Fourier trans-
form of (29) can be written as

Ggenabij �p; p0� � �ab
�
�ij 	

pipj
p2

�
F�p; p0�

p2
; (31)

where the dimensionless quantity F�p; p0� is a form
factor. If the residual gauge degree of freedom is not
fixed, the gauge fields corresponding to different time
slices would be uncorrelated, and the form factor would
not depend on p0. We expect that the residual gauge fixing
only introduces weak correlations between gauge fields of
different time slices implying that the form factor only
slightly depends on p0. A detailed lattice investigation is
left to the near future. In the present paper, we will focus
on the equal-time gluon propagator (15).

In practice, we used a simulated annealing method to
locate the minimum of (28). The idea is to consider the
gauge functional FU�% as the action of a field theory
with respect to the set of the gauge transformations%�x�,
whose partition function is given by

ZSA �
Z
D%exp�	)SAFU�%�:

By increasing step by step the free parameter )SA (which
plays the role of the inverse temperature), one tries by
cooling to retrieve the ground state of the fictitious field
theory. This procedure corresponds to the minimization
of FU�g. The thermalization steps can be performed
using the standard Creutz update algorithm supple-
mented by microcanonical reflection steps. After the
domain of attraction has been located by simulated an-
nealing, we perform iterated overrelaxation to ensure the
desired precision of the gauge condition. Details will be
presented elsewhere. At least in minimal Landau gauge,
it has turned out that the present method of gauge fixing is
robust against the impact of Gribov ambiguities [22].
-4
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FIG. 1 (color online). The transverse equal-time gluon propagator as a function of the momentum: our data (N � 42) and data
from [31] (left panel). The gluon wave-function renormalization constant Z3 as a function of the UVcutoff. Also shown are the wave
functional renormalization constant of g20d�p� and Zf (26); the y-axis is arbitrarily scaled (right panel).
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IV. NUMERICAL RESULTS

A. Gluon propagator

Lattice simulations were carried out using 264, 324 and
424 lattices. Inverse couplings ) 2 f2:2; 2:3; 2:4; 2:5;
2:6; 2:7; 2:8g were employed. Within the momentum win-
dow, very good scaling is observed implying that cutoff
effects (due to the finite value a) and finite size effects are
small. Our final result for the transverse equal-time gluon
propagator G�p� (17) is shown in Fig. 1. Only data for the
424 lattice are shown for clarity. We have checked that the
data for the 264, 324 lattices fall on top of the same curve.
As a renormalization condition, we have chosen

G�p � 1GeV� � 1�GeV	1 (32)

for a renormalization point � � 1 GeV. For comparison,
we have also shown the data obtained by Cucchieri and
Zwanziger in [31]. These data are obtained for ) � 2:2
and 284, 304 lattices by using an iterated overrelaxation
method for gauge fixing. We find good agreement.
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At small momentum, the propagator becomes roughly
momentum independent and seems to approach a constant
in the IR limit jpj ! 0. At large momentum, the momen-
tum dependence is well approximated by

G�p� /
1

jpj

�
�QCD
jpj

�
�
; � � 0:5�1�; (33)

where �QCD is the renormalization group invariant scale
parameter. The solid line in Fig. 1 corresponds to a fit with
� � 0:5. The large value � was already anticipated in
[31]. Since the authors focused their investigations on the
IR behavior of the gluon propagator, they concluded that
their data, obtained for momenta below 2 GeV, did not
reach the perturbative regime. In the present paper, the
high momentum regime is also explored. It turns out that
the trend with � as large as 0.5 continues at least up to
momenta as large as 12 GeV.

Also shown in Fig. 1 is the cutoff dependence of the
wave-function renormalization constant Z3. Unfor-
tunately, the achieved numerical precision does not allow
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for a definite conclusion on the functional form which
parameterizes the cutoff dependence of Z3.

In the context of a variational approach [4–6], 1=G�p�
is interpreted as energy dispersion relation of constituent
gluon fields. Note, however, that the full gluon propagator
G�p� which comprises all nonperturbative effects is pa-
rameterized by G�p� � g�p�=!QP�p�, where g�p� ac-
counts for effects which are beyond the leading order of
the quasiparticle (QP) picture. Hence, the interpretation
of the inverse propagator as dispersion relation must be
taken with care. Our results for the inverse gluon propa-
gator 1=G�p� for several lattice sizes are shown in Fig. 2.

