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NLO QCD procedure of the semi-inclusive deep inelastic scattering data analysis
with respect to the light quark polarized sea
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The semi-inclusive deep inelastic scattering (SIDIS) process is considered. A theoretical procedure is
proposed allowing the direct extraction from the SIDIS data of the first moments of the polarized
valence distributions and of the first moment difference of the light sea quark polarized distributions in
the next to leading QCD order. The validity of the procedure is confirmed by the respective simulations.
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I. INTRODUCTION

The extraction of the polarized quark and gluon den-
sities is one of the main tasks of the semi-inclusive deep
inelastic scattering (SIDIS) experiments with the polar-
ized beam and target. Of special importance for the
modern SIDIS experiments are the questions of strange
quark and gluon contributions to the nucleon spin, and
also the sea quark share as well as the possibility of
broken sea scenario. Indeed, it is known [1] that the
unpolarized sea of light quarks is asymmetric, so that
the first moments of the unpolarized �u and �d quark
densities do not equal each other:Z 1

0
dx� �d�x� � �u�x�� � 0:147� 0:039 � 0:

The question arises: Does the analogous situation occur
in the polarized case, i.e., are the polarized density ��u
and its first moment1 �1 �u �

R
1
0 dx��u, respectively, equal

to � �d and �1 �d or not?
In Ref. [2], the possibility of a broken sea scenario was

analyzed, considering the results of SIDIS experiments
on �q with respect to their consistence with the Bjorken
sum rule (BSR) predictions. It was shown [2] that, using
the results of [3] on the valence quark distributions �1qV
obtained in the leading (LO) QCD order, one can imme-
diately estimate the first moment difference of the u and d
sea quark polarized distributions:

�1 �u� �1 �d � 0:235� 0:097: (1)

At the same time, it was stressed in [2] that this is just a
speculation, and, to get the reliable results on�q from the
data obtained at the relatively small average Q2 �
2:5 GeV2 [3], one should apply next to leading (NLO)
QCD analysis. The main goal of this paper is to present
such a NLO QCD procedure allowing the direct extrac-
tion of the quantity �1 �u� �1 �d from the SIDIS data.
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on, the notation �1q �

R
1
0 dx�q will be used to

e local in Bjorken x polarized quark densities
eir first moments.
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It is known that the description of semi-inclusive DIS
processes turns out to be much more complicated in
comparison to the inclusive polarized DIS. First, the
fragmentation functions are involved, for which the in-
formation is limited.2 Second, the extraction of the quark
densities in NLO QCD order turns out to be rather
difficult, since the double convolution products are in-
volved. So, to achieve a reliable description of the SIDIS
data it is very desirable, on the one hand, to exclude from
consideration the fragmentation functions, whenever pos-
sible, and, on the other hand, to try to simplify the NLO
considerations as much as possible.

It is well known (see, for example, [4] and references
therein) that within LO QCD approximation one can
completely exclude the fragmentation functions from
the expressions for the valence quark polarized distribu-
tions �qV through experimentally measured asymme-
tries. To this end, instead of the usual virtual photon
asymmetry Ah
N � Ah1N [which is expressed in terms of
the directly measured asymmetry Ahexp � �nh"# �
nh""�=�n

h
"# � nh""� as Ah1N � �PBPTfD��1Ahexp], one has to

measure so-called ‘‘difference asymmetry’’ Ah� �h
N which

is expressed in terms of the respective counting rates3 as

Ah� �h
N �x;Q2; z� �

1

PBPTfD

�nh"# � n �h"#� � �nh"" � n �h""�

�nh"# � n �h"#� � �nh"" � n �h""�
; (2)

where the event densities nh
"#�""�

� dNh
"#�""�

=dz, i.e., nh
"#�""�

dz,
are the numbers of events for antiparallel (parallel) ori-
entations of incoming lepton and target nucleon spins for
the hadrons of type h registered in the interval dz.
Quantities PB and PT , f and D are the beam and target
polarizations, dilution and depolarization factors, respec-
tively (for details on these quantities see, for example,
[5,6] and references therein). Then, the LO theoretical
2For discussion of this subject see, for example, [4] and
references therein.

3As usual, one should realize the quantities nh""�"#� entering
Eq. (2) not as the pure event densities but as the event densities
multiplied by the respective luminosities which, in general, do
not cancel out (see the appendix).
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expressions for the difference asymmetries look like (see,
for example, COMPASS proposal [7], Appendix A)

A�
����

p �
4�uV ��dV
4uV � dV

; A�
����

d �
�uV � �dV
uV � dV

;

A�
����

n �
4�dV ��uV
4dV � uV

; AK
��K�

p �
�uV
uV

;

AK
��K�

d � A�
����

d ;

(3)

i.e., on the one hand, they contain only valence quark
polarized densities, and, on the other hand, have the
remarkable property to be free of any fragmentation
functions.

II. THEORETICAL BASIS OF THE PROCEDURE

Let us start NLO consideration with the known [4,8–
10] theoretical expressions for the difference asymme-
tries

Ah� �h
N �x;Q2; z� �

gN=h1 � gN=
�h

1

~FN=h1 � ~FN=
�h

1

�N � p; n; d�; (4)

where the semi-inclusive analogs of the structure func-
tions gN1 and FN1 , functions gN=h1 and ~FN=h1 , are related to
the respective polarized and unpolarized semi-inclusive
differential cross sections as follows [9]:

d3�hN"#
dxdydz

�
d3�hN""
dxdydz

�
4��2

Q2 �2� y�gN=h1 �x; z;Q2�; (5)

d3�hN
dxdydz

�
2��2

Q2

1� �1� y�2

y
2 ~FN=h1 �x; z;Q2�: (6)

The semi-inclusive structure functions gp�n�=h1 are given
in NLO by
4It seems that the only real possibility to extract polarized
distributions from the data in NLO QCD order is to use some
proper fit. At the same time, it is known that such a procedure is
rather ambiguous since the sea distributions are very sensitive
to the choice of initial functions for �q parametrization (and,
especially, for ��q parametrization).
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gp=h1 �
X
q; �q

e2q�q
�
1��

�s
2�
�Cqq�

�
Dhq �

�X
q; �q

e2q�q
�

�
�s
2�
�Cgq �Dhg � �g �

�s
2�
�Cqg �

�X
q; �q

e2qDhq

�
;

(7)

gn=h1 � gp=h1 ju$d; (8)

where the double convolution product is defined as

��q � �C �D��x; z� �
Z
D

Z dx0

x0

�
dz0

z0
�q

�
x
x0

�
�C�x0; z0�D

�
z
z0

�
:

(9)

The respective expressions for 2 ~Fp�n�=h1 have the form
analogous to Eq. (7) with the substitution �q! q, �C!
~C. The expressions for the Wilson coefficients
�Cqq�qg;gq� and ~Cqq�qg;gq� � C1qq�qg;gq� � 2�1� y�=
�1� �1� y�2�CLqq�qg;gq� can be found, for example, in
[9], Appendix C.

