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Representation mixing and exotic baryons in the Skyrme model
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We study the effect of representation mixing in the SU�3� Skyrme model by diagonalizing exactly
the representation-dependent part. It is observed that even without the next-to-leading-order symmetry
breaking terms the low-lying baryon masses as well as the recently discovered �� and � �10 can be
fairly well reproduced within 3% accuracy. It is also demonstrated that the mixing effect is not
negligible in decay processes of f �10g. In particular the effect of mixing with f27g is found to be quite
large. These results are compatible with the second-order perturbation scheme. The decay widths are
found to be sensitive to the mass values. The decay widths of f �10g are estimated to be smaller than those
of f10g by an order of magnitude due to the destructive interference between operators, although the
kinematic factors are comparable.
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The recent discoveries [1] of �� have generated lots of
interesting developments in hadron spectroscopy, in par-
ticular, in understanding the exotic nature of the state.
The state is exotic in the sense that the quantum numbers
cannot be explained as a system of three quarks, as the
smallest number of quarks consistent with �� is five, or
that it cannot be classified into conventional classifica-
tions f8g and f10g. The lowest multiplet consistent with
�� is f �10g in the scheme of flavor SU�3� symmetry.

The chiral soliton model proposed by Skyrme [2] has
been explored theoretically and phenomenologically with
many interesting successes [3–6] in describing the prop-
erties of low-lying hadrons. The importance of the higher
multiplets beyond octet and decuplet has been noticed in
the chiral soliton model in treating the symmetry break-
ing part as perturbations. The symmetry breaking part is
not diagonal in the SU�3� multiplet space so that in
higher-order perturbation [6–8] or in diagonalizing the
Hamiltonian [9,10] the mass eigenstate should be mixed
with higher representations. For example, the nucleon is
dominantly described by f8g but with nonvanishing mix-
ing amplitudes of f �10g; f27g; � � � and the � also has non-
vanishing mixing amplitudes of f27g; f35g; � � � .

The prediction [7,11] of �� as the lowest state among
the higher multiplet f �10g has now been confirmed. One of
the characteristics of �� as an isospin singlet and hyper-
charge 2 state with respect to representation mixing is
that it has no corresponding state in the f8g and f27g, i.e.,
no representation mixing is possible. On the other hand
more massive states in the same multiplet f �10g have non-
negligible mixing with other representations, and the
masses and decay widths are supposed to depend on the
mixing. The effect of mixing in second-order perturba-
tion has been extensively discussed recently [12–14], in
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which the effect of mixing is found to be non-negligible
but depends much on the parameters of the underlying
effective theory. Similar observations have been made in
the exact diagonalization method [15,16] for the exotic
baryon masses. In this short paper we discuss the mixing
effect on the decay process further, using the exact diag-
onalization method keeping only the chiral symmetry
breaking term that is of leading-order in Nc.

The effective action for the pseudoscalar mesons,
which realizes the global SU�3�L � SU�3�R in the
Goldstone mode, can be written in general as

S eff � S2 � SHOD � SSB � SWZ (1)

where S2 and SHOD are the leading kinetic term and the
higher-order derivative terms including the Skyrme term.
SWZ is the Wess-Zumino action and SSB is an explicit
symmetry breaking term depending on the meson
masses. The effective Hamiltonian after quantizing the
‘‘degenerate rotational mode’’ of the SU�2� soliton of
hedge-hog ansatz [2] embedded into SU�3� is known to
have the following form for Nc � 3 and B � 1:
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where C2
SU�2�R� and C2
SU�3�L� are the corresponding
Casimir operators �C2�SU�2�R��J�J�1�;C2�SU�3�L��
1
3
p

2�q2�3�p�q��pq�. In this frame work we are
left with four parameters, Mcl; I1; I2 and �, which should
be in principle determined unambiguously from the ef-
fective action. In this work however we take them as a set
of free parameters for the phenomenological study.

In Eq. (2), the SU�3� symmetric limit can be achieved
when the last term vanishes. The mass spectrum of the
baryon can be determined by treating the symmetry
breaking term in a perturbative way. One can also include
33-1  2004 The American Physical Society
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additional terms of next-to-leading-order in chiral sym-
metry breaking to reproduce the low-lying baryon spec-
trum well in the first-order perturbation calculation [11].
In this work when the Hamiltonian is to be diagonalized,
we do not include these terms which are of next-to
leading-order in the 1=Nc expansion to make the analysis
free from possible ambiguities due to the extra parameters
in the effective theory. For the diagonalization the Hamil-
tonian can be divided into two parts, representation-
independent (H0) and dependent (HR) parts:

H0 � Mcl �
1

2
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; (3)
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1

2I2
C2
SU�3�L� 	 �
1	D8

88�A��: (4)

Minimal extensions beyond octet and decuplet can be
guided by considering the quark content of the baryons.
Three-quark system leads up to decuplet. With an addi-
tional quark-antiquark pair for a penta-quark system,
qqq �qq, the possible representation can be extended up
to f �10g; f27g,and f35g. With the constraint YR � 1 for B �
1 baryon, the state vectors [10] for spin 1=2 baryons and
spin 3=2 baryons can be written as��������B
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(6)

where a�b� refer to a baryon with flavor part � �
�Y; I; I3� and spin part � � �YR; J; J3� with spin J �
1=2�3=2�. By diagonalizing the Hamiltonian HR in the
form of 3� 3 matrix for each baryon state, we can
calculate the corresponding mass as an eigenvalue of
the Hamiltonian.

