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Static quark-antiquark free energy and the running coupling at finite temperature
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We analyze the free energy of a static quark-antiquark pair in quenched QCD at short and large
distances. From this we deduce running couplings, g2 (r, T), and determine the length scale that
separates at high temperature the short distance perturbative regime from the large distance non-
perturbative regime in the QCD plasma phase. Ambiguities in the definition of a coupling beyond the
perturbative regime are discussed in their relation to phenomenological considerations on heavy quark
bound states in the quark gluon plasma. Our analysis suggests that it is more appropriate to characterize
the nonperturbative properties of the QCD plasma phase close to Tc in terms remnants of the
confinement part of the QCD force rather than a strong Coulombic force.
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I. INTRODUCTION

On quite general grounds it is expected that fundamen-
tal forces between quarks and gluons get modified at finite
temperature. More precisely, we expect that forces be-
tween static quarks, i.e., static test charges in a thermal
medium, change because the gluons, which mediate the
interaction between the static quarks, also interact with
the constituents (quarks and gluons) of the thermal bath.
In particular, above the deconfinement temperature Tc the
potential is expected to be exponentially screened at large
distances (r� 1=T) [1]. In leading order perturbation
theory this happens due to the generation of a chromo-
electric (Debye) mass of order gT (with g being the gauge
coupling). Beyond leading order, however, chromoelec-
tric and chromomagnetic screening effects cannot be
separated unambiguously. It is this nonperturbative large
distance physics, which plays a central role in our at-
tempts to understand the bulk properties of the QCD
plasma phase, e.g., the equation of state and the apparent
deviations from ideal gas behavior found in numerical
calculations [2]. On the other hand it is the short and
intermediate distance regime which is most important
in the discussion of signals which are considered today
as being suitable to gain information on properties of hot
and dense matter generated experimentally in heavy ion
collisions. In this paper we will quantify the temperature
dependence of the length scale which separates these
different regimes and analyze in detail the properties of
the QCD coupling constant at short and large distances.

Although a detailed understanding of screening phe-
nomena at large distances is still missing, it is evident that
in this regime the temperature is the dominant scale
and consequently will control the running of the QCD
Fellow

04=70(7)=074505(8)$22.50 70 0745
coupling, i.e., g ’ g�T� for (rT � 1, T � Tc)
1. However,

at short distances, r �max�T; Tc� � 1, hard processes
dominate the physics of the quark gluon plasma even at
high temperature and it is expected that a scale appro-
priate for this short distance regime will control the
running of the QCD coupling, i.e., g ’ g�r�. The interplay
between short and large distance length scales plays a
crucial role for a quantitative understanding of hard as
well as soft processes in dense matter. It will, for in-
stance, determine the range of applicability of perturba-
tive calculations for thermal dilepton rates or the
production of jets as well as the analysis of processes
that can lead to thermalization of the dense matter pro-
duced in heavy ion collisions. Moreover, the short and
intermediate distance regime also is most relevant for the
discussion of in-medium modifications of heavy quark
bound states which are sensitive to thermal modifications
of the heavy quark potential as well as the role of quasi-
particle excitations in the quark gluon plasma. In all these
cases it is not immediately evident that temperature is the
relevant scale that controls the running of the QCD
coupling at energies currently relevant in heavy ion phys-
ics where temperatures may be reached which are only
moderately larger than the phase transition temperature
Tc. An analysis of this question becomes of particular
interest in view of the recently suggested scenario for the
existence of a large number of Coulombic bound states in
the QCD plasma phase close to Tc [3,4].

It is the purpose of this paper, to firmly establish that
also at finite temperature the QCD coupling indeed runs
as function of the length scale r and agrees with the zero
temperature running coupling at sufficiently short dis-
We use the deconfinement temperature Tc as a characteristic
energy scale rather than a more conventionally used
�-parameter.
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2Although this is usually called the leading order perturba-
tive result in the high temperature phase the screened potential
already involves summation of an infinite set of ladder dia-
grams which leads to the screening mass ��T� � g�T�T. We
note that this leading order perturbative result is gauge
invariant.
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tances. In fact, we will show that in the entire regime of
distances for which at zero temperature the heavy quark
potential is considered to be described well by QCD
perturbation theory [5–7] (r & 0:1 fm) the QCD cou-
pling remains unaffected by temperature effects up to
T ’ 3Tc. Furthermore, we will analyze the interplay be-
tween the two relevant scales controlling the behavior of
heavy quark free energies, F�r; T�, and we will quantify
the distance scale below which processes in the QCD
plasma phase are still dominated by properties of the
QCD vacuum and above which screening dominates the
physics in the plasma phase.