It is remarkable that, due to the properties of the
fragmentation functions,

D1 � D�
�

u � D�
�

�u � D�
�

�d
� D�

�

d ;

D2 � D�
�

d � D�
�

�d
� D�

�

u � D�
�

�u ;
(10)

in the differences gp=�
�

1 � gp=�
�

1 and ~Fp=�
�

1 � ~Fp=�
�

1

(and, therefore, in the asymmetries A�
����

p and
A�

����

d ), only the contributions containing the Wilson
coefficients �Cqq and ~Cqq survive. However, even then the
system of double integral equations
A�
����

p �x;Q2; z� �
�4�uV � �dV��1���s=�2���Cqq���D1 �D2�

�4uV � dV��1���s=�2��Cqq���D1 �D2�
; A�

����

n �x;Q2; z� � A�
����

p �x;Q2; z�juV$dV ;
proposed by Christova and Leader [4], is rather difficult
to solve directly4 with respect to the local quantities
�uV�x;Q

2� and �dV�x;Q
2�. Besides, the range of inte-

gration D used in [4] has a very complicated form,
namely,

x
x� �1� x�z

� x0 � 1 with z � z0 � 1;
if x� �1� x�z � 1, and, additionally, range

x � x0 � x=�x� �1� x��z;

with x�1� x0�=�x0�1� x�� � z0 � 1 if x� �1� x�z � 1.
Such an enormous complication of the convolution inte-
gral range occurs if one introduces (to take into account
the target fragmentation contributions5 and to exclude the
cross-section singularity problem at zh � 0) a new hadron
kinematic variable z � Eh=EN�1� x� (
p c.m. frame)
instead of the usual semi-inclusive variable zh �
�Ph�=�Pq� � �lab system�Eh=E
. However, both prob-
lems compelling us to introduce z, instead of zh, can be
5Then, one should also add the target fragmentation contri-
butions to the right-hand side of Eq. (7).
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avoided (see, for example [9,10]) if one, just to neglect the
target fragmentation, applies a proper kinematical cut
Z < zh � 1, i.e., properly restricts the kinematical region
covered by the final state hadrons.6 Then, one can safely
use, instead of z, the usual variable zh, which at once
makes the integration range D in the double convolution
product (9) very simple: x � x0 � 1; zh � z0 � 1. Note
that in applying the kinematical cut it is much more
convenient to deal with the total numbers of events (mul-
tiplied by the respective luminosities—see footnote 3 and
the appendix)

Nh
"#�""�

�x;Q2�jZ �
Z 1

Z
dzhnh"#�""��x;Q

2; zh�; (11)

within the entire interval Z � zh � 1 and the respective
integral difference asymmetries7
6This is just what was done in the HERMES and SMC
experiments, where the applied kinematical cut was
zh > Z � 0:2.

7Namely, the integral spin symmetries Ah1N �R
1
Z dzh g

h
1N=

R
1
Z dzh ~F

h
1N were measured by SMC and

HERMES experiments (see [3,5,6] and also [10]).

074032
Ah� �h
N �x;Q2�jZ �

1

PBPTfD

�Nh"# � N �h
"#� � �Nh"" � N �h

""�

�Nh"# � N �h
"#� � �Nh"" � N �h

""�

��������Z

(12)
�

R
1
Z dzh�g

N=h
1 � gN=

�h
1 �R

1
Z dzh� ~F

N=h
1 � ~FN=

�h
1 �

�N � p; n; d�; (13)
than with the local in zh quantities n"#�""��x;Q2; zh� and
Ah� �h
N �x;Q2; zh�. So, the expressions for the proton and

deutron integral difference asymmetries assume the
form8
A�
����

p �x;Q2�jZ �
�4�uV ��dV�

R
1
Z dzh�1�� �s

2� �Cqq���D1 �D2�

�4uV � dV�
R
1
Z dzh�1�� �s

2�
~Cqq���D1 �D2�

; (14)

A�
����

d �x;Q2�jZ �
��uV ��dV�

R
1
Z dzh�1�� �s

2� �Cqq���D1 �D2�

�uV � dV�
R
1
Z dzh�1�� �s

2�
~Cqq���D1 �D2�

; (15)
where the double convolution product reads

��q � �C �D��x; zh� �
Z 1

x

dx0

x0

�
Z 1

zh

dz0

z0
�q

�
x
x0

�
C�x0; z0�D

�
zh
z0

�
:

(16)

With such a simple convolution region, one can apply
the well-known property of the nth Melin moments
Mn�f� �

R
1
0 dxx

n�1f�x� to split the convolution product
into a simple product of the Melin moments of the re-
spective functions:

Mn�A � B� �
Z 1

0
dxxn�1

Z 1

x

dy
y
A
�
x
y

�
B�y�

� Mn�A�Mn�B�: (17)

So, applying the first moment to the difference asymme-
tries A�

����

p �x;Q2�jZ and A�
����

d �x;Q2�jZ, given by (14)
and (15), one gets a system of two equations for �1uV �R
1
0 dx�uV and �1dV �

R
1
0 dx�dV :

�4�1uV � �1dV��L1 � L2� � Aexp
p ; (18)
��1uV � �1dV��L1 � L2� � Aexp
d ; (19)

with the solution

�1uV �
1

5

Aexp
p �Aexp

d

L1 � L2
;

�1dV �
1

5

4Aexp
d �Aexp

p

L1 � L2
:

(20)

Here we introduce the notation

Aexp
p �

Z 1

0
dxA�

����

p jZ�4uV � dV�
Z 1

Z
dzh

�

�
1��

�s
2�

~Cqq�
�
�D1 �D2�;

