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Defining a most economical parametrization of time-dependent B ! ���� decays, including a
measurable phase �eff which equals the weak phase � in the limit of vanishing penguin amplitudes, we
propose two ways for determining � in this processes. We explain the limitation of one method,
assuming only that two relevant tree amplitudes factorize and that their relative strong phase �t is
negligible. The other method, based on broken flavor SU(3), permits a determination of � in B0 !
���� in an overconstrained system using also rate measurements of B0;� ! K�� and B0;� ! �K.
Current data are shown to restrict two ratios of penguin and tree amplitudes r� to a narrow range
around 0.2 and to imply an upper bound j�eff 	 �j< 15
. Assuming that �t is much smaller than 90
,
we find � � �93� 16�
 and �102� 20�
 using BABAR and BELLE results for B�t� ! ����. Avoiding
this assumption for completeness, we demonstrate the reduction of discrete ambiguities in � with
increased statistics and show that SU(3) breaking effects are effectively second order in r�.
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I. INTRODUCTION

A proposal made 14 years ago to measure the Cabibbo-
Kobayashi-Maskawa (CKM) angle � in B ! �� through
an isospin analysis [1] was followed shortly afterwards by
a suggestion to apply this technique also to the quasi two-
body decays, B ! �� [2,3]. The analysis requires a con-
struction of two pentagons, for B and 
B, the sides of
which describe decay amplitudes into different-charge
�� final states. This is a challenging task, requiring
precise measurements of decay rates and asymmetries
in all five modes. In addition it also involves a large
number of discrete ambiguities and in certain cases con-
tinuous ambiguities in � [3]. A simplification occurs
when the decay amplitude of B0 ! �0�0 is much smaller
than the amplitudes of the other four processes, in which
case the pentagons turn into approximate quadrangles.
Recently the BELLE Collaboration reported evidence for
B0 ! �0�0 [4] at a level implying that this simplification
may not occur in practice. This seems to indicate that a
useful measurement of � using the full isospin analysis
may be impractical even with super-B-factorylike lumi-
nosities [5].

A complementary and more promising way of learning
� in these decays is based on performing also a time-
dependent Dalitz plot analysis of B0 ! ���	�0 [6]. One
uses the interference between two � resonance bands to
study the phase differences between distinct amplitudes
contributing to the decay. This raises issues such as the
precise shapes of the tails of the Breit-Wigner functions,
and the effect of interference with other resonant and
nonresonant contributions [7]. A complete implementa-
tion of this method requires higher statistics than avail-
able today.

An interesting and more modest question, which may
already be studied now using time-dependent decay mea-
04=70(7)=074031(12)$22.50 70 0740
surements of B0�B0� ! ���� by the BABAR [8] and
BELLE [9] Collaborations, is what can be learned about
the weak phase � using this limited information alone.
Since these processes involve more hadronic parameters
than measurable quantities, further assumptions are re-
quired to answer the question in a model-independent
manner. Flavor SU(3) [10,11], a symmetry less precise
than isospin, provides a suitable framework for an an-
swer. SU(3) symmetry relates B0 ! ���� to processes of
the type B ! K�� and B ! �K [12]. Allowing for cer-
tain SU(3) breaking effects, which may be justified on
theoretical grounds and tested experimentally, improves
the quality of such an analysis. A recent application of
broken flavor SU(3) to the considerably simpler case of
measuring � in B0�t� ! ���	 was studied in [13].

In the present paper we extend the SU(3) analysis of
B0 ! ���	 to study B0�t� ! ����. We also suggest an
alternative approach to measure � in B ! ����, which
does not rely on flavor SU(3), but instead reduces the
number of hadronic parameters by two when assuming
that tree amplitudes factorize to a very good
approximation.

Several earlier studies of � in B ! ���� have been
performed. An application of flavor SU(3) to these pro-
cesses has been carried out in [14,15]. We study a wider
range of aspects, such as consequences of factorization of
tree amplitudes, SU(3) breaking effects, bounds on ratios
of penguin-to-tree amplitudes, and the nature of discrete
ambiguities in values obtained for �. For completeness,
we will present a proof of several bounds on two unmea-
surable quantities ��

eff 	 � [14,15] one of which will turn
out to be stronger than bounds obtained earlier. We will
then define a measurable phase �eff which provides an
approximate measure for �.

An SU(3) relation between B0 ! ���� and B0 !
K���� has also been discussed in [16]; however this
31-1  2004 The American Physical Society
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work made no use of the interference between B0 	 B0

mixing and B ! �� decay amplitudes which is a crucial
input in our study. Implications of B0�t� ! ���� for a
global SU(3) fit to all charmless B decays into pairs of a
vector and a pseudoscalar meson B ! VP were studied
recently in [17]. Our study will focus on B ! ���� and
on their direct SU(3) counterparts. Our model-
independent approach differs from other studies of B�t� !
���� involving a priori calculations of decay amplitudes
and strong phases based on QCD and factorization
[18,19].

The paper is organized as follows: Section II provides
definitions of decay amplitudes and expressions for time-
dependent decay rates in terms of a minimal set of
parameters describing these amplitudes. Section III de-
fines and discusses the use of �eff , a measurable that is
equal to � in the absence of penguin amplitudes.
Section IV considers a seemingly useful method of re-
ducing the number of hadronic parameters by assuming
approximate factorization of tree amplitudes, pointing
out its intrinsic limitation. Section V draws SU(3) rela-
tions between B ! ���� and several processes of the
type B ! K�� and B ! �K. In Sec. VI we summarize
the current experimental measurements of relevant rates
and asymmetries, deriving numerical bounds on ratios of
penguin and tree amplitudes in B0 ! ���� and on the
shift �eff 	 �, obtaining a range of values for �. In
Section VII we study the sensitivity to experimental
errors of the flavor SU(3) method for determining �.
This discussion involves certain discrete ambiguities,
which will be discussed briefly in this section and will
be dealt with in more detail in the appendix. We conclude
with a summary in Sec. VIII.
II. AMPLITUDES AND TIME-DEPENDENT
DECAY RATES IN B ! ����

We start by setting notations and conventions. B0 decay
amplitudes A� and A	 are denoted by the charge of the
outgoing �, and corresponding B0 amplitudes into charge
conjugate states are denoted by A� and A	, respectively:

A� � A�B0 ! ���	�; A	 � A�B0 ! �	���;

A� � A�B0 ! �	���; A	 � A�B0 ! ���	�:
(1)
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FIG. 1. The tree (left) and penguin (right) diagra
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Each of the four amplitudes can be expressed in terms of
two terms, a‘‘tree’’ and a ‘‘penguin’’ amplitude, carrying
specific CKM factors. We adopt the c-convention, in
which the top-quark has been integrated out in the b !
d penguin transition and unitarity of the CKM matrix has
been used to move a V�

ubVud term into the tree amplitude.
Absorbing absolute magnitudes of CKM factors in tree (t)
and penguin (p) amplitudes, we write

A� � ei�t� � p�; A� � e	i�t� � p�: (2)

While dependence on the weak phase � is displayed
explicitly, strong phases are implicit in the definitions of
complex amplitudes. We define three strong phase differ-
ences,

�� � arg�p�=t��; �t � arg�t	=t��: (3)

For convenience we also define ratios of penguin and tree
amplitudes in the two processes and a ratio of the two tree
amplitudes,

r� �

��������p�

t�

��������; rt �
��������t	
t�

��������: (4)

Counting parameters, we find a total of eight, consist-
ing of seven hadronic quantities jt�j; jp�j; ��; �t and the
weak phase � or �. We will assume � to be given [15,20]
and use � � �	 �	 �. In general, the amplitudes
t��p�� and t	�p	� have different dynamical origins
and are expected to involve different magnitudes and
different strong phases. Amplitudes with subscripts
��	� in Eq. (2) describe transitions in which the final-
state meson incorporating the spectator quark is a � (�)
(cf. Fig. 1). This characterization was shown to be useful
in the context of a SU(3) analysis of charmless B decays
into a vector and a pseudoscalar meson B ! VP [12,17]
where t��p�� and t	�p	� represent SU(3) amplitudes
(denoted tP�pP� and tV�pV� in [12,17]). This broader
framework will be used in our discussion below.

Let us now consider measurables in time-dependent
rates. Neglecting the width difference in the B0 system,
and neglecting tiny effects of CP violation in B0 	 B0

mixing, time-dependent decay rates for initially B0 de-
caying into ���� are given by [21]
b
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ms for the B0 ! ���	 (B0 ! �	��) decays.
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�
B0�t� ! ����� � e	�t
1

2
�jA�j

2 � jA�j
2�

�
1� �C��C� cos�mt

	�S� �S� sin�mt�; (5)

where

C��C �
jA�j

2 	 jA�j
2

jA�j
2 � jA�j

2
;

S��S �
2Im�e	2i�A�A

�
��

jA�j
2 � jA�j

2
:

(6)

Here � and �m are the average B0 width and mass
difference, respectively. For initially B0 decays, the
cos�mt and sin�mt in (5) have opposite signs.

Counting the number of independent measurables, we
find a total of six, consisting of two CP violating quan-
tities, S and C, two CP conserving measurables, �C and
�S, and two rates, h��i �

1
2 �jA�j

2 � jA�j
2�. These two

rates are related to the CP conserving charge averaged
���� combined decay rate ��� and the overall CP
violating asymmetry A��

CP

��� � h��i � h�	i; A��
CP �

h��i 	 h�	i

h��i � h�	i
; (7)

MEASURING � IN B�t� ! � �
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implying

h��i �
1

2
����1�A��

CP �: (8)

Of particular interest are the two direct CP asymmetries
between B0�B0� ! ���	 and B0�B0� ! �	�� decay
rates,

A�
CP �

jA�j
2 	 jA�j

2

jA�j
2 � jA�j

2
; A	

CP �
jA	j

2 	 jA	j
2

jA	j
2 � jA	j

2
:

(9)

These may be expressed in terms of three of the above
measurables, C;�C and A��

CP ,

A�
CP � 	

A��
CP �1��C� � C

1�A��
CPC� �C

;

A	
CP �

A��
CP �1	 �C� 	 C

1	A��
CPC	�C

:
(10)

The above observables, of which six are independent,
can be expressed in terms of the eight parameters describ-
ing B ! ���� in (2) and (3). This leads to rather lengthy
expressions, which we do not fully display. Here we give
the example of the overall CP asymmetry A��

CP which
does not depend on �t,
A ��
CP �

2 sin��� ���r� sin�� 	 r2t r	 sin�	�

1� r2� � r2t �1� r2	� 	 2 cos��� ���r� cos�� � r2t r	 cos�	�
: (11)
As demonstrated by this example which contains ratios of
amplitudes rather than the amplitudes themselves, it is
useful to consider ratios of rates, thus trading two CP
conserving measurables for two parameters jt�j and jt	j.
Our study is simplified by a judicial choice of the remain-
ing four observables, such that they depend only on the six
parameters jr�j, ��, �t, and � without depending on rt.

We now display a convenient (but not unique) choice
for this minimal set of observables. Two of the observ-
ables are naturally the direct asymmetries A�

CP which
depend neither on rt nor on �t,
A�
CP � 	

2r� sin�� sin��� ��

1� r2� 	 2r� cos�� cos��� ��
: (12)
Instead of S and �S we define:
S �
1

2
����������������������������������
�1� �C�2 	 C2

p �
�S��S�

�
1�A��

CP

1	A��
CP

�
1=2

��S	 �S�
�
1	A��

CP

1�A��
CP

�
1=2

�
; (13)
�S �
1

2
����������������������������������
�1� �C�2 	 C2

p �
�S� �S�

�
1�A��

CP

1	A��
CP

�
1=2

	�S	�S�
�
1	A��

CP

1�A��
CP

�
1=2

�
: (14)

Note that S and �S are CP violating and CP conserving,
respectively, in complete analogy to S, �S. They are free
of rt, and their dependence on other hadronic parameters
is given by

S �
1������p f
sin2�	 �r� cos�� � r	 cos�	� sin��	 ��

	r�r	 sin2� cos��� 	 �	�� cos�t

	
�r� sin�� 	 r	 sin�	� sin��	 ��

�r�r	 sin2� sin��� 	 �	�� sin�tg; (15)