We will start in Section II with a discussion of heavy
quark free energies and their relation to the QCD cou-
pling constant and give some details on our simulation
parameters in Section III. In Section IV we discuss the
calculation of running couplings at finite temperature and
short distances from color singlet free energies and relate
these results to properties of the running coupling at
large distances in Section V. Section VI contains our
conclusions.

II. FREE ENERGIES AND RUNNING COUPLINGS

A. Free energy of a static quark-antiquark pair in
lattice QCD

Our main concern in this study is the determination of
a running coupling from correlation functions of
Polyakov loops. In particular we want to make contact
to calculations performed at zero temperature. Here the
running of the QCD coupling has been determined suc-
cessfully in lattice calculations from the short distance
properties of the heavy quark potential [8–10] and contact
could be made with perturbative results obtained in 2-
loop calculations [5,6]. We thus want to analyze a finite
temperature observable which naturally is related to the
zero temperature heavy quark potential and has a well
defined (perturbative) interpretation that allows us to
make contact with perturbative definitions of a running
coupling. For this reason we will analyze properties of
heavy quark free energies in the singlet channel.

Correlation functions of Polyakov loops define the free
energy of a heavy quark-antiquark pair. One generally
considers the so-called color averaged free energy

e�F�r;T�=T�C �
1

9
hTrL�x�TrLy�0�i; (1)

where the Polyakov loop L�x� is defined on lattices with
temporal extent N� in terms of temporal link variables
U0�x; �� 2 SU�3�,

L�x� �
YN�
��1

U0�x; ��: (2)

Furthermore, r � jxj and C is a suitably chosen renor-
malization constant, which can be determined from a
matching of finite temperature free energies to the zero
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temperature heavy quark potential [11,12]. Its precise
value is of no importance for us here as we will be
interested in the r-dependence of the free energy to
determine running couplings. We plan to be more specific
on the renormalization process in a forthcoming
publication.

The color averaged free energy can be considered as a
thermal average over contributions corresponding to
quark-antiquark sources in color singlet and octet states,
respectively, [13,14]

e�F�r;T�=T �
1

9
e�F1�r;T�=T �

8

9
e�F8�r;T�=T; (3)

where

e�F1�r;T�=T�C �
1

3
TrhL�x�Ly�0�i; (4)

e�F8�r;T�=T�C �
1

8
hTrL�x�TrLy�0�i �

1

24
TrhL�x�Ly�0�i:

(5)

While the color averaged free energy is defined in terms
of a gauge invariant Polyakov loop correlation function,
the singlet and octet correlation functions are given in
terms of a gauge dependent correlator, TrL�x�Ly�0�, and
thus have to be evaluated in a fixed gauge. Nonetheless,
TrL�x�Ly�0� is related to an appropriately chosen gauge
invariant correlator and thus has a proper gauge invariant
interpretation. In fact, when evaluated in Coulomb gauge
the singlet correlation function constructed from the
Polyakov loops defined in Eq. (2) may be viewed as
resulting from gauge fixing nonlocal but gauge invariant
operators, i.e., dressed Polyakov loops, where the static
quark and antiquark sources are surrounded by gluon
clouds [15,16]. We also note that in a recent paper [17] it
has been argued that in the context of the transfer matrix
description of Polyakov loop correlation functions the
operators introduced above for the color averaged and
color octet free energies receive contributions only from
color singlet eigenstates. In the zero temperature limit
also the octet operator thus could project onto the lowest
lying singlet eigenstate, if the corresponding matrix ele-
ment is nonzero.