The eigenvalues and the mixing amplitudes in Eqs. (5)
and (6) are of course functions of four parameters,
Mcl; I1; I2 and �. We fix the parameters by a best fit to
the masses of the low-lying octet and decuplet states. The
best fit to the mass differences can be obtained with the
central value of I2 � 2:91� 10	3 MeV	1 and � �
	750 MeV. Then the mass fit gives Mcl � 773 MeV
and I1 � 6:32� 10	3 MeV	1. It is interesting to note
that these values are comparable to those used in the
perturbation scheme [12,13].

The masses in the best fit are given by

M�N� � 939; M��� � 1108; M��� � 1226;

M��� � 1345; M��� � 1231; M��10� � 1385;

M��10� � 1506; M��� � 1638; M���� � 1570;

M�N �10� � 1705; M�� �10� � 1811; M�� �10� � 1818:

(7)
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One can see that the masses for the low-lying octet and
decuplet are reasonably well reproduced in the exact
diagonalization method, with results that are comparable
also to those obtained in the perturbation scheme (either
in the first-order [17] or in the second-order perturbation
[12]). It is found that the estimated masses of �� and � �10

are consistent with the experimental values within 3%
accuracy. The mixing amplitudes for the corresponding
states can be read out from the normalized mass eigen-
states. For example, the mixing amplitudes for N;� and
N�10 are given by

CN
8 � 0:953; CN

�10
� 0:234; CN

27 � 0:191;

C�
10 � 0:877; C�

27 � 0:464; C�
35 � 0:125;

CN �10
8 � 	0:234; CN �10

�10
� 0:970; CN �10

27 � 0:024;

(8)

which are comparable to those in [12,14,17]. For f �10g, it
should be noted that the equal spacing rule in the first-
order perturbation is not literally respected due to the
effects of the mixing in the second-order perturbation
[12]. It is observed that there are no appreciable differ-
ences in the mixing amplitudes between the exact diago-
nalization scheme and second-order perturbation scheme,
which is consistent with the higher-order perturbative
calculations [8].

Given the wave function in the representation space,
Eqs. (5) and (6), the decay width of a baryon B into a low-
lying B0 and meson ’ can be obtained by evaluating the
matrix element of the baryon decay operators. The
Yukawa coupling in general as well as the decay operator,
in particular, which is basically a meson-baryon-baryon
(’BB0) coupling, has been discussed by many authors [18]
in the context of the chiral soliton model. In this work, we
choose an operator based on the suggestion of Adkins
et al. [4] in relation to the axial current coupling and
developed further by Blotz et al. [19], which has the form
[11,12]:

Ô �8�
’ � 3

�
G0D

�8�
’i 	G1dibcD

�8�
’bŜc 	G2

1���
3

p D�8�
’8Ŝi

�
� p’i; (9)

where i � 1; 2; 3 and b; c � 4; ::::; 7. The decay amplitude
and the decay width are given by

MB!B0�’ � hB0jÔ�8�
’ jBi; �B!B0! � K � �A2 (10)

where �A2 � jMj2=3p2 and K is a kinematic factor:

K �
p3

8#MBMB0

MB0

MB
: (11)
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Here MB’s (m) are the corresponding masses of the
baryons (mesons), M’s are the mean masses of the mul-
tiplet. We take M8 � 1154:5 MeV;M10 � 1436 MeV;
M �10 � 1726 MeV.
TABLE I. f10

Decay Ka

� ! N � # 0.33 (0.13–0.64)
�10 ! �� # 0.17 (0.04–0.44)
�10 ! �� # 0.001 (<0:18)
�10 ! �� # 0.01 (<0:22)

aValues in the parentheses are obtained with �3
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The decay amplitudes of the baryons can be calculated
in a straightforward way and result in lengthy formulas.
For example, the amplitudes squared for � ! N � # and
�� ! N � K are given by
�A2�� ! N � #� �
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where G10 � G0 �
1
2G1; G27 � G0 	