�S �
1������p f
cos2�	 �r� cos�� � r	 cos�	� cos��	 ��

�r�r	 cos2� cos��� 	 �	�� sin�t

�
�r� sin�� 	 r	 sin�	� cos��	 ��

	r�r	 cos2� sin��� 	 �	�� cos�tg; (16)

where
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������p
�

�������������������������������������������������������������������������������������������������������������������������������������������

1	 2r� cos��� �� ��� � r2��
1	 2r	 cos��� �� �	� � r2	�

q
: (17)
In our discussion in Sec.VII of determining � in a broken
SU(3) analysis we will use this most economical parame-
trization of time-dependent measurements in B0�t� !
����, given by the four measurables, A�

CP; S and �S in
Eqs. (12), (15), and (16) in terms of the six parameters,
r�; ��; �t, and �.
III. THE USE OF �eff

We follow the simpler case of B0�t� ! ���	, where a
contribution of a penguin amplitude modifies the value of
� to �eff �

1
2 arg
e

	2i�A�B0 ! ���	�A��B0 !
���	��, measured from the two coefficients of the
sin�mt and cos�mt terms [22]. The isospin analysis [1]
provides a way of determining the shift �eff 	 �. In B !
���� we now define two corresponding quantities
[8,14,15],

��
eff �

1

2
arg�e	2i�A�A

�
��: (18)

Note that these phases do not occur in the time-dependent
rates (5) and are unmeasurable in B ! ���� alone.
Instead, the observables S� �S (6) involve two other
related phases which can be measured in these decays,

2��
eff � �̂ � arg�e	2i�A�A�

��

� arcsin
�

S��S��������������������������������
1	 �C� �C�2

p �
; (19)

where

�̂ � arg�A�
	A��; (20)

is an unknown relative phase between the two decay
amplitudes. Consequently, although ��

eff and �	
eff cannot

be measured separately, their algebraic average is mea-
surable. We therefore define:

�eff �
1

2
���

eff � �	
eff�

�
1

4

�
arcsin

�
S��S��������������������������������

1	 �C� �C�2
p �

� arcsin
�

S	�S��������������������������������
1	 �C	 �C�2

p ��
: (21)

The two shifts ��
eff 	 � are expected to increase with

the magnitudes of the corresponding penguin amplitudes,
jp�j. A relation between ��

eff 	 �; jp�j; � and corre-
sponding charge averaged rates and CP asymmetries is
readily obtained using Eqs. (2) (a similar relation in the
different t-convention was shown to hold in B ! ���	

[23]),
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4jp�j
2sin2� � �jA�j

2 � jA�j
2�

�
1

	
�������������������������
1	 �A�

CP�
2

q
cos2���

eff 	 ��
�
: (22)

The left-hand side of (22) can be bounded using flavor
SU(3) as shown in Sec. V. This implies lower bounds on
cos2���

eff 	 �� or upper bounds on j��
eff 	 �j (see

Eqs. (36) and (39) below). Using (21) will then provide
an upper bound on j�eff 	 �j.

IV. ASSUMING FACTORIZATION OF
TREE AMPLITUDES

Since the number of parameters in B0�t� ! ���� ex-
ceeds the number of measurables by two, a certain input
is required in order to determine � from these measure-
ments. This input is provided by an assumption that the
two tree amplitudes t� factorize and that their relative
strong phase vanishes in this approximation. Given that
factorization was shown to hold to leading order in 1=mb
and �s�mb� in a heavy quark QCD expansion [24,25], we
will proceed under this assumption. Thus, neglecting for a
moment a ratio of two form factors contributing to t	 and
t� [19], we take rt � jt	j=jt�j to be given by the ratio of
corresponding decay constants,

rt ’
f�

f�
� 0:63; (23)

where f� � 130:7 MeV, f� � 208 MeV. We note that a
value rt � 0:68 was obtained in a global SU(3) fit to all
B ! VP decays [17], supporting both factorization of
tree amplitudes and the assumption that B ! � and B !
� form factors do not differ much from one another. The
absolute value of jt�j obtained in the fit of Ref. [17] agrees
with jt�=tj ’ f�=f�, where t, the tree amplitude in B0 !
���	, is obtained from a global SU(3) fit to B decays to
two charmless pseudoscalars [26]. This also supports
factorization of tree amplitudes and an assumption that
the B to � form factor varies only slightly with q2.

Factorization of tree amplitudes also implies that to a
good approximation �t � 0. A very small phase �t �
�1� 3�
 supporting this assumption was calculated in
[19]. (Somewhat larger values around 	20
 were ob-
tained in the global fit [17].) Taking rt to be given by
(23) and assuming �t � 0 reduces by two the number of
parameters describing B ! ����, to become equal to
the number of observables. Although this situation seems
perfectly suitable for a direct determination of �, we wish
to point out its limitation.

As noted above, the four observables A�
CP; S and �S

depend on six parameters, r�; ��; �t and �, one of which
-4
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is assumed here to vanish approximately, �t � 0. The
overall CP asymmetry A��

CP , given explicitly in (11),
provides a fifth measurable, depending also on rt, which
is assumed to be given by (23). While in principle this
permits a determination of �, this can be seen to rely on
terms quadratic in r�. Expanding Eqs. (11) and (12) up to
terms linear in r�, we find

A ��
CP � 	A�

CP � r2tA
	
CP �O�r2��: (24)

That is, at this order the three observables are not inde-
pendent when rt is given. As we will show in Sec. VI, one
expects r� to be small, r� � 0:2, implying that a deter-
mination of � using these assumptions will be very
difficult. One may turn things around, however, by using
the linear relation (24) to determine rt and thereby test
factorization.
V. CONSTRAINTS FROM FLAVOR SU(3)

Another way of adding an input into the analysis of
B ! ���� is provided by assuming flavor SU(3), as we
show now. In order to improve the precision of our analy-
sis, we introduce SU(3) breaking corrections in tree am-
plitudes. These amplitudes, which can be shown to
factorize to leading order in 1=mb and �s�mb� [24,25],
will be assumed to involve SU(3) breaking factors given
by ratios of meson decay constants. Penguin amplitudes,
for which factorization is not expected to hold [25,27],
will be assumed by default to obey exact SU(3). The
effects of SU(3) breaking in penguin amplitudes will be
discussed further in Sec. VII.