For our purpose of defining a running coupling at finite
temperature the singlet free energy is most appropriate as
it has at short (r �max�T; Tc� � 1) as well as large (rT �
1, T � Tc) distances and temperatures a simple asymp-
totic behavior which is dominated by one gluon ex-
change2, i.e.,
-2
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F1�r; T� �
�

� g2�r�
3�r ; r �max�T; Tc� � 1

� g2�T�
3�r e�g�T�rT; �rT � 1; T � Tc�

: (6)

Here we have already anticipated the running of the
couplings with the dominant scales in both limiting
regimes, although their running, of course, only arises
in higher order perturbative calculations. We also have
suppressed any additative constants which result from the
renormalization of the free energy [11] and, in particular,
at high temperature will dominate the free energy in the
large distance limit.

While the relation between the singlet free energy and a
running coupling is straightforward the definition of a
running coupling with the help of the color averaged free
energy is problematic. The exact cancellation of leading
order perturbative terms in high temperature perturba-
tion theory, F�r; T�=T 	 
F1�r; T�=T�2, which generically
does not occur at finite distances and temperatures, makes
it difficult to define a running coupling which easily
could be motivated by perturbation theory. While the
above quadratic relation between F (r, T) and F1 (r, T)
holds at large distances it has been demonstrated by us
recently that even at high temperature the short distance
part of the color averaged free energy is dominated by the
singlet contribution and F�r; T� 	 F1�r; T� holds at short
distances [11]. In fact, for this reason the determination of
a screening mass from the exponential fall of F (r, T) at
large distances, i.e.,F�r; T� 	 expf���T�rg, turned out to
be quite difficult and strongly dependent on the asymp-
totic form used in fits of the large distance behavior of
F�r; T� [18]. The subleading powerlike corrections were
found to be strongly temperature dependent and turned
out to be difficult to control.

B. Running couplings

The perturbative short and large distance relations for
the singlet free energy will be used to define a running
coupling at finite temperature. In general, the definition of
a running coupling in QCD is not unique beyond the
validity range of 2-loop perturbation theory; aside from
the scheme dependence of higher order coefficients in the
QCD �-functions it will strongly depend on nonperturba-
tive contributions to the observable used for its definition.
This is quite apparent when defining the coupling in QCD
either in terms of the free energy (T � 0: potential)

�V�r; T� � �
3r
4
F1�r; T�; (7)

or its derivative (T � 0: force)

�qq�r; T� �
3r2

4

dF1�r; T�
dr

: (8)

At low temperature the former necessarily has to change
sign at some intermediate distance due to the dominance
of the linearly rising confinement part in the potential
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[19]. The latter, however, stays positive as F1�r; T� in-
creases monotonically with r. In fact, for a linear con-
fining potential �V defined through Eq. (7) will become
negative and drop quadratically while �qq defined
through Eq. (8) will rise quadratically at large distances.
The latter gives the possibility of smoothly matching the
increasing coupling in the perturbative regime to the
nonperturbative increase. This and the poor convergence
of the perturbative expansion for �V�r� have been reasons
for analyzing in lattice calculations running couplings
defined through Eq. (8) (qq-scheme) rather than Eq. (7)
(V-scheme). We will in the following consider both defi-
nitions as this will also help to distinguish the short and
large distance regimes at finite temperature.

In the perturbative regime different definitions of the
running coupling are uniquely related through the QCD
�-function

�qq�r; T� � �V�r; T� � r
d�V�r; T�

dr

� �V�r; T� �
g�r; T�

2�
��g�; (9)

with ��g� � �b0g
3 � b1g

5 � b2g
7 �O�g9� and univer-

sal coefficients b0 � 11=16�2, b1 � 102=�16�2�2. In
higher orders the coefficients of the �-function are
scheme dependent. At zero temperature the heavy quark
potential has been calculated in 2-loop perturbation the-
ory [5–7]. From these calculations the 3-loop coefficient
b2 in the V-scheme [6] and the qq-scheme [9] could be
extracted and allowed for a detailed comparison of run-
ning couplings determined in perturbative and nonper-
turbative lattice calculations [9,10]. Good agreement has
been found at distances r & 0:1 fm, which also has been
estimated to be the range of validity of the perturbative
calculations. At larger distances, however, any perturba-
tively motivated definition of the running coupling will
also become sensitive to nonperturbative effects and may
lead to quite different results.