Aexp
d �

Z 1

0
dxA�

����

d jZ�uV � dV�
Z 1

Z
dzh

�

�
1��

�s
2�

~Cqq�
�
�D1 �D2�; (21)

L1 � L�
�

u � L�
�

�u � L�
�

�d
� L�

�

d ;

L2 � L�
�

d � L�
�

�d
� L�

�

u � L�
�

�u ;
(22)

where
8Here one uses the equality gd=h1 ’ gp=h1 � gn=h1 which is valid
up to corrections of order O�!D�, where !D � 0:05� 0:01 is
the probability to find a deutron in the D state.
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FIG. 1. N�
�

and N�
�

obtained with PEPSI for neutron target.
The dashed and solid lines correspond to ��, and �� produc-
tions, respectively.
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Lhq�
Z 1

Z
dzh

�
Dhq�zh��

�s
2�

Z 1

zh

dz0

z0
�1C�z

0�Dhq

�
zh
z0

��
; (23)

with the coefficient �1C�z� �
R
1
0 dx�Cqq�x; z�.

Now one may do the last step to get the NLO QCD
equation for the extraction of the quantity �1 �u� �1 �d in
which we are interested. Namely, one can use the equiva-
lent of BSR (see [2] and references therein for details)
rewritten in terms of the valence and sea distributions:

�1 �u� �1 �d �
1

2

��������gAgV
��������� 1

2
��1uV ��1dV�: (24)

Using Eqs. (20)–(24), one gets a simple expression for the
quantity �1 �u� �1 �d �

R
1
0 dx���u�x;Q

2� � � �d�x;Q2�� in
terms of experimentally measured quantities, which is
valid in NLO QCD :

�1 �u� �1 �d �
1

2

��������gAgV
��������� 2Aexp

p � 3Aexp
d

10�L1 � L2�
: (25)

It is easy to see that all the quantities present in the right-
hand side of (25), with the exception of the two difference
asymmetries A�

����

p jZ and A�
����

d jZ (entering Aexp
p and

Aexp
d , respectively) can be extracted from unpolarized9

semi-inclusive data and can, thus, be considered here as a
known input. So, the only quantities that have to be
measured in polarized semi-inclusive DIS are the differ-
ence asymmetries A�

����

p jZ and A�
����

d jZ which, in
turn, are just simple combinations of the directly mea-
sured counting rates.
10This occurs everywhere except for the vicinity of xB � 0,
where the ratio N�

�

=N�
�

approaches unity owing to the domi-
nant contribution of the sea quarks [14]. However, let us stress
that for the statistical error only the difference N�

�
� N�� is

of importance, and, at the statistics available to HERMES and
�� ��
III. ERRORS ON THE DIFFERENCE
ASYMMETRIES

To check the validity of the proposed procedure, let us
perform the respective simulations. To this end, one can
use the polarized event generator PEPSI [13]. First of all,
let us clarify the very important issue of the errors on the
difference asymmetries. At first sight it could seem that
the difference asymmetries suffer from the much larger
errors in comparison to the usual asymmetries. Indeed,
the approximate formula for the estimation of the statis-
tical error on the difference asymmetries reads [see
Eqs. (A15) and (A16) in the appendix]

��A�
����

p�n;d� � �

																									
N�

�
� N�

�
p
N�

�
� N�

� : (26)

So one can see that, contrary to the usual asymmetries,
the difference of the total (for both parallel and antipar-
9The spin-independent fragmentation functions D can be
taken either from independent measurements of e�e� annihi-
lation into hadrons [11] or from the hadron production in
unpolarized DIS [12].
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allel beam and target polarizations) counting rates for��

and �� production, N�
�
� N�

�

"# � N�
�

"" and N�
�
�

N�
�

"# � N�
�

"" , occurs in the denominator of the expression

for �A�
����

p�n;d� , and it could lead to the large statistical
errors on this asymmetry. Such a situation indeed occurs
for the neutron target. However, fortunately, for the pro-
ton and deutron targets there is an important circum-
stance which rescues the situation.

The point is that, unlike the neutron target case (see
Fig. 1), the production of positive pions on the proton
target (see Fig. 2), in the widest region in Bjorken x,10

essentially exceeds the production of negative pions,
whereas for the deuteron target the difference in ��

and �� production is not so drastic but is still essential
(see Fig. 3).

It is of importance that, though the histograms
in Figs. 1–3 are obtained using the PEPSI event gen-
erator ( just summing the events with parallel and
antiparallel beam and target polarizations), they
represent the general, well-established exper-
imental [14] picture (see Sec. 4.3 and Fig. 10 i
n Ref. [14]), and peculiar to all known SIDIS event
generators.11 To be sure that concerning the strong asym-
metry between N�

�

p;d and N�
�

p;d the PEPSI event generator
COMPASS, N � N is not a small quantity even in the
vicinity of the minimal value xB � 0:003 accessible to mea-
surement; see below.

11Absolutely the same histograms for N�
�

n;p;d and N�
�

n;p;d are
reproduced using, for example, the unpolarized event generator
LEPTO [15].
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510

Deutron target

FIG. 3. N�
�

and N�
�

obtained with PEPSI for deutron target.
The dashed and solid lines correspond to ��, and �� produc-
tions, respectively.

X-210 -110

510

Proton target

FIG. 2. N�
�

and N�
�

obtained with PEPSI for proton target.
The dashed and solid lines correspond to ��, and �� produc-
tions, respectively.
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we deal with strictly follows the real [14] physical pic-
ture, one can also compare what we have obtained with
PEPSI, Fig. 4, for the ratio ofN�

�

p;d andN�
�

p;d with Fig. 10 in
Ref. [14].

Thus, the differences between the total counting
rates N�

�
� N�

�

"# � N�
�

"" and N�
�
� N�

�

"# � N�
�

"" are
not small quantities12 for both proton and deutron
targets, and, besides, increase with the statistics. As a
result, the respective statistical errors turn out to be quite
acceptable.