Strangeness changing amplitudes describing B ! K��
and B ! �K will be denoted by primed quantities. The
SU(3) counterparts of t�; t	 and p�, (2), are given by
[12,17]

t0� �
fK�

f�

V�
ubVus

V�
ubVud

t� �
fK�

f�


�t�;

t0	 �
fK

f�

V�
ubVus

V�
ubVud

t	 �
fK

f�


�t	;

p0
� �

V�
cbVcs

V�
cbVcd

p� � 	 
�	1p�; (25)

where


��
�

1	�2=2
�0:230;

fK�

f�
�1:04;

fK

f�
�1:22: (26)

SU(3) amplitudes represented by exchange and anni-
hilation contributions (contributing to �S � 0 and �S �
1 decays, respectively) are 1=mb suppressed relative to
tree and penguin amplitudes [25] and will be neglected.
We also neglect very small color-suppressed electroweak
penguin contributions. These approximations and the
SU(3) breaking factors in (25) can be tested in B0 !
K��K	; B� ! K��K0 and in other B ! VP decays
074031
[17]. Other tests, relating CP asymmetries in B !
���� and in strangeness changing decays, will be dis-
cussed in Sec. VII. Under these assumptions one finds the
following expressions for strangeness changing decay
amplitudes [12,17]

A�B� ! K�0��� � 	 
�	1p�;

A�B� ! ��K0� � 	 
�	1p	; (27)

and

A�B0 ! K���	� �
fK�

f�


�t�e
i� 	 
�	1p�;

A�B0 ! �	K�� �
fK

f�


�t	e
i� 	 
�	1p	: (28)

Denoting charge averaged decay rates by ��B ! f� �

��B ! f� � ��B ! f��=2, we now define the following
ratios of charge averaged rates,

R 0
� �


�2��B0 ! K���	�

��B0 ! ���	�
;

R�
� �


�2��B� ! K�0���

��B0 ! ���	�
;

(29)

R 0
	 �


�2��B0 ! �	K��

��B0 ! �	���
;

R�
	 �


�2��B� ! ��K0�

��B0 ! �	���
;

(30)

where superscripts and subscripts denote the charges of
the B and � mesons. Using Eqs. (1)–(3), (27), and (28),
the following expressions are obtained in terms of the
hadronic parameters r� and �� and the weak phase ��
�:

R 0
� �

r2� � 2r� 
�2�z� � 
�4�
1	 2r�z� � r2�

;

R�
� �

r2�
1	 2r�z� � r2�

;
(31)

where

z� � cos�� cos��� ��; 
�� �

��������
fK�

f�

s

� � 0:235;


�	 �

������
fK

f�

s

� � 0:254:

(32)

Each of these four measurables provides an additional
constraint on appropriate parameters. [CP asymmetries in
B0 ! K���	 and B0 ! �	K� do not provide additional
information but can be used to test SU(3); see Eqs. (60)
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and (61) below.] This leads to an overconstrained system
from which � can be determined. That is, the six observ-
ables, given in Eqs. (12), (15), and (16) and in one pair of
Eqs. (31), can be used to solve for the six unknowns,
r�;��;�t and �, as discussed in more detail in Sec. VII.
074031
In the present section we study bounds on r� and on
�eff 	 � which follow from the four observables R0;�

� .
Each of the four expressions (31) may be inverted to

write r� in terms of z� and a corresponding ratio of rates,
r� �

������������������������������������������������������������������������������������
�R0

� � 
�2��
2z2� � �1	R0

���R
0
� 	 
�4��

q
	 �R0

� � 
�2��z�
1	R0

�

�

���������������������������������������������������
R�2

� z2� � �1	R�
��R

�
�

q
	R�

�z�
1	R�

�

: (33)
The four expressions are monotonically decreasing func-
tions of z� having their minima and maxima at z� � 1
and z� � 	1, respectively,

���������
R0

�

q
	 
�2�

1�
���������
R0

�

q � r� �

���������
R0

�

q
� 
�2�

1	
���������
R0

�

q ; (34)

���������
R�

�

p
1�

���������
R�

�

p � r� �

���������
R�

�

p
1	

���������
R�

�

p : (35)

Using current constraints on � [15], 38
 � � � 80
 (at
95% confidence level), the lowest and highest allowed
value of z� are 	0:79 and 0.79, respectively. This deter-
mines slightly smaller ranges of r� than given by (34) and
(35) in terms of measured values of R0;�

� .
We note that one may use ratios of separate rates for B

or B mesons instead of the ratios of charge averaged rates
defined in (29) and (30). The above considerations and the
bounds on r� apply almost equally to these ratios. Instead
of factors z� � 	 cos�� cos� one now has factors
cos��� 	 �� or cos��� � ��, which are constrained to
lie in a range between 	1 to 1. These then imply bounds
of the form (34) and (35). For given measurements of rates
and asymmetries, as specified in the next section, one
may then compare the three types of ranges obtained for
r� and choose the most restrictive ones.

The four strangeness changing processes (27) and (28),
which are expected to be dominated by penguin ampli-
tudes, can also be used to set an upper bound on j�eff 	
�j. For the two charged B decays one has

cos2���
eff 	 �� �

1	 2R�
�sin

2��� ����������������������
1	A�2

CP

q �
1	 2R�

���������������������
1	A�2

CP

q :

(36)

For the two processes involving neutral B decays one
finds


�2��B0 ! K���	�

jp�j
2

� 1� 
�4�r
	2
� � 2 
�2�r

	1
� z� � sin2�;

(37)

�2��B0 ! �	K��

jp	j
2

� 1� 
�4	r
	2
	 � 2 
�2	r

	1
	 z	 � sin2�;

(38)

where the two inequalities follow simply from the identity
and the inequality 1� x2 � 2x cos� cos� � 1	
cos2�cos2�� �x� cos� cos��2 � sin2�. Combining
these inequalities with (22), we find [14,15]

cos2���
eff 	 �� �

1	 2R0
���������������������

1	A�2
CP

q : (39)

Thus, measured branching ratios and asymmetries, ap-
pearing on the right-handside of (36) and (39) and listed
in the next section, provide upper bounds on j��

eff 	 �j
and, using (21), they imply upper bounds on j�eff 	 �j.