We will extent here the zero temperature studies of the
heavy quark potential and the force between static
charges to finite temperature. In this case the appropriate
observable is the heavy quark free energy and its deriva-
tive. At short distances we follow the approach used also
at T � 0 and introduce a running coupling by analyzing
the r-dependence of the force between static quark-
antiquark sources, Eq. (8), and will compare it with the
definition of a coupling in terms of the potential, Eq. (7).
At large distances we will determine a T-dependent run-
ning coupling directly from fits of F1�r; T� which are
motivated by the perturbative large distance form given
in Eq. (6). We will be more specific on this in Section V.

III. SIMULATION PARAMETERS

We will analyze in the following properties of heavy
quark-antiquark pairs in a thermal heat bath of gluons,
-3



-4

-2

0

0 0.2 0.4 0.6 0.8 1

 rI [fm]

F1(rI,T)/σ1/2

(a) T/Tc
1.05
1.50
3.00
6.00
9.00
12.0

O. KACZMAREK, F. KARSCH, F. ZANTOW, AND P. PETRECZKY PHYSICAL REVIEW D 70 074505
i.e., we consider correlation functions of Polyakov loops
in the SU(3) gauge theory (quenched QCD) at finite
temperature calculated on Euclidean lattice of size N3

� 
N�. All our calculations have been performed on lattices
with spatial extent N� � 32 and N� � 4, 8, and 16 using
the tree-level Symanzik-improved gauge action [20]. It
has been verified by us earlier [11] that this choice of
action and lattice parameters is sufficient to suppress
finite volume effects and finite size effects such as the
breaking of rotational symmetry in the analysis of corre-
lation functions at short and intermediate distances. Our
simulations have been performed in the temperature
range Tc < T � 12Tc. The simulation parameters are
summarized in Table I. The temperature scale for the
Symanzik-improved action was obtained earlier from
calculations of the string tension at zero temperature
and a determination of the critical coupling for the de-
confinement transition on lattices with temporal extent
N� � 4 and 6 [21].

The calculation of singlet free energies has been per-
formed in Coulomb gauge, which on the lattice is realized
by maximizing Tr

P3
��1 U��x; �� in each time slice, i.e.,

for fixed �. A residual gauge degree of freedom is fixed by
demanding

P
xU0�x; �� to be independent of �. Typically

we have analyzed the correlation functions on 100–500
independent gauge field configurations.

As we are interested in the short distance behavior of
the heavy quark free energy it is important to correct for
the violation of rotational symmetry which is most pro-
nounced in this region. Following [10] we have replaced
F�r; T� by F�rI; T� (similarly for F1 and F8) where rI
relates the separation between the static quark and anti-
quark sources to the Fourier transform of the tree-level
lattice gluon propagator, D��, i.e.,
TABLE I. Parameters of the simulations on 323  N� lattices
using the tree-level Symanzik-improved action.

�
T=Tc N� � 4 N� � 8 N� � 16
1.03(1) 4.090 � � � � � �

1.05(2) 4.100 4.5592 � � �

1.10(1) 4.127 � � � � � �

1.15(1) 4.154 � � � � � �

1.20(3) 4.179 4.6605 � � �

1.24(1) 4.200 � � � � � �

1.30(1) 4.229 4.7246 � � �

1.50(3) 4.321 4.8393 5.4261
1.60(2) 4.365 4.8921 � � �

1.68(2) 4.400 � � � � � �

2.21(5) 4.600 � � � � � �

3.0(1) 4.839 5.4261 � � �

6.0(3) � � � 6.0434 � � �

9.0(3) � � � 6.3910 � � �

12.0(5) � � � 6.6450 � � �

074505
r�1
I � 4�

Z �

��

d3k

�2��3
exp�i ~k � ~r�D00�k�: (10)
For the Symanzik-improved action the timelike compo-
nent of D�� is given by