Let us illustrate this statement by a simple LO example.
Using the GRSV2000LO (broken sea) [16] parametriza-
tion entering the PEPSI event generator as the input,
we generate 3� 106 DIS events with E) � 160 GeV2

(COMPASS kinematics). We then construct the ‘‘experi-
mental’’ asymmetries together with their statistical
errors using Eqs. (A1) and (A7) from the appendix,
respectively. These simulated asymmetries are compared
with the theoretical ones given by Eq. (3)—see Fig. 5.
One can see that the errors on the simulated asymmetries
are quite acceptable and that the simulated and theoretical
asymmetries are in good agreement within the errors.
Furthermore, it is seen from Fig. 6 that the extracted
valence13 distributions are also in good accordance with
the respective input parametrizations.
12Though in the vicinity xB � 0 the ratio N�
�
=N�

�
ap-

proaches unity (see Fig. 4), with the applied statistics 3� 106

DIS events (absolutely real for HERMES and COMPASS, see
below), the difference N�

�
� N�

�
entering the error signifi-

cantly differs from zero even near the minimal value xB �
0:003 accessible to measurement. Indeed, in the first bin
0:003< x< 0:006, the PEPSI event generator gives for the
proton target N�

�
=N�

�
� 1:085 while N�

�
� N�

�
� 2985,

and for deutron target N�
�
=N�

�
� 1:053 while

N�
�

� N�
�

� 2020.
13Namely, the valence distributions are essential for what

follows; see below.
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IV. TESTING OF THE NLO QCD EXTRACTION
PROCEDURE

A. Broken sea scenario

To perform the NLO QCD analysis, we first choose14

the GRSV2000NLO (broken sea) [16] parametrization as
an input. The conditions of simulations are presented in
Table I and correspond to HERMES and15 SMC
(COMPASS) kinematics. Let us stress that all the cuts
in Table I are the standard cuts applied16 by SMC,
HERMES, and COMPASS. The statistics 3� 106 in
Table I is the total number of DIS events for both proton
and deutron target and for both longitudinal polariza-
tions. Since the statistical error on the pion difference
asymmetry depends on N�

�
and N�

�
, one needs to

know the respective semi-inclusive statistics—the total
(for all available xB) number of pions N�

�

tot and N�
�

tot

corresponding to 1:5� 106 DIS events for each target.
With all the cuts indicated in Table I, the PEPSI event
generator gives

N�
�

tot jproton � 551281; N�
�

tot jproton � 358654;

N�
�

tot jdeutron � 526 747; N�
�

tot jdeutron � 383 826;

for El � 27 GeV, while
14Note that at present the broken sea scenario is argued as the
most probable one [16] [see also the discussion on this subject at
the beginning of this paper and Eq. (1)].

15Since the COMPASS muon beam energy 160 GeV is almost
the same as that of SMC, 190 GeV, the COMPASS low xB
boundary achieved at the asymmetry measurements also
should be about the same as the SMC 0:003.

16For example, the important cut on invariant mass W2 >
10 GeV2 is applied by these collaborations to exclude the
events coming from the resonance region.
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FIG. 6. The reconstructed polarized valence distributions
(squares). The solid lines correspond to the respective
GRSV2000LO (broken sea) parametrizations.
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FIG. 4. Ratios of N�
�
� N�

�

"# � N�
�

"" and N�
�
� N�

�

"# � N�
�

""

obtained with the polarized event generator PEPSI for the
different targets. The picture is in good agreement with the
respective EMC result (Fig. 10 in Ref. [14].)
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N�
�

tot jproton � 582 913; N�
�

tot jproton � 420 709;

N�
�

tot jdeutron � 559 494; N�
�

tot jdeutron � 447 599;

for El � 160 GeV. It is of importance that these numbers
are absolutely realistic for HERMES (in 2000 HERMES
already achieved for deutron target N�

�

tot � 493 492,
N�

�

tot � 402 479—see Table 5.4 in Ref. [17]) and even
much less than expected by COMPASS (see COMPASS
proposal [7], p. 90).

To extract the quantities �1uV , �1dV , and, eventually,
�1 �u��1 �d from the simulated asymmetries, one should
first construct the difference asymmetries together with
X-210 -110

- π-+ π p
A
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0
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0.8
Proton target

X-210 -110

- π-+ π d
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-0.4
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0
0.2
0.4
0.6
0.8

 Deutron target

FIG. 5. Simulated (squares) and theoretical pion difference
asymmetries for proton and deutron targets. The solid lines
correspond to the theoretical asymmetries obtained from
Eq. (3) with GRSV2000LO (broken sea) parametrizations for
the valence distributions.
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their statistical errors using Eqs. (A1) and (A7) from the
appendix, and then calculate the quantities Aexp

p�d� and
L1 � L2 entering Eqs. (20) and (25). For Aexp

p one should
use, instead of integral formula (21), the equation (and
analogously for Aexp

d )

Aexp
p �

XNbins
i�1

�xiA
�����

p �xi�
��������Z

�4uV � dV��xi�

�
Z 1

Z
dzh�1��

�s
2�

~Cqq���D1 �D2�; (27)

where �xi is the ith bin width. The parametrizations [18]
for the fragmentation functions and [19] for unpolarized
quark distributions are used. Note that here one should not
use the usual ‘‘+’’ prescription in the Wilson coefficients
Cqq, but its generalization, the so-called ‘‘A’’ prescription
[20]. The calculation of L1,L2 is rather simple and can be
done using any numerical method.

Let us introduce the additional notation ��
1qV �R

xmax
xmin

dx�qV and rewrite17 BSR in the form (24) as

�1 �u��1 �d����
1 �u��

�
1
�d�BSR�

1

2

Z xmin

0
dx��uV��dV�;

(28)

���
1 �u� ��

1
�d�BSR �

1

2

��������gAgV
��������� 1

2
���

1uV � ��
1dV�; (29)

where xmin and xmax are the boundary points of the
available Bjorken x region. It is obvious that, dealing
with the restricted available Bjorken x regions, one can
17As usual, we neglect contributions to �1q from the unmeas-
ured large xB region 0:6�0:7�< xB < 1 because their upper
limits given by the unpolarized distributions are very small
there; see [3,6].
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TABLE I. Simulation conditions. A and B correspond to HERMES and SMC (COMPASS)
kinematics, respectively. Here xB and xF are the Bjorken and Feynman x variables, respec-
tively, zh � is the standard hadronic variable and W is the invariant mass of the final hadronic
state.