B. Ghost form factor

In order to obtain the ghost propagator (18), an inver-
sion of the Faddeev-Popov matrix is performed after
(possible) zero modes have been removed [11]. This pro-
cedure requires the solution of large, but sparse, systems
of equations. In order to remove zero mode contributions,
we solve

MMx � Mb;

rather than the system Mx � b (see the method proposed
in [11]). For this purpose, we use the minres algorithm
with Jacobi preconditioning [32]. Our final result for the
ghost form factor d�p� obtained from simulations using a
264 lattice and ) 2 f2:15; 2:2; 2:3; 2:4; 2:5g is shown in
Fig. 2, right panel. We observe perfect scaling. To be
specific, we choose

d�p � 3 GeV� � 1

as a renormalization condition.
In order to explore the high momentum dependence,

we make a logarithmic ansatz supplemented with an
anomalous dimension 1g, i.e.,

d�p� �
auv

ln�jpj=
QCD�
�go
; p� �QCD: (34)

The UV fit shown in Fig. 2 (right panel) corresponds to

auv � 1:03�2�; 1go � 0:26�2�:

Since the fitting parameters are strongly correlated, it is
difficult to extract a reliable value for �QCD. Taking also
into account the high momentum behavior of the
Coulomb potential (see below), we find that

�QCD � 0:96�5� GeV

reproduces the UV data. Such a high value for the Yang-
Mills scale parameter seems to be generic for the lattice
regularization (see [22,33]). For the IR analysis, we adopt
a simple scaling law:

d�p� �
air

�jpj2=
2
QCD�

�
; p� �QCD: (35)

The IR fit is also shown in Fig. 2 (right panel). We find
074507
air � 1:55�1�; 4 � 0:245�5�: (36)

Hence, our lattice results suggest that the ghost form
factor roughly diverges like 1=

�����
jp

p
j in the IR limit

jpj ! 0.
Let us explore the ghost wave-function renormaliza-

tion constant eZ3. If one applies the momentum matching
technique to g20d0�p; )�, one finds that the matching fac-
tors are constant within the numerical precision, see
Fig. 1, right panel. Our findings therefore suggest that
the bare coupling squared times the bare ghost propaga-
tor, i.e.,

g20D
ab
0 �p�; (37)

is a renormalization group invariant.

C. Coulomb potential

In the present approach, the Coulomb potential appears
as a convolution of Green functions (see (19)). In full
Yang-Mills theory, wave functional (and vertex) renor-
malization applies (see (26)), and the prefactor of the
potential must be specified by a renormalization condi-
tion. The prefactor can be determined by demanding that
the perturbative result is recovered [28] at large momen-
tum, i.e.,

p 2VCoul�p� �
6*

11 lnjpj2=
2
QCD

; (38)

for jpj � �QCD. An elegant method which circumvents
the cumbersome determination of the prefactor was put
forward in [25,26].

Our numerical findings for p2VCoul�p� are summarized
in Fig. 3 (left panel). At large momentum, the lattice data
nicely show the logarithmic correction. The data of low-
energy regime are well reproduced by the scaling ansatz

p 2VCoul�p� �
c

�jpj2=
2
QCD�

�
; (39)

where c is related to the Coulomb string tension �Coul by
�Coul � c�2QCD=8* in case VCoul is compatible with lin-
ear confinement (� � 1). Here, we find (see Fig. 3, left
panel)

� � 1:05�5�; c � 4:9�2�: (40)

Also shown in Fig. 3 (right panel) is the combination

p 4VCoul�p�=8*�;

which should approach �coul=� in the limit jpj ! 0.
Already for p > 2 GeV, the perturbative result is recov-
ered to good precision. A plateau is reached at the inter-
mediate momentum range 1GeV< p< 2GeV. The
function is slightly increasing again for p < 1GeV. The
data within the observed momentum window are stable
against finite size effects. An extrapolation p! 0 is
cumbersome. We point out that values �coul=� ranging
from two to three reported in [25,26] cannot be ruled out
-6



0 1 2 3 4 5
p [GeV]

0

1

2

3

4

5

f(
p)

b=2.5
b=2.4
b=2.3
b=2.2
b=2.15
UV fit
IR fit

FIG. 4 (color online). The factorization function f�p�.