VI. CURRENT RATES, ASYMMETRIES AND
BOUNDS ON r� AND �eff 	�

The current measured branching ratios and asymme-
tries in B0 ! ���� and in SU(3) related processes are
summarized in Table I. For ratios of B� and B0 decay
rates we will use the lifetime ratio [39] "�B��="�B0� �
1:077� 0:013. The BABAR [8,15,30] and BELLE [9]
collaborations measured in B0�t� ! ���� also the four
quantities,

C�

8><
>:
0:34� 0:12

0:25� 0:17

0:31� 0:10

�C�

8><
>:
0:15� 0:11

0:38� 0:18

0:21� 0:10

S�

8><
>:
	0:10� 0:15

	0:28� 0:25

	0:15� 0:13

�S�

8><
>:
0:22� 0:15

	0:30� 0:26

0:08� 0:23�S� 1:7�;

(40)

where the first values were obtained by BABAR, the
second by BELLE, and the third are their averages.
Statistical and systematic errors were added in quadra-
ture, and a scaling factor S � 1:7 is used for the error on
the averaged value of �S. Using these values and the
definitions (13) and (14), one finds

S�

�
	0:11� 0:13
	0:17� 0:18

�S�

�
0:21� 0:14
	0:19� 0:19;

(41)

for BABAR and BELLE, respectively. In view of the
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TABLE I. Experimental charge averaged branching ratios and CP asymmetries of selected �S � 0 and �S � 1 B meson decays.
For each process, the first line gives the branching ratio in units of 10	6, while the second line quotes the CP asymmetry. Note, that
the averages for ���	 and �	�� final states were obtained using also the value for the summed branching ratio from CLEO and
are thus not a simple average of BABAR and Belle columns.

Mode CLEO BABAR BELLE Avg.

B0 ! ���� 27:6�8:4	7:4 � 4:2 [28] 22:6� 1:8� 2:2 [8] 29:1�5:0	4:9 � 4:0 [29] 24:0� 2:5
� � � 	0:088� 0:049� 0:013 [30] 	0:16� 0:10� 0:02 [9] 	0:10� 0:05

���	 � � � 12:7� 2:0 19:5� 5:0 14:2� 1:9
� � � 	0:21� 0:12 	0:02� 0:16 	0:16� 0:09

�	�� � � � 9:9� 1:8 9:6� 3:4 9:8� 1:5
� � � 	0:47� 0:15 	0:53� 0:30 	0:48� 0:14

B0 ! K���	 16�6	5 � 2 [31] 11:9� 2:0 [32,33] 14:8�4:6�1:5�2:4	4:4	1:0	0:9 [34] 12:7� 1:8
0:26�0:33�0:10	0:34	0:08 [35] 	0:03� 0:24 a [32,33] � � � 0:06� 0:20

�	K� 16:0�7:6	6:4 � 2:8 [28] 8:6� 1:4� 1:0 [33] 15:1�3:4�1:4�2:0	3:3	1:5	2:1 [34] 9:9� 1:9 b

� � � 0:13�0:14	0:17 � 0:04� 0:13 [33] 0:22�0:22�0:06	0:23	0:02 [34] 0:17� 0:15

B� ! K�0�� 7:6�3:5	3:0 � 1:6 [28] 10:5� 2:0� 1:4 [36] 9:83� 0:90�1:06	1:24 [37] 9:8� 1:2
��K0 <48 [38] � � � � � � <48

aThe two measurements of the CP asymmetry entering this average have opposite signs, ACP � 0:23� 0:18�0:09	0:06 [32] and ACP �
	0:25� 0:17� 0:02� 0:02 [33]. The combined error includes a scaling factor S � 1:9.
bThe error includes a scaling factor S � 1:2.
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difference between the values of �S measured by BABAR
and BELLE, we will not only take their average in the
discussion below but will also treat them separately.

Let us now consider SU(3) bounds on the penguin
pollution parameters r� and ��

eff 	 �. Using the defini-
tions (29) and (30) and taking branching ratios from
Table I, one obtains the following values:

R 0
� � 0:048� 0:010; R�

� � 0:034� 0:006;

R0
	 � 0:053� 0:014;

(42)

but only an upper bound on R�
	. Applying (33) and

assuming Gaussian distributions, these values lead to
allowed ranges for r�. The most stringent bounds on r�
follow from R�

�, which gives at 90% confidence level:

0:14�0:16� � r� � 0:25 �0:22�: (43)

Values in parentheses are obtained by using the central
value of R�

�. The most stringent bounds on r	 are ob-
tained by using the ratios ��B0 ! �	K��=��B0 !
�	��� and their charge conjugates, instead of relying
on the ratio of the charge averaged rates. Using the
branching ratios and asymmetries of Table I, one finds
the following range at 90% confidence level,

0:14�0:21� � r	 � 0:34 �0:29�: (44)

The bounds (43) and (44) are expected to be modified
by additional SU(3) breaking effects which were not
included in the analysis. In (25) we assumed exact
SU(3) for penguin amplitudes. Somewhat smaller values
of r� are obtained if SU(3) breaking enhances p0

� relative
to p�, as it would, for instance, by assuming factorization
074031
for these amplitudes. The above bounds are somewhat
wider than and, as expected, consistent with values ob-
tained in a global SU(3) fit to all B ! VP decays [17],
r� � 0:17� 0:02 and r	 � 0:29� 0:04, obtained when
jp�j and jp	j were not assumed to be equal. (Somewhat
smaller values, r	 � 0:25� 0:03, were obtained in the
global fit when assuming p� � 	p	, as proposed in
[40].) Values on the low side, r� � 0:10�0:06	0:04 and r	 �

0:10�0:09	0:05, were calculated in QCD factorization [19].
Assuming A�

CP � 0, Eqs. (36) and (39) imply

j sin���
eff 	 ��j �

���������
R0

�

q
;

j sin���
eff 	 ��j �

���������
R�

�

q
j sin��� ��j;

j sin��	
eff 	 ��j �

���������
R0

	

q
:

(45)

Note that in (39) A	
CP is 3:3# away from zero; nonzero

asymmetries would improve the above bounds. Currently
we find the following upper limits at 90% confidence
level,

R0
� ) j��

eff 	 �j � 14:2
;

R�
� ) j��

eff 	 �j � 7:3
 	 11:7
;

R0
	 ) j�	

eff 	 �j � 15:4
;

(46)

where the central upper limit (obtained by using 38
 �
� � 80
) is shown to improve slightly as � increases in
the range 78
 � � � 122
 [15]. Using (21), the second
and third upper limits imply

j�eff 	 �j � 11:3
 	 13:5
; (47)
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where the bound is improved slightly as � becomes larger
within the above range. A recent study of � in time-
dependent asymmetries in B0 ! ���	 [13] favors the
upper part of this range.