1
2G1; G

0
27 � G0	

2G1; F35 � G0 �G1; G �10 � G0 	G1 	
1
2G2; H �10 � G0	

5
2G1 �

1
2G2; H

0
27 � G0 �

11
14G1 �

3
14G2. Introducing a pa-

rameter & [13] as G1 � &G0, we take G0 and & as
parameters in this phenomenological analysis. We find a
& and G0 that are consistent with the overall fit to the
experimental values of the widths of the decuplet. The
overall fit is obtained with G0 � 17:5 and & � :5. The
decay width is found to be quite sensitive to the masses of
the particles involved in the decay process. This is be-
cause the kinetic part is very sensitive to the masses. We
calculate the possible range of the calculated widths by
allowing 3% variations of the masses. As shown in the
parentheses in Table I, the kinetic terms K and therefore
the decay widths are changing in a relatively large range
even with 3% variation with masses. On the other hand by
allowing �3% variation in masses, reasonably well re-
produced in this model, one can explain the experimental
values of f10g decay widths within the right range. Now
given the set of parameters determined by the low-lying
baryons, one can make the prediction for the decay
widths of exotic f �10g baryons. In this work we adopt the
parametrization for G2 as in [12], G2 � �9F=D	5

3F=D�5��
�&� 2�G0: The estimated decay widths are given in
Table II.

Compared to the decuplet, the decay amplitudes for the
antidecuplet are found to be much smaller by an order of
magnitude whereas the kinetic terms are comparable to
each other. It has been understood that this is mainly due
to the destructive interference between the operators [11].
In the fourth column, the amplitudes with G1 � G2 � 0
are shown, which clearly shows that the effect of inter-
ferences are substantially large. To see the effect of rep-
resentation mixing particularly with f27g, the results
without f27g mixing are shown in the fifth column. The
overall tendency is that the nonvanishing mixing with
f27g reduces the amplitudes [13]. However, for the pro-
cesses � �10 ! �� # and � �10 ! N � K, the mixing en-
hances the decay amplitudes [13], whereas � �10 ! �� K
and � �10 ! �� ' are found to be insensitive to f27g
mixing. The values in parenthesis are those with �3%
variations of the baryon masses. According to our calcu-
lated masses, the process N �10 ! �� K and � �10 ! ��
K are beyond the threshold in the best fit.

In this work, we discussed the effect of representation
mixing obtained in SU�3� Skyrme model by diagonaliz-
ing the representation-dependent part in the Hamiltonian
resulting from quantizing the rotational mode. It is shown
that even without the next-to-leading-order (in NC) sym-
metry breaking terms the low-lying baryon masses can
be fairly well reproduced by allowing the mixing with
higher representation. One of the major differences in the
mass results obtained in the exact diagonalization method
compared to the first-order estimation [11] is that there is
a deviation from the equal spacing rule with hypercharge
in the f �10g multiplet. It is due to the non-negligible mixing
with other representations [7]. It is also observed that the
mixing effect is not negligible in the decay widths. The
effect of mixing with f27g is found to be particularly
large. These results are consistent with the second-order
g ! f8g � ’

�A2 �a �Exp:

367 121 (46–233) 115–125
177 31 (8–79) 34.7
43 0.70 (<7:9) 4.73
135 1.2 (<30) 9.9

% mass variations.
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TABLE II. f10g ! f8g � ’

Decay Ka �A2
�best fit�

�A2
�G1�0;G2�0�

�A2
�withoutf27g� �a

�� ! N � K 0.52 (0.15–1.04) 7.60 165 29.00 4 (1.2–7.9)
� �10 ! �� # 0.66 (0.42–1.3) 39 125 16 26 (16–50)
� �10 ! �� K 0.23 (0.06–0.86) 17 41 17 4 (0.97–14)
N �10 ! N � # 3.3 (2.5–4.2) 0.61 15.2 14 2 (1.5–2.6)
N �10 ! N � ' 1.1 (0.56–1.8) 6.6 24 14 7.3 (3.6–12)
N �10 ! �� K 0.28 (0.01–0.67) 3.6 31 0.7 1.0 (0.03–2.40)
N �10 ! �� K � � � (<0:27) 0.40 45 2.3 � � � (<0:11)
� �10 ! N � K 2.4 (1.6–3.3) 0.50 22 0.02 1.2 (0.81–1.7)
� �10 ! �� # 1.3 (1.0–2.2) 1.3 13 12 1.7 (1.3–2.9)
� �10 ! �� ' 0.06 (<0:57) 18 46 34 1.0 (<10)
� �10 ! �� ' 0.57 (0.13–1.1) 1.1 22 1.1 0.61 (0.14–1.2)
� �10 ! �� K � � � (<0:20) 33 70 91 � � � (<6:60)

aValues in the parentheses are obtained with �3% mass variations.
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perturbation scheme, where higher-order corrections are
found to be relatively large [13]. Although the decay
width estimations in this work are based on a specific
form of the decay operator [4,19], the observation that the
results of the exact diagonalization method and the
second-order perturbation scheme are consistent with
each other demonstrates that the higher-order corrections
beyond the second-order might not be important in nu-
merical estimations. However, it should be noted that the
074033
exact diagonalization can make more sense only when the
Hamiltonian to be diagonalized is as complete as possible
at least for the symmetry breaking part.
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