0 1 2 3 4 5
p [GeV]

0

2

4

6

8

10

12

p2   V
R

co
ul

(p
)

b=2.5
b=2.4
b=2.3
b=2.2
b=2.15
UV fit
IR fit

0 1 2 3 4 5
p [GeV]

0

0.5

1

1.5

2

2.5

p4   V
R

co
ul

(p
) 

/ 8
π 

σ

b=2.5
b=2.4
b=2.3
b=2.2
b=2.15
pert. theory

FIG. 3 (color online). p2VCoul�p� (Coulomb potential) as a function of the momentum p (left panel). p4VCoul�p�=8* in units of the
string tension � (right panel).

PROPAGATORS IN COULOMB GAUGE FROM SU(2). . . PHYSICAL REVIEW D 70 074507
from the present data. Larger lattices and higher statistics
will be necessary to explore the deep infrared regime.

D. Factorization

From the results of the previous subsections it is al-
ready clear that the function f�p� cannot weakly depend
on jpj. Factorization such as (21) is generic if the fields
are distributed according to a Gaussian probability dis-
tribution. Since the ghost fields are strongly interacting at
low momenta, one expects that f�p� significantly depends
on the momentum in the IR regime.

In order to extract f�p� from the lattice data we applied
the following procedure: Dividing the bare data for
p2V0coul with the bare ghost form factor squared provides
information on the unrenormalized function f0�p�.
Applying the momentum matching technique [22] yields
the renormalization constant Zf and the renormalized
function f�p�. Our numerical result for Zf as a function
of the UVcutoff is consistent with (see Fig. 1, right panel)

lim
)!1

Zf�);�� � constant:

The function f�p� is shown in Fig. 4. We observe a weak
momentum dependence in the UV regime, and an IR
singularity at small momentum. The high energy data
are reproduced by the ansatz

f�p� �
afuv

ln�jpj=
QCD�
�f
; p� �QCD: (41)

The UV fit shown in Fig. 4 corresponds to

afuv � 1:05�4�; 1f � 0:47�3�:

The low momentum data support the existence of a 1=jpj
singularity, i.e.,

f�p� �
afir

�jpj2=
2
QCD�

�f
; p <�QCD; (42)

with
074507
afir � 2:7�1�; 4f � 0:58�5�: (43)

Our findings suggest the following interpretation: Due to
asymptotic freedom, the expectation value on the left
hand side of (21) factorizes in the high momentum re-
gime. At low momentum, non-Gaussian correlations be-
tween the ghost fields play an important role and the
factorization assumption is ruled out.

Finally, we point out that the sum rule, dictated by
perturbation theory, i.e., 21go � 1f � 1, is satisfied to
good precision:

21go � 1f � 0:99�12�: (44)

This serves as a consistency check of the lattice renor-
malization procedure.
-7
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V. CRITICAL REMARKS

A. Equal-time gluon propagator

In Subsection IVA, the lattice data for the transverse
equal-time gluon propagator G�p� are consistent with the
high momentum behaviorG�p� / jpj	1	�; � � 0:5�1�. It
is tempting to conclude that asymptotic freedom implies
the decrease of the equal-time gluon propagatorG�p� like
1=jpj for large momenta. We stress that this conclusion
does not necessarily apply: The equal-time gluon propa-
gatorG�p� is derived from the generalized propagator (31)
by momentum projection, i.e.,

G�p� / Z	1
3

Z
dp0G

gen�p; p0� � Z	1
3

Z
dp0

F�p; p0�
p2

:

(45)

After proper renormalization, the dimensionless form
factor can be parameterized by

F�p; p0� � h
�
�QCD
jpj

;
p0
jpj

�
; (46)

where�QCD is the low-energy scale parameter (e.g., given
by the string tension). For large momenta jpj � �QCD,
one obtains

G�p� � Z	1
3

1

jpj

Z
du h�0; u�: (47)