The upper bound (47), which may be improved by a
few degrees through more precise measurements of
branching ratios, including a first observation of B� !
��K0, is expected to be modified by SU(3) breaking. For
instance, if SU(3) breaking enhances p0

� relative to p�

(as it would by assuming factorization for these ampli-
tudes), then the upper bound becomes stronger. In this
respect these upper limits may be considered conserva-
tive. In any event, even if SU(3) breaking suppresses p0

�

relative to p� by 20 or 30%, one expects the upper bounds
to change by this amount. This result provides an impor-
tant conclusion, implying that in time-dependent decays
B0 ! ���� � may be measured through �eff with a
precision of about �15
:

j�eff 	 �j � 15

including SU�3� breaking�: (48)

This accuracy is comparable to that of measuring �
through �eff in time-dependent B0 ! ���	 decays
[41]. Here the shift caused by the penguin amplitude is
constrained in the isospin analysis [1,42,43] by measured
branching ratios of B0 ! ���	; B� ! ���0, and by an
upper bound on B0 ! �0�0 [44] to a range, j�eff 	 �j �
17
, at 90% confidence level.

Using Eq. (21), the current data (40) may now be
translated into solutions for �eff . In order to reduce dis-
crete ambiguities caused by the few branches of the two
arcsin functions in (21), we note that

�2��
eff � �̂� 	 �2�	

eff 	 �̂� � 2�t �O�r��: (49)

We will make a conservative assumption that the two
angles on the left-hand side differ by much less than
180
, which is equivalent to assuming that �t is much
smaller than 90
. (Note that QCD factorization predicts a
very small value, �t � �1� 3�
 [19], while a global
SU(3) fit finds �t ’ 	20
 [17].) This mild assumption
can be checked experimentally by measuring the phase
difference arg�A	=A�� using the overlap of the �� and
�	 resonance bands in the B0 ! ���	�0 Dalitz plot
[30]. (This measurement is expected to be feasible much
before a complete isospin and Dalitz plot analysis [6] can
be performed.) The measurable phase difference
arg�A	=A�� is dominated by �t � arg�t	=t��. The dif-
ference, jarg�A	=A�� 	 �tj, is governed by the subdomi-
nant amplitudes p�. We have checked that this difference
is less then 25
 at 90% confidence level, when r� is in the
range (43), consistent with (33) and (42) and when r	 is
in the range (44), consistent with (33) where R0	 is re-
placed by ��B0 ! �	K��=��B0 ! �	���. Therefore, a
small measured value of arg�A	=A�� would imply that �t
is much smaller than 90
, confirming our assumption.
074031
Applying (21) separately to the BABAR and BELLE
measurements, (which differ in their �S values by 2#)
and to their averages, we find that in all three cases the
experimental errors in C;�C; S, and �S translate into
quite small errors in �eff , �5
;�13
 and �4
 respec-
tively. In each case one finds for the central values of
these measurements only two solutions in the range 0 �
�eff � �:

�eff �

8<
:

BABAR: 93
; 177


BELLE: 102
; 168


Average: 94
; 175
:
(50)

Excluding by �� � < � the three values near 180
,
corresponding to an ambiguity � ! 3�=2	 �, we find

� �

8<
:
�93� 5� 15�
 BABAR
�102� 13� 15�
 BELLE
�94� 4� 15�
 Average;

(51)

where the first error is experimental and the second is
theoretical, coming from the bound (48). Note the weak
dependence of � on �S, the central values of which have
opposite signs in the BABAR and BELLE measurements
(40). Combining for simplicity the experimental and
theoretical errors (51) in quadrature gives for the average

� � �94� 16�
: (52)

All the above results are in good agreement with the range
78
 � � � 122
 obtained from other CKM constraints
[15]. For comparison, we note that the world average CP
asymmetries measured in B0 ! ���	 [45,46] have been
recently studied in Ref. [13] and were shown to imply a
comparable range, � � �103� 17�
, favoring large val-
ues of the weak phase in this range.
VII. EXTRACTING �

As mentioned, the observables in B ! ���� and the
SU(3) related rates are sufficient for determining �. One
has four independent observables S, �S, A�

CP in time-
dependent decays B ! ����, and additional four inde-
pendent observables R0

�, R�
� in �S � 1 decays (where

currently only an upper bound on R�
	 exists). These eight

observables provide an overdetermined set of conditions,
as they depend on only six parameters, the hadronic
parameters r�, ��, �t, and the weak angle �. The set of
Eqs. (12), (15), (16), and (31) then allows for an extraction
of � as well as all the hadronic parameters. No assump-
tion is required about �t, thus relaxing the mild and
experimentally testable assumption made in the previous
section in order to obtain the unambiguous ranges (51).

A solution of Eqs. (12), (15), (16), and (31) under these
general conditions is shown for illustration in Fig. 2,
which plots confidence levels (CL) as functions of � for
different levels of statistics. To obtain the plots we gen-
erated data for the observables S,�S, A�

CP, R0
� and R�

�,
-8
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FIG. 2 (color online). Confidence level (CL) as a function of
� for a generated set of data using a choice of parameters, r� �
0:18, r	 � 0:23, �� � 30
, �	 � 	55
, �t � 170
 and
�input � 100
. The interpretation of a confidence level is the
same as in Ref. [15] when Gaussian errors are assumed. Errors
used for %2 are the currently measured ones [yellow (light
gray) region], those anticipated with 10 times statistics [cyan
(gray)], and hundred times statistics [purple (dark gray)]. We
assume an experimental error in R�

	 as in R0
	.
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using a particular choice of values for the parameters ��,
r�, �t (as specified in the figure caption) and an input
value � � 100
. The errors on the observables were taken
to be the currently measured ones, apart from an error on
R�

	, for which the error was taken to be the same as the
current error on R0

	. Improvements in confidence level
are shown for ten and hundred times more data than
available today. One sees that with enough statistics
only one solution at � � 100
 survives in the range 0
 �
� � 180
. That is, for this particular choice of parame-
ters 100 times the present statistics implies an uncertainty
of �2
 in the single value of � extracted at 95% CL. We
checked that the situation presented in Fig. 2 is generic
and applies to a large range of hadronic parameters.