D�1
00 �k� � 4

X3

i�1

�
sin2 ki

2
�

1

3
sin4 ki

2

�
: (11)
This procedure removes most of the lattice artifacts as is
evident from the smooth short distance behavior of the
free energies shown in Fig. 1. Therefore in what follows
we will always show free energies plotted versus rI, but
will suppress the subscript I in our formulas.
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FIG. 1. Heavy quark free energies in the singlet channel
calculated for several values of the temperature above Tc (a)
and the short distance part of the singlet free energy at T=Tc �
1:5 (b). The dashed line shows Vstring�r� defined in Eq. (13) and
the solid line is the perturbative result of Ref. [10] for Vq�q�r�.
This has been matched smoothly to Vstring�r� at r ’ 0:1 fm.
Physical units have been obtained by using
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p
� 420 MeV.
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FIG. 2. The running coupling in the qq-scheme determined
on lattices of size 323  N� with N� � 4 (open symbols) and 8
(filled symbols) from derivatives the short distance part of the
singlet free energy (T � 0: from the force) at different tem-
peratures. The relation of different symbols to the values of the
temperature are as in Fig. 1(a). The various lines are explained
in the text.
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IV. RUNNING COUPLING CONSTANT AT SHORT
DISTANCES

In Fig. 1 we show our results for the singlet free
energies for several temperatures above Tc. The free en-
ergies have been calculated in Coulomb gauge and have
been renormalized by matching the short distance part to
the zero temperature heavy quark potential of Ref. [10].

Figure 1(b) shows the short distance part of the singlet
free energy calculated at T � 1:5Tc on lattices with tem-
poral extent N� � 4, 8, and 16. This corresponds to lattice
spacings ranging from a ’ 0:12 fm down to a ’ 0:03 fm.
Apparently the short distance part of the singlet free
energy agrees quite well with the zero temperature heavy
quark potential including a perturbatively calculated
Coulomb term [9]

Vq�q�r� � �
4

3

�V�r�
r

; (12)

and shows no significant cutoff dependence. On the other
hand, deviations from a confinement potential with a
constant Coulomb like term that arises from universal
string fluctuations

Vstring�r� � �
�

12r
� �r; (13)

are clearly visible at these short distances. This already
indicates that the short distance behavior of the singlet
free energy is consistent with a running coupling that is
controlled by the quark-antiquark separation, r, and
shows no or only little temperature dependence. We also
note that after having renormalized the free energy
through a matching at short distances the large distance
behavior is completely fixed. Above Tc the singlet free
energy approaches a temperature dependent constant
value at large distances which changes sign for T ’ 3Tc.

To analyze the T and r-dependence of the coupling we
first follow the approach used at T � 0 [8,9] and define
�qq�r; T� through Eq. (8). The derivatives of the singlet
free energy with respect to the distance, dF1�r; T�=dr, are
obtained from a finite difference approximation using
results at neighboring distances. We compare our finite
temperature results to the high statistics calculation per-
formed at zero temperature [10] in Fig. 2. In this figure the
results obtained from the numerical calculation of the
heavy quark potential at T � 0 and distances r *

0:1 fm are summarized by a fat black line. At shorter
distances a thin line represents the result of a perturbative
calculation of the force [9,10] which is based on the 2-
loop calculation of the heavy quark potential [5,6].
This perturbative result is smoothly matched to the lattice
data at r ’ 0:1 fm. Also shown in the figure as a dashed
line is the effective coupling extracted from the confine-
ment potential Vstring using Eq. (8). It agrees quite well
with the lattice data for r * 0:1 fm but shows strong
074505
deviations from the perturbative as well as lattice calcu-
lation at shorter distances.

Our numerical results on �qq at distances smaller than
0.1 fm cover also distances substantially smaller than
those analyzed so far at T � 0. They clearly show the
running of the coupling with the dominant length scale r
also in the QCD plasma phase. For temperatures below
3Tc we find that �qq agrees with the zero temperature
perturbative result in its entire regime of validity, i.e., for
r & 0:1 fm. At these temperatures thermal effects only
become visible at larger distances and lead, as expected,
to a decrease of the coupling relative to its zero tempera-
ture value; for larger temperatures thermal effects influ-
ence also the short distance behavior at distances
r & 0:1 fm.