Kinematics Elepton xB xF zh W2 Events

A 27.5 GeV 0:023< xB < 0:6 xF > 0:1 zh > Z � 0:2 W2 > 10 GeV2 3� 106

B 160 GeV 0:003< xB < 0:7 xF > 0:1 zh > Z � 0:2 W2 > 10 GeV2 3� 106

TABLE II. GRSV2000NLO (broken sea) parametrization. Results on ��
1uV , ��

1dV , and
���

1 �u���
1
�d�BSR extracted from the simulated difference asymmetries applying the proposed

NLO procedure.

Kinematics Q2
mean ��

1uV ��
1dV ���

1 �u���
1
�d�BSR

A 2:4 GeV2 0:585� 0:017 �0:147� 0:037 0:268� 0:020
B 7:0 GeV2 0:602� 0:032 �0:110� 0:080 0:278� 0:040

18Note that the proposed NLO extraction procedure has noth-
ing to do with that problem—we just compare the integrals of
the parametrization over the different Bjorken x regions.
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directly extract from the measured difference asymme-
tries, namely, the quantities ��

1uV , ��
1dV , and ���

1 �u�
��
1
�d�BSR, while the ‘‘tail’’ contributions

Rxmin
0 dx�uV ,Rxmin

0 dx�dV , and 1
2

Rxmin
0 dx��uV � �dV� should be

studied separately, applying the proper extrapolation pro-
cedure (see below).

The results on ��
1uV , ��

1dV , and ���
1 �u���

1
�d�BSR ex-

tracted from the simulated difference asymmetries using
the presented NLO procedure, are given in Table II.

It is obvious that, to be valid, the extraction procedure,
being applied to the simulated asymmetries, should yield
results maximally close to the ones obtained directly
from the parametrization entering the generator as an
input. The results for the respective parametrization func-
tions integrated over the total 0< x< 1 region in
Bjorken x and over the regions 0:023< x< 0:6
(HERMES [3] kinematics) and 0:003< x< 0:7
(COMPASS kinematics) are presented by Table III.

Let us now compare the results from Tables II and III.
First of all notice that, contrary to the actual experi-

ment conditions, the simulations give the possibility to
check the validity of the extraction method comparing
the results of the extraction from the simulated asymme-
tries with an exact answer. Namely, in our case this is the
integral over the total region of the difference of the
parametrizations for ��u and � �d entering the generator
as an input:

��1 �u� �1 �d�exact ’ ���
1 �u� ��

1
�d�25

�
Z 0:99

0:0001
dx���u�� �d�parametrization

� 0:310; (30)

where the symbol �� � ��nm denotes the nth line and mth
column of Table III.
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The second point is that the integral taken directly
(without using BSR) from the ��u and � �d parametriza-
tion difference over the available to HERMES region is
almost 2 times less than the exact answer (30):

���
1 �u� ��

1
�d�35 �

Z 0:6

0:023
dx���u� � �d�parametrization

� 0:170: (31)

This is a direct indication that the HERMES interval in
Bjorken x is too narrow18 to extract the quantity �1 �u�
�1 �d in which we are directly interested.

However, there is a possibility to avoid this trouble and
essentially improve the analysis on �1 �u��1 �d even with
the narrow HERMES xB region, applying BSR for�1 �u�
�1 �d extraction. Indeed, applying Eq. (29) to the
HERMES xB region, considering that jgA=gV j �
1:2670� 0:0035, and calculating the integrals of the
valence quark parametrizations over the region 0:023<
x< 0:6, one gets

���
1 �u���

1
�d�BSR36 � 0:292; (32)

and this result [contrary to Eq. (31)] is in good agreement
with the exact one, Eq. (30).

The reason for this good agreement of Eq. (32) with the
exact answer Eq. (30) is that, contrary to the sea distri-
butions, the valence distributions gather far from the low
boundary xB � 0 (see, for example, [14] and references
therein).

Thus, this exercise with the integrals of the parametri-
zation functions shows that, at least within the broken sea
scenario, the application of Eq. (24) for �1 �u� �1 �d ex-
traction could give a reliable result on this quantity even
with the narrow HERMES xB region. Namely, one should
-7



TABLE III. Results on ��
1uV , ��

1dV , ��
1 �u� ��

1
�d, and ���

1 �u���
1
�d�BSR obtained from in-

tegration of the GRSV2000NLO(broken sea) parametrization of the quark distributions over
the total and experimentally available Bjorken x regions. The fifth column is obtained by
direct integration of the respective parametrizations. The sixth column is obtained using BSR
and the parametrizations for the valence distributions.

xB Q2 ��
1uV ��

1dV ��
1 �u� ��

1
�d ���

1 �u���
1
�d�BSR

0:0001< xBj < 0:99 2:4 GeV2 0.605 �0:031 0.310 0.315
0:023< xBj < 0:6 2:4 GeV2 0.569 �0:114 0.170 0.292
0:0001< xBj < 0:99 7:0 GeV2 0.604 �0:032 0.309 0.315
0:003< xBj < 0:7 7:0 GeV2 0.598 �0:065 0.262 0.302
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first extract in the accessible xB region the truncated mo-
ments of the valence distributions, and only then get the
quantity ���

1 �u���
1
�d�BSR applying Eq. (29).

One can also compare elements 55 and 56 from
Table III corresponding to the SMC (COMPASS)
Bjorken x region with the exact answer, element 45
from the Table III. It is seen that even though the integral
over the experimentally available region taken directly of
the sea parametrization difference is now much closer to
the exact answer, the application of BSR instead of direct
extraction significantly improves the situation even for
this much wider xB region.

Returning now to the proposed NLO extraction proce-
dure, let us recall that the application of BSR in the form
(24) [see derivation of Eq. (25)] is one of the essential
elements of the procedure. Comparing the result of
Table II on ���

1 �u� ��
1
�d�BSR obtained from the simulated

asymmetries with the HERMES kinematics (element 25
from Table II) with both Eqs. (30) and (31), one can see
that they are in good agreement with each other. Besides,
X
0.2 0.4 0.6 0.8 1

0
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0.25
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0.35
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0.2 0.4 0.6 0.8 1

-0.14
-0.12

-0.1
-0.08
-0.06
-0.04
-0.02

0

Vd∆x

FIG. 7. Polarized valence distributions given by the different
parametrizations with the symmetric and weakly broken sea.
Solid lines correspond to the purely symmetric parametriza-
tions from Refs. [16,22], while the dashed line corresponds to
parametrization FS2000 [set (i� ) in Ref. [10] ] with a weakly
broken sea. All of these parametrizations demonstrate quite
similar behavior.