The ambiguities in �, which are eventually resolved
with high enough statistics, are seen in Fig. 2 to imply a
large range of allowed values of � at current statistics. To
get a quick insight into the origin of these ambiguities, let
us first explore the case of r� � 0. In this (oversimplified)
case, involving merely mixing induced CP violation, the
only observables carrying information on � are S and�S,

S � sin2� cos�t; �S � cos2� sin�t: (53)

Assuming that S and �S are measured precisely, a solu-
tion for sin2� is given by

�sin2��2 �
1

2

�
1� S2 	 ��S�2

�
����������������������������������������������������

1� S2 	 ��S�2�2 	 4S2

q �
: (54)

The two signs in front of the square root of the discrimi-
074031
nant correspond to the following map

Pt �

�
� !

�
4
	

�t

2
; �t !

�
2
	 2�

�
; (55)

or equivalently to the following interchange in Eqs. (53):

sin2� $ cos�t; cos2� $ sin�t: (56)

The other discrete ambiguities of (53) are

P� � f� ! �� �g; (57)

P�=2 �

�
� !

�
2
	 �; �t ! 	�t

�
; (58)

P	 � f� ! 	�; �t ! �	 �tg: (59)

While none of these transformations relate to one
another two values of � in the allowed range, 78
 � � �
122
 [15], combinations of these transformations, such as
P�P�=2 � f� ! 3�=2	 �; :::g, are relevant to this range.
However, this ambiguity, as well as the others, is resolved
once higher order terms in r� are taken into account, as
can be seen in Fig. 2. (See Appendix A for details.)
Namely, the complete set of equations, (12), (15), (16),
and (31) is not invariant under these transformations,
which are violated by terms of order r�. Note that
although the ratios R0;�

� are formally of order r2� (be-
cause of the multiplicative factor 
�2 in their definitions),
they are in fact zeroth order. That is, they must be mea-
sured to an accuracy of order r� in order to resolve the
ambiguities. It turns out that at least one pair of �R0�; R

�
��

ought to be measured to this precision. (See Appendix A.)
Since the extraction of � relies on a given scheme of

broken flavor SU(3), one may wonder how SU(3) breaking
effects other than those included may affect the value of
�. Flavor SU(3) is used to fix the values of r�, which we
have shown to be small, r� � 0:2. The extracted values of
� are given to zeroth order in r� by (54). Terms of order
r� are affected by SU(3) breaking corrections, which by
themselves are approximately r�. Therefore the overall
SU(3) breaking effect in � is expected to be of order r2�.

This is demonstrated in the following way. We first
generate values for observables by randomly varying
�t; �� and �, and taking r� to vary in the allowed ranges
(43) and (44). In addition to SU(3) breaking in tree
amplitudes we now allow also for the SU(3) breaking in
penguin amplitudes by introducing positive parameters,
0:7< c� < 1:3, and writing p0

� � 	c� 
�	1p� instead of
(25). [We neglect SU(3) breaking in �� which is non-
leading in the sense that the term 2r� 
�

2
�z� in the nu-

merator of the first of Eq. (31) is smaller than the r2� term.]
Generating data under this assumption, we then extract �
using Eqs. (12), (15), (16), and (31), where SU(3) was
assumed to be present only in tree amplitudes. Running a
Monte Carlo program for 10 000 different configurations
-9
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shows that the local minimum in %2 shifts by only������������������������������
h��out 	 �in�2i

p
� 2
, which is indeed of order r2�.

There exist experimental tests of flavor SU(3) and
SU(3) breaking corrections, in terms of equalities be-
tween CP rate differences in SU(3) related processes.
Two of these relations follow from Eqs. (2) and (28) [17],

��B0 ! ���	� 	 ��B0 ! �	��� �
f�

fK�


��B0

! K�	��� 	 ��B0 ! K���	��; (60)

��B0 ! �	��� 	 ��B0 ! ���	� �
f�

fK

��B0

! ��K	� 	 ��B0 ! �	K���: (61)

These relations test the equality of products
jt�

0�
� jjp

�0�
� j sin� sin�� in �S � 0 and �S � 1 decays.

Using current values in Table I, one finds that, while the
signs of the two asymmetries in the second equality
confirm the SU(3) prediction, their absolute values differ
by 2:0#.

VIII. CONCLUSION

We have studied implications for � of time-dependent
rate measurements in B ! ���� by proposing a parame-
trization which depends on a minimal number of had-
ronic parameters and observables. We have proposed one
method based on factorization, which reduces by two the
number of parameters to the number of observables. The
limitation of this method was shown to be its sensitivity
to terms quadratic in r�, the two ratios of penguin and
tree amplitudes.

Assuming broken flavor SU(3), which relates B !
���� to four processes of the form B0;� ! K�� and
B0;� ! �K, and using branching ratios measured for
these processes, we calculated lower and upper bounds
on r�, slightly below and slightly above 0.2. Defining a
measurable quantity �eff , that becomes � in the limit of
vanishing penguin amplitudes, we calculated upper
bounds on j�eff 	 �j in a range 11
–13
, which are ex-
pected to be at most about 15
 when including unac-
counted SU(3) breaking effects.

In order to resolve a discrete ambiguity in �, we
assumed that the relative strong phase of two tree ampli-
tudes, �t, is considerably smaller than 90
. This assump-
tion, justified by QCD factorization and by a global SU(3)
fit to B ! VP decays, can be tested directly through a
partial Dalitz plot analysis of B ! ���	�0. Using the
BABAR and BELLE results for B�t� ! ���� this then
implies single solutions, � � �93� 16�
 and �102�
20�
, respectively, and an average � � �94� 16�
, taking
into account an error scaling factor.