At distances larger than r ’ 0:1 fm nonperturbative
effects clearly dominate the properties of �qq. It thus is
to be expected that the properties of a running coupling
will strongly depend on the physical observable used to
define it. To quantify this we analyze directly the short
distance behavior of the renormalized singlet free ener-
gies and define �V�r; T� through Eq. (7). At T � 0 the
singlet free energy simply is the heavy quark potential
which for distances r * 0:1 fm is quite well described by
Vstring�r�. In the case of the string potential, Vstring, one
would obtain with the perturbative ansatz given in Eq. (7)
for the running coupling �V�r; 0� � �=16� 0:75�r2,
which changes sign at r ’ 0:25 fm. We expect to find a
similar behavior also when using F1�r; T� at temperatures
close to Tc. As can be seen from Fig. 3 such a behavior is
indeed found for Tc � T & 3Tc. This again reflects the
importance of remnants of the confining force in the
QCD plasma phase. For larger temperatures �V stays
-5
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FIG. 3. The running coupling in the V-scheme determined on
lattices of size 323  N� with N� � 4 (open symbols) and 8
(filled symbols) from the short distance part of the singlet free
energy (T � 0: from the potential) at different temperatures.
The relation of different symbols to the values of the tempera-
ture are as in Fig. 1(a). The dashed (solid) lines for �qq��V�

represent the zero temperature results of Ref. [10] which are
continued to shorter distances using our new results.
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positive reflecting the fact that F1�r; T� approaches a
negative constant at large distances. We note that at short
distance �V�r; T�>�qq�r; T� as expected from the per-
turbative relation, Eq. (9), between both definitions of the
running coupling. At distances r * 0:1 fm the couplings,
however, merely reflect the nonperturbative properties of
the observable used to define them.

Let us return to an analysis of the properties of the
running coupling defined in the qq-scheme. At tempera-
tures close to Tc the coupling �V�r; T� stays close to the
zero temperature value up to distances r ’ 0:3 fm. At
these distances the strong r-dependence of �qq�r; T�
mimics the linear rising part of the zero temperature
confinement potential. Remnants of the confining
force thus survive the deconfinement transition and
play an important role in quark-antiquark interac-
tions at intermediate distances up to r ’ 0:3 fm. At dis-
tances larger than 	0:5 fm these are, however, rapidly
screened also at temperatures close to Tc. We use the
maxima in �qq�r; T� to define a length scale rscreen which
separates the short distance regime from the large dis-
tance regime. This is shown in Fig. 4. In the entire
temperature interval analyzed by us we find that rscreen

is inversely proportional to the temperature, i.e., we find
rscreen � �0:48� 0:01� fm � Tc=T.

The fact that �qq�r; T� can become large at some dis-
tance also in the deconfined phase of QCD has recently
been exploited to discuss the scenario of a strongly inter-
acting fluid of quasiparticles describing the thermody-
namics above but close to Tc [3,4]. Our analysis of the
running coupling shows that up to a certain distance scale
confining features of the heavy quark potential indeed
074505
survive in the plasma phase and thus may support such a
scenario. We note, however, that this effect is not related
to an unexpectedly large coupling arising from thermal
effects but on the contrary to the survival of vacuum
physics below a certain characteristic length scale. In
particular, there is no evidence for a larger coupling in
the Coulomb part of the heavy quark potential arising
from thermal effects. From this point of view it may be
questionable whether the plasma phase really can support
the existence of well localized colored bound states as it is
advocated in [3].

V. T DEPENDENCE OF THE COUPLING AT
LARGE DISTANCES

We now turn to an analysis of the large distance struc-
ture of heavy quark free energies and discuss the deter-
mination of a temperature dependent coupling from it. As
inferred from the r-dependence of the coupling the cross-
over from the short to large distance regime sets in rather
abruptly. In particular, the screening of the heavy quark
free energies leads to an exponential suppression of �qq.
In order to extract the T-dependence of the QCD coupling
conventionally used to describe the large distance prop-
erties of QCD at high temperature this screening effect
should be eliminated. In Fig. 5 we show r
F1�1; T� �
F1�r; T�� on a logarithmic scale. Aside from deviations at
short and intermediate distances this is seen to decay
exponentially. We fit the large distance part of F1�r; T�
with an ansatz motivated by the Debye screened pertur-
bative result