074032
comparing the results of Tables II and III for the
COMPASS kinematics, one can see that the results on
reconstructed ��

1uV , ��
1dV , and ��

1 �u���
1
�d are still in

good agreement with the respective quantities obtained
by direct integration of the input parametrization over
both the total 0< xB < 1 and experimentally available
0:003< xB < 0:7 regions.

It is also of importance that, even without BSR appli-
cation, the moments of the valence distributions (interest-
ing in themselves) extracted in NLO in the accessible xB
regions are in good agreement with the input parametri-
zation for both HERMES and COMPASS kinematics.

B. Symmetric sea scenario

Until now, we dealt with the broken sea scenario
(which seems to be the most probable one; see footnote
12). However, one certainly should also investigate an
alternative opportunity—the symmetric sea scenario.
Notice that all the known parametrizations with the
symmetric or weakly broken19 polarized sea essentially
differ from the only presently known parametrization
with the strongly broken sea, GRSV2000 (broken sea),
we dealt with previously. However, they differ rather little
from each other; see Fig. 7. So, for self-consistence, we
again choose GRSV2000NLO (but with the symmetric
sea) parametrization as an alternative input. The respec-
tive analysis is presented in Table IV.

Let us analyze the results from Table IV. First, one can
see that, for both A and B kinematics, the results of
reconstruction in the accessible xB region of all the quan-
tities presented in this table are again in good agreement
with the input parametrization. Thus, the analysis per-
formed within the symmetric sea scenario again confirms
19The only such parametrization which we know is FS2000
parametrization [10]. �1 �u��1 �d < 0:1 within this parametri-
zation, and with respect to the valence distribution it behaves
quite analogously to the purely symmetric parametrizations;
see Fig. 7. At the same time, the behavior of the parametriza-
tion with the strongly broken sea, GRSV2000 (broken sea), is
absolutely different; contrary to the parametrizations with the
symmetric or weakly broken sea, �dV changes the sign at
small xB, where the contribution of the sea quarks become
dominant.
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TABLE IV. The upper part presents the results on ��
1uV , ��

1dV , and ���
1 �u���

1
�d�BSR

obtained from integration of the GRSV2000NLO (symmetric sea) [16] parametrization.
The lower part presents the results on ��

1uV , ��
1dV , and ���

1 �u���
1
�d�BSR extracted from the

simulated difference asymmetries applying the proposed NLO procedure with parametriza-
tion GRSV2000NLO (symmetric sea) entering the generator as the input.

xB Q2 ��
1uV ��

1dV ���
1 �u���

1
�d�BSR

0:023< xBj < 0:6 2:4 GeV2 0.749 �0:276 0.121
0:003< xBj < 0:7 7:0 GeV2 0.866 �0:320 0.041
0:0001< xBj < 0:99 2:4 GeV2 0.916 �0:339 0.006
0:0001< xBj < 0:99 7:0 GeV2 0.914 �0:339 0.007

Kinematics Q2
mean ��

1uV ��
1dV ��

1 �u� ��
1
�d

A 2.4 0:736� 0:017 �0:310� 0:037 0:111� 0:020
B 7:0 GeV2 0:842� 0:032 �0:300� 0:069 0:063� 0:038

NLO QCD PROCEDURE OF THE SEMI-INCLUSIVE . . . PHYSICAL REVIEW D 70 074032
that the proposed NLO extraction procedure satisfies the
main criterion of validity—to reconstruct the quark mo-
ments in the experimentally available xB region.

On the other hand, performing the reconstruction of
the entire quantity �1 �u� �1 �d, one certainly should not
roughly put it to ��

1 �u� ��
1
�d. It is necessary to carefully

estimate the unmeasured tail 12
Rxmin
0 dx��uV � �dV� en-

tering Eq. (28), especially dealing with such a narrow
Bjorken x region as the HERMES. It is clearly seen from
the Table IV where the result on ��

1 �u� ��
1
�d is quite close

to the exact answer, zero, for the COMPASS xB region,
but in the case of HERMES kinematics it indicates rather
essential deviation from the zero value.

C. Low xB uncertainties

Let us stress that the problem of the unmeasured tail
estimation is the common and long-standing problem
which, however, in any case should be somehow solved
if we wish to definitely answer the question of whether
the sea is symmetric or not. Nowadays, the state of the art
is such that the polarized SIDIS experiments use the only
method of the low xB contribution estimations (see, for
example, [3,6]): The proper fit to the obtained data on �q
is performed with the subsequent extrapolation of the
fitting function to unavailable low xB. On the other
hand, the low xB tails of all the existing parametrizations
TABLE V. Low-x contributions to 1
2 ��1uV ��

NLO parametrization xmin � 0:023, Q2

GRSV2000 (broken sea) �0:03

GRSV2000 (symmetric sea) 0.110
FS2000 (i� ) 0.104
FS2000 (i� ) 0.080
LSS2001 0.098
AAC2000 0.116
AAC2003 0.127

074032
on �q are obtained using a quite analogous procedure.
Namely, the parametrization on �q is extracted in the
accessible xB region from the fit to the measured inclusive
asymmetries and/or structure functions and then is ex-
trapolated to low xB. It is also of importance that the
degree of the reliability of the low xB estimations applied
in the existing parametrizations increases because all the
parametrizations are constructed in strict accordance
with the sum rules on a3 and a8 nonsinglet combinations.
Besides, the constructed parametrizations meet the re-
quirement of agreement with the existing DIS data on &p1
and &n1 [21].

So, we propose to perform the respective estimation of
the quantity

Rxmin
0 dx��uV � �dV� using the maximal

number of the latest available NLO parametrizations.
The results are presented in Table V, where the parame-
trizations from Refs. [10,16,22] are used.