Finally, using a complete set of measurables, including
CP asymmetries and avoiding any assumption about �t,
we presented numerical studies demonstrating the feasi-
074031
bility of determining � and the reduction of discrete
ambiguities with statistics. We have also shown that
SU(3) breaking effects, which were not already included,
are expected to be very small, of order r2�.
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APPENDIX: FURTHER DETAILS ON
DISCRETE AMBIGUITIES

Discrete ambiguities were found in Sec.VII when order
r� corrections to observables were neglected. This lead to
a 16-fold ambiguity on � in the range � 2 
0; 2��
spanned by the transformations Pt, P�, P�=2 and P	

given in (55) and (57)–(59). Let us now discuss how the
higher order terms in r� affect the ambiguities. First of
all, the (unphysical) transformation P� is an exact sym-
metry of Eqs. (12), (15), (16), and (31), if extended to a
transformation on strong phases

P� � f� ! �� �; �� ! �� � �; �t ! �tg: (A1)

The other symmetry transformations Pi �

fPt; P�=2; P	g receive higher order corrections. To see
under which conditions they remain ambiguities, let us
expand Eqs. (12), (15), (16), and (31) to first order in r�,
where we count �t � r� � 
� � 1,

S	 sin2� � sin2�
r� cos��� �� ���

�r	 cos��� �� �	�� 	 sin��	 ��

�
r� cos�� � r	 cos�	�; (A2)

�S � cos2� sin�t � �r� sin�� 	 r	 sin�	� cos��	 ��;

(A3)

A�
CP � 	2r� sin�� sin��� ��; (A4)

1

2
�R0

� 	R�
�� � r� 
�2� cos���� cos��� ��: (A5)

The parameters r� are obtained from���������
R0

�

q
�

���������
R�

�

q
� r�: (A6)

One is then left with six Eqs. (A2)–(A5) for four un-
knowns, ��, �t, and �. In order to check for leftover
ambiguities, let us assume that there exists at least one
solution for (A2)–(A5), which we denote by �0�, �0t , and
�0. The transformations Pi may give us another viable
-10
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solution for �,

�new � Pi�0 � ��; (A7)

together with new values for the other paremeters, �new� ,
�newt . From (A4) we get (to leading order in the small
parameters, r�; �newt and ��),

sin�new� � 	
A�

CP

2r� sin��� Pi�
0�

; (A8)

while (A5) gives

cos�new� �
1

2

�R0
� 	R�

��

r� 
�2� cos��� Pi�0�
: (A9)

In general Eqs. (A8) and (A9) are not simultaneously
satisfied which resolves the ambiguity.

In case that R0;�
� is not measured to order r�, i.e., to a

precision of about 20
, the ambiguity is retained if the
right-hand side of (A8) is not larger in magnitudes than
074031
one, leading to a solution for (A2) and (A3):

�newt �
1

cos�2Pi�
0�

�S	 �r� sin�

new
� 	 r	 sin�

new
	 �

� cos�Pi�0 	 ���; (A10)

�� �
1

2 cos�2Pi�0�
fS	 sin2�0 � sin�Pi�0 	 ��

�
r� cos�
new
� � r	 cos�

new
	 �

	 sin2�0
r� cos��� Pi�
0 � �new� �

�r	 cos��� Pi�0 � �new	 ��g: (A11)

These expressions show the existence of further ambigu-
ities in �� of order r� caused by twofold solutions for
�new� in (A8) or (A9). [Note that �newt and �� are O�r�� in
accordance with our expansion.] This shows the impor-
tance of measuring R0;�

� as precisely as possible.
[1] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381
(1990). Small electroweak penguin contributions were
included in the isospin analysis by M. Gronau, D. Pirjol,
and T. M. Yan, Phys. Rev. D 60, 034021 (1999); A. J.
Buras and R. Fleischer, Eur. Phys. J. C 11, 93 (1999).

[2] H. J. Lipkin, Y. Nir, H. R. Quinn, and A. Snyder, Phys.
Rev. D 44, 1454 (1991).

[3] M. Gronau, Phys. Lett. B 265, 389 (1991).
[4] BELLE Collaboration, J. Dragic, et al., Phys. Rev. Lett.

93 131802 (2004). See also BABAR Collaboration, B.
Aubert et al., Phys. Rev. Lett. 93, 051802 (2004).

[5] J. Stark, in Proceedings of the 2nd Workshop on the CKM
Unitarity Triangle, Durham, England, 2003, edited by P.
Ball, J. Flynn, P.Kluit, and A. Stocchi eConf C0304052,
WG423 (2003).

[6] A. E. Snyder and H. R. Quinn, Phys. Rev. D 48, 2139
(1993); H. R. Quinn and J. P. Silva, Phys. Rev. D 62,
054002 (2000).

[7] A. Deandrea, R. Gatto, M. Ladisa, G. Nardulli, and P.
Santorelli, Phys. Rev. D 62, 036001 (2000); A. Deandrea
and A. D. Polosa, Phys. Rev. Lett. 86, 216 (2001); S.
Gardner and U. G. Meissner, Phys. Rev. D 65, 094004
(2002); J. Tandean and S. Gardner, Phys. Rev. D 66,
034019 (2002).

[8] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett.
91, 201802 (2003).

[9] A. J. Schwartz, ‘‘Proceedings of Beach 2004, The Sixth
International Conference on Hyperons, Charm and
Beauty Hadrons, Illinois Institute of Technology,
Chicago, Illinois, 2004’’ (unpublished), hep-ex/
0410025; Belle Collaboration, C. C. Wang et al., hep-
ex/0408003.

[10] D. Zeppenfeld, Z. Phys. C 8, 77 (1981); M. Savage and M.
Wise, Phys. Rev. D 39, 3346 (1989); 40, 3127(E) (1989);
L. L. Chau et al., Phys. Rev. D 43, 2176 (1991); B.
Grinstein and R. F. Lebed, Phys. Rev. D 53, 6344
(1996).

[11] M. Gronau, O. F. Hernandez, D. London, and J. L. Rosner,
Phys. Rev. D 50, 4529 (1994); 52, 6356 (1995); 52, 6374
(1995).

[12] A. S. Dighe, M. Gronau, and J. L. Rosner, Phys. Rev. D 57,
1783 (1998); M. Gronau and J. L. Rosner, Phys. Rev. D 61,
073008 (2000); M. Gronau, Phys. Rev. D 62, 014031
(2000).

[13] M. Gronau and J. L. Rosner, Phys. Lett. B 595, 339
(2004). This paper includes references to earlier studies
of B ! ���	 within flavor SU(3).
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