If the function h�x; y� is completely regular and bounded
for x; y 2 �0;1�, the integral in the latter equation would
exist implying that G�p� / 1

jpj for large jpj. However, the
form factor F�p; p0� weakly depends on p0 by the choice
of the gauge (see discussions below (31)). Let us speculate
that for this reason we might assume for u� 1 that

h�0; u� /
1

u1	�
0<�< 1:

In this case, the asymptotic form of the equal-time propa-
gator would be given by

G�p� /
1

jpj

�
�QCD
jpj

�
�
;

where the divergent factor ��UV=�QCD�
� has been ab-

sorbed by the wave-function renormalization constant
Z3. The above picture is only one scenario which would
explain the lattice data. A lattice investigation of the p0, p
dependence of the generalized gluon propagator
Ggenabij �p; p0� in (31) will reveal whether the above sce-
nario applies for Coulomb gauged YM-theory. Such an
investigation is left to future work.

B. Renormalization group

Perturbation theory in Coulomb gauge [34,35] is
plagued by superficial divergences originating from
instantaneous loops. When ‘‘supplementary rules’’ are
074507
introduced to define zero momentum integrals, a self-
consistent framework is obtained. Within this approach,
the Zg and the ghost renormalization constants, ZC and
Z -C, are related by [34]

ZgZC � 1; Z2gZCZ -C � 1	
7g2

12*27
: (48)

In the latter approach, dimensional regularization with
the regulator 7 � 4	D was introduced, and an asym-
metric ghost wave-function renormalization was em-
ployed yielding:

eZ	1
3 � Z	1=2

C Z	1=2
-C

:

We point out that our lattice results indicate that the
product of bare gauge coupling g0 and bare ghost form
factor D0, i.e., g20D0, is finite, which contradicts (48).
Further studies, involving simulation with larger lattices
on one hand and partial resummations of perturbation
theory to handle instantaneous loops on the other hand,
seem necessary to resolve the above discrepancy.
VI. CONCLUSIONS

A thorough lattice study of the equal-time propagators
of four dimensional SU(2) Yang-Mills theory in Coulomb
gauge has been performed. Our simulations extend pre-
vious studies to larger lattices and number of different
lattice spacings. Our lattice data are in good agreement
with those of earlier publications [25,26,31].

We studied the transverse (equal-time) gluon propaga-
tor G�p�, the ghost form factor d�p� and the Coulomb
potential VCoul�p� (20). With the help of the momentum
matching technique [22], the wave functional renormal-
ization constants are obtained for the gluon and ghost
fields. In particular, we find that the combination g20d0�p�
of the bare gauge coupling g0 and the bare ghost form
factor d0 is renormalization group invariant.

Let us focus here on the high and the low momentum
behavior. For jpj � 1 GeV, our results for the (equal-
time) gluon propagator show a large anomalous dimen-
sion, i.e.,

G�p� / 1=jpj1��; � � 0:5�1�:

The high momentum behavior of the ghost form factor
and of the factorization function f�p� show the character-
istic logarithmic momentum dependence, i.e.,

d�p� / ln
�

jpj
�QCD

�
	1go

; 1go � 0:26�2�;

f�p� / ln
�

jpj
�QCD

�
	1f

; 1f � 0:47�3�;

while a scale parameter of �QCD � 0:96�5� GeV is con-
sistent with the lattice data. The high momentum behav-
ior of the Coulomb potential known from perturbation
-8
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theory [28], i.e.,

p 2VCoul�p� �
6*

11 lnjpj2=
2
QCD

;

is recovered to high precision. The anomalous dimensions
extracted from the lattice data are consistent with the sum
rule 21go � 1f � 1.

In the IR limit jpj ! 0, the quantities d�p� and f�p�
develop singularities (see also [36]). The data for the
Coulomb potential are parameterized in the IR regime by

VCoul�p� �
8*�coul
jpj4

;

and are consistent with linear confinement. We find that
the inequality

�coul � �

is satisfied. We stress that values as large as �coul � �2	
074507
3�� as reported in [25,26] are not ruled out by our data.
The singularity of VCoul�p� / 1=jpj4, responsible for lin-
ear confinement, arises from IR singularities of the func-
tions d�p� and f�p�:

d�p� /
1

jpj0:49�1�
; f�p� /

1

jpj1:17�10�
:

The complete momentum dependence for the above func-
tions can be found in Sec. IV.
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