Looking at Table V, one can conclude that for the
HERMES xB region

1

2

Z 0:023

0
dxj��uV ��dV�j & 0:13; (33)

while for the COMPASS xB region the upper boundary is
approximately twice as less:

1

2

Z 0:003

0
dxj��uV ��dV�j & 0:06: (34)
1dV� for the different NLO parametrizations.
Rxmin
0 dx��uV � �dV�=2

� 2:4 GeV2 xmin � 0:003, Q2 � 7:0 GeV2

5 �0:016

0.033
0.036
0.031
0.032
0.046
0.055

-9



A. N. SISSAKIAN, O.YU. SHEVCHENKO, AND O. N. IVANOV PHYSICAL REVIEW D 70 074032
Notice that one can estimate only the absolute value ofRxmin
0 dx��uV � �dV�, because we do not know which

scenario (symmetric or not) is realized in nature. For
example, the well-known broken sea parametrization
GRSV2000 gives the negative sign for this quantity while
all the symmetric sea parametrizations give the positive
sign. It is also seen that the restrictions (33) and (34)
based on the results of TableVare rather strong. For safety,
we deliberately overestimate the upper boundaries choos-
ing the largest numbers from the Table V instead of
performing the averaging procedure over all used pa-
rametrizations (just as was done by SMC [6]). Notice
also that the restriction (34) is consistent with the respec-
tive estimation made by SMC (see Table 5 in Ref. [6]),
whereas the upper boundary given by Eq. (33) is 4 times
larger than the HERMES estimation.20

Thus, to extract the entire quantity �1 �u��1 �d we
propose to include the upper boundaries on 1

2 �Rxmin
0 dx��uV � �dV� given by the inequalities (33) and

(34) into the respective systematical errors, so that the
additional low xB contributions into the systematical er-
rors of HERMES and COMPASS appear as

�low xjHERMES � �0:13; (35)

�low xjCOMPASS � �0:06: (36)

Certainly, Eqs. (35) and (36) should not be considered as
strict estimations. This is just an attempt roughly, but with
all possible precautions, to estimate if HERMES and (or)
COMPASS could, under their real conditions, answer the
question if the sea is broken or not.
21
V. DISCUSSION AND CONCLUSION

With the (rather overestimated) uncertainties given by
Eqs. (35) and (36), it is quite possible that HERMES
would not see within the total error that �1 �u� �1 �d �

0, if this quantity happens to be too small in reality (for
example, about 0:2). However, if this quantity will be
about 0:3 (as it assumed by GRSV2000 broken sea pa-
rametrization) and higher, it could still be possible to see
this quantity even with the HERMES xB region. On the
other hand, it is seen from Tables II, III, and IV and
Eq. (36) that the COMPASS xB region could allow one
to catch even a small difference (if any) between �1 �u and
�1 �d.

In any case, analyzing such a tiny quantity as �1 �u�
�1 �d, it is very desirable to perform a combined analysis
with both HERMES and COMPASS data. For example,
having at one’s disposal data on the difference asymme-
20Notice that it is dangerous to use the simple Regge parame-
trization for extrapolation in the rather large xB region unavail-
able to HERMES. The estimations obtained in this way [3]R
0:023
0 dx�uV ’ 0:03,

R
0:023
0 dx�dV ’ �0:03 seem to be rather

underestimated (see discussion on this subject in Ref. [2]).
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tries in the accessible to HERMES xB region, one could
involve in the analysis on �1 �u� �1 �d the respective
COMPASS data from the region 0:003< xB < 0:023.
The point is that a high statistics, especially at low xB
is claimed as one of the COMPASS advantages [7] as
compared with SMC and HERMES experiments.

Thus, we have tested the proposed NLO QCD extrac-
tion procedure performing the simulations corresponding
to both the broken and symmetric sea scenarios. This
analysis confirms that the procedure meets the main
requirement: to reconstruct the quark moments in the
accessible to measurement xB region. On the other hand,
even with the overestimated low xB uncertainty (35), one
can conclude that the question if �1 �u� �1 �d is equal to
zero or not could be answered even with the HERMES
kinematics in the case of a strongly asymmetric polarized
sea. In any case, the situation is much better with the
available to COMPASS xB region.
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APPENDIX

Calculating the asymmetries given by Eq. (12) together
with their statistical errors, one should have in mind that,
contrary to SMC and COMPASS experiments, in the
HERMES conditions the quantities N�

�����
""�"#�

entering
Eq. (12) are not the pure counting rates, but the counting
rates multiplied21 by the respective luminosities [3]. Thus,
in the general case, one should use instead of Eq. (12) the
equation22

A�
����

p�n;d� �
1

D

��N��

"# � N�
�

"# �L"" � �N�
�

"" � N�
�

"" �L"#

�N�
�

"# � N�
�

"# �L"" � �N�
�

"" � N�
�

"" �L"#

�
;

(A1)

where luminosities L""�"#� are defined as

L""�"#� � �n/�""�"#�; (A2)

where n is the area density of the nucleons in the target
The cancellation of the luminosities is possible only with
the special target setup, like the SMC and COMPASS ones
[6,7].

22Here the beam and target are assumed to be ideal which
means that PB � PT � f � 1. Namely, this assumption is
adopted in the PEPSI event generator [13] we use for
simulations.
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and / is the beam flux. Within the paper we do not study
the specific peculiarities of the different experimental
setups and deal only with the event generator where the
acceptance a is equal to unity, so that

N"#�""� � �n/�"#�""�a�"#�""� ! �n/�"#�""��"#�""�: (A3)

Thus, Eq. (A2) for luminosities is rewritten in the follow-
ing, suitable for simulations, form:

L""�"#� � N""�"#�=��""�"#��; (A4)

where N""�"#� are the numbers of inclusive events and �""�"#�

are the inclusive cross sections automatically calculated
by PEPSI (see Ref. [13]) for given sets of the kinematic
conditions.