Ffit�r; T�
T

� �
4��T�
3rT

expf�
�����������������
4�~��T�

p
rTg � b�T�; (14)

where ��T� and ~��T� are used as two independent fit
-6
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FIG. 6. The temperature dependent running coupling deter-
mined from the large distance behavior of the singlet free
energy on lattices with temporal extent N� � 4 (open symbols)
and N� � 8 (filled symbols). The upper figure shows ��T� �
g2�T�=4� (dots) and the value �qq�rscreen; T� (squares) deter-
mined from the short distance behavior of the singlet free
energy (see Fig. 3). The figure in the middle shows ~��T� �
~g2�T�=4� and characterizes the temperature dependence of the
screening mass. The lower figure gives the ratio of both fit
parameters. The solid lines with the dotted error band are
discussed in the text.
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parameters, which at large temperature, i.e., in the per-
turbative limit, are expected to coincide,

lim
T!1

��T�=~��T� � 1: (15)

Both fit parameters as well as their ratio are shown in
Fig. 6. Within statistical errors the above limit indeed is
reached for temperatures T=Tc ’ 6. At smaller tempera-
tures, however, deviations from unity are large and reach
��T�=~��T� ’ 5 close to Tc. Similar to the ambiguities
that exist for the definition of a running coupling at large
distances this suggests that for not too large temperatures,
Tc � T & 2Tc, any definition of a temperature dependent
running coupling will strongly depend on the physical
process used to define ��T� or equivalently g�T�.
Nonetheless for T * 6Tc the temperature dependence
seems to follow the logarithmic behavior expected from
perturbation theory. This is shown in the figure by the
solid lines with the dotted error band which represent an
appropriately rescaled perturbative running coupling,
��T� � 2:095�82��pert�T� where we have used for �pert

the 2-loop perturbative running coupling

g�2�T� �
11

8�2 ln
�

2�T
�MS

�
�

51

88�2 ln
�

2 ln
�

2�T
�MS

��
; (16)

and relate �MS to the critical temperature for the decon-
finement transition, Tc=�MS ’ 1:14�4� [8,21]. The rescal-
ing factor has been determined from a common fit of the
data for ��T� and ~��T� at temperatures T � 6Tc. At least
in this temperature regime all higher order perturbative
as well as nonperturbative effects seem to be well de-
scribed by a rescaling of the coupling with constant
factor. A similar observation has been made for screening
masses determined in an SU(2) gauge theory at high
temperature [22].
074505-7
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Also shown in the upper part of Fig. 6 is the maximal
value of the running coupling determined from the short
distance behavior of the singlet free energy,�qq�rscreen; T�.
As can be seen, this coupling is significantly smaller than
��T� determined as coupling strength of the Debye
screened Coulomb potential which describes the long
distance part of the singlet free energy. We stress again
that ��T� found here for T & 3Tc at large distances is not
appropriate to characterize the Coulombic part of F1�r; T�
at short distances. As discussed in the previous section
this is still controlled by an almost temperature indepen-
dent coupling �V�r; T�.

VI. SUMMARY

We have performed a detailed study of the singlet free
energy of a static q �q-pair in quenched QCD (SU(3) gauge
theory) at short and large distances.We have shown that at
sufficiently short distances the free energy agrees well
with the zero temperature heavy quark potential and thus
also leads to a temperature independent running coupling.
The range of this short distance regime is temperature
074505
dependent and reduces from r ’ 0:5 fm at T ’ Tc to r ’
0:03 fm at T ’ 12Tc. At high enough temperatures, T *

6Tc, the large distance behavior of the free energy is
qualitatively similar to what is expected in perturbation
theory and allows for a consistent definition of a tempera-
ture dependent running coupling characterizing large
distance properties of QCD thermodynamics. However,
at temperatures close to Tc the definition of a temperature
dependent running coupling is not unique.

Our analysis suggests that it is more appropriate to
characterize the nonperturbative properties of the QCD
plasma phase close to Tc in terms remnants of the con-
finement part of the QCD force rather than a strongly
coupled Coulombic force.
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