Choosing as the variables in Eq. (A1) the set
N�

�

"# ; N
��

"# ; N
��

"" ; N
��

"" and using the general formula (see,
for example, [23]) for the statistical error on the function
F of variables x1; x2; . . . ,
074032
�2�F�x1; x2; . . .�� �
�
@F
x1

�
2
�2�x1� �

�
@F
x2

�
2
�2�x2�

� 2
�
@F
x1

��
@F
x2

�
cov�x1; x2� � � � � ;

(A5)

one gets

�2�A�
����

p�n;d� ��
1

D2Y4
f�Y�X�2L2""��

2�N�
�

"# ���2�N�
�

"# �

�2cov�N�
�

"# ;N
��

"# ����Y�X�2L2"#���
2N�

�

"" �

��2�N�
�

"" ���2cov�N�
�

"" ;N
��

"" �g; (A6)

where X and Y are the numerator and denominator in the
square brackets in Eq. (A1). If the distributions of had-
rons N�

�

"# ; N
��

"# ; N
��

"" ; N
��

"" are Poissonian (low multiplic-

ities n�, n�; see [23]), ��N�
�����

""�"#�
� �

																	
N�

�����
""�"#�

q
, then one

can neglect in Eq. (A6) the covariations cov�N�
�

"" ; N
��

"" �

and cov�N�
�

"# ; N
��

"# � with a result
�2�A�
����

p�n;d� � �
4L2""L

2
"#

D2

�N�
�

"" � N�
�

"" �2�N�
�

"# � N�
�

"# � � �N�
�

"# � N�
�

"# �2�N�
�

"" � N�
�

"" �

��N�
�

"# L"" � N�
�

"" L"#� � �N�
�

"# L"" � N�
�

"" L"#��
4

: (A7)
Operating absolutely analogously, one gets for the error
on the usual spin asymmetry the equation

�2�A�
�

p�n;d�� �
1

D2

4L2"#L
2
""�N

��

"# � N�
�

"" �N�
�

"# N
��

""

�N�
�

"# L"" � N�
�

"" L"#�
4

: (A8)
Notice that, namely, the equation (A8) for the statistical
error on the usual semi-inclusive asymmetry was used by
HERMES [17].

For the COMPASS experiment L"" � L"# and Eq. (A7)
reduces to
�2�A�
����

p�n;d� � �
4

D2

�N�
�

"" � N�
�

"" �2�N�
�

"# � N�
�

"# � � �N�
�

"# � N�
�

"# �2�N�
�

"" � N�
�

"" �

��N�
�

"# � N�
�

"" � � �N�
�

"# � N�
�

"" ��4
: (A9)
23It is easy to see that ~Y up to luminosities coincides with
denominator Y in the square brackets in Eq. (A1).
Let us now choose as the variables the set X1 � N�
�

"# �
N�

�

"# , X2 � N�
�

"" � N�
�

"" , so that the equation (A1) for
asymmetry is rewritten as

A�
����

p�n;d� �
1

D
X1L"" � X2L"#

X1L"" � X2L"#

: (A10)

Then Eq. (A5) gives

�2�A�
����

p�n;d� � �
4L2""L

2
"#

D2

X22�
2�X1� � X21�

2�X2�

�X1L"" � X2L"#�
4 ; (A11)

with

�2�X1� � �2�N�
�

"# � � �2�N�
�

"# � � 2cov�N�
�

"# ; N
��

"# �;

(A12)

�2�X2� � �2�N�
�

"" � � �2�N�
�

"" � � 2cov�N�
�

"" ; N
��

"" �:

(A13)
Again, with a standard assumption that the distributions
of hadrons N�

�����
""�"#�

are Poissonian: ��N�
�����

""�"#�
��																	

N�
�����

""�"#�

q
, one can neglect in Eqs. (A12) and (A13)

the covariations cov�N�
�

"" ; N
��

"" � and cov�N�
�

"# ; N
��

"# �.
Then Eq. (A11) exactly transforms to Eq. (A7).

Let us involve an additional approximation (see [23],
p. 7):

X1 ’ X2 ’ ~Y=2; (A14)
where the quantity23 ~Y is defined as ~Y � �N�
�

"# � N�
�

"" � �

�N�
�

"# � N�
�

"" � � N�
�
� N�

�
. Then Eq. (A11) reads
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24Let us recall (see footnotes 10 and 12) that with the applied
statistics 3� 106 DIS events, the quantity ~Y � N�

�

� N�
�

essentially differs from zero even in the vicinity of the minimal
value xB � 0:003 accessible for measurement.
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�2�A�
����

p�n;d� � �
1

D2

16L2"#L
2
""

~Y2�L"# � L""�
4
�2� ~Y�

�
16L2"#L

2
""

D2�L"# � L""�
4

1

�N�� � N���2

��2�N�� � N���

�
N�

�
� N�

�

�N�
�
� N�

�
�2

16L2"#L
2
""

D2�L"# � L""�
4 : (A15)

With the SMC (COMPASS) target setup L"# � L"" and

�2�A�
����

p�n;d� � �
1

D2

N�
�
� N�

�

�N�
�
� N�

�
�2
: (A16)

It is instructive to reproduce Eq. (A16) choosing other
variables in Eq. (A1): �N�

�
� N�

�

"# � N�
�

"" , �N�
�
�

N�
�

"# � N�
�

"" , N�
�
� N�

�

"# � N�
�

"" , N�
�
� N�

�

"# � N�
�

"" , so
that with L"# � L"" (COMPASS target setup) Eq. (A1) for
asymmetry reads

A�
����

p�n;d� �
1

D
�N�

�
��N�

�

N�
�
� N�

� �
1

D

~X
~Y
: (A17)

Then the respective statistical error appears as

A. N. SISSAKIAN, O.YU. SHEVCHENKO, AND O. N. IVAN
074032
�2�A�
����

p�n;d� � �
1

D2 ~Y2

�
�2��N�

�
� � �2��N�

�
�

�
~X2

~Y2
��2�N�

�
� � �2�N�

�
��



(A18)
’
1

D2 ~Y2

�
1�

~X2

~Y2

�
�N�

�
� N�

�
�; (A19)

where it is again adopted that distributions of hadrons

N�
�����

""�"#�
are Poissonian, so that ���N�

�
� � ��N�

�
� �																									

N�
�

"# � N�
�

""

q
, ���N�

�
� � ��N�

�
� �

																									
N�

�

"# � N�
�

""

q
, and

one can neglect cov��N�
�
; N�

�
� and cov��N�

�
; N�

�
�.

By virtue of Eq. (A14),

��������
~X
~Y

���������
��������X1 � X2
X1 � X2

��������� 1; (A20)

so that one can neglect24 � ~X= ~Y�2 in Eq. (A19). Thus, one
again arrives at the approximate formula (A16) for the
error on the difference asymmetries.
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