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Baryon axial charge in a finite volume
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We compute finite-volume corrections to nucleon matrix elements of the axial-vector current. We
show that knowledge of this finite-volume dependence —as well as that of the nucleon mass— obtained
using lattice QCD may allow a clean determination of the chiral-limit values of the nucleon and
�-resonance axial-vector couplings.
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1The chiral-limit considerations of Refs. [12,13] fall in the 

regime. However, to our knowledge no systematic finite-
volume calculation of baryon properties has been done in the

 regime.

2The current upper limit of this range has been estimated
recently by one of the authors [17].
I. INTRODUCTION

The nucleon axial charge, gA, is a fundamental quan-
tity in QCD as it in some sense quantifies spontaneous
chiral symmetry breaking in the low-energy hadronic
theory. It is known very accurately from neutron beta
decay experiments, gA � 1:2670� 0:0030 (in units of
the vector charge gV) [1] and therefore serves as an
important test of nonperturbative, first-principles calcu-
lations of hadronic properties using lattice QCD.
Fortunately, it is relatively straightforward to compute
gA in numerical lattice QCD simulations. In spite of this,
there is still no consensus in regards to gA from lattice
QCD [2–9]. A trend toward underpredicting [2–4] gA led
to the suggestion that there may be large finite-volume
effects [10,11]. This in turn has inspired some controversy
regarding the finite-volume dependence of gA near the
chiral limit [12,13]. A recent quenched simulation using
domain-wall fermions over several volumes finds that
large finite-volume effects do seem to account for the
discrepancy [9]. The somewhat tentative current state of
affairs is primarily due to the fact that current computa-
tional limitations use quark masses, mq, that are signifi-
cantly larger than the physical values, lattice spacings, a,
that are not significantly smaller than the physical scales
of interest, and lattice sizes, L, that are not significantly
larger than the pion Compton wavelength [14]. It is con-
fidence in the extrapolations of these quantities that will
allow a confrontation between lattice QCD predictions
for gA and other hadronic observables and experiment.
While the dependence of gA on the lattice parameters can
be described by an effective field theory (EFT), calcula-
bility requires maintaining the hierarchy of mass scales:
jpj, m	 � �
 � a�1, where jpj is a typical momentum
in the system of interest, m	 is the pion mass, and �
 �

2
���
2

p
	f is the scale of chiral symmetry breaking (f �

132 MeV is the pion decay constant). Lattice simulations
are only now beginning to achieve the hierarchy of scales
necessary to utilize a perturbative extrapolation.

Here we will be concerned primarily with the finite-
volume dependence of gA. In a spatial box of size L,
04=70(7)=074029(7)$22.50 70 0740
momenta are quantized such that p � 2	n=L with n 2
Z. The EFT momentum hierarchy then requires mainte-
nance of the additional inequality fL	 1. This bound
ensures that (nonpionic) hadronic physics is completely
contained inside the lattice volume. In addition, the bound

m	L�2
fL�2 	 1 ensures that the lattice volume has no
effect on spontaneous chiral symmetry breaking [15,16].
These two bounds, taken together, then imply that in
order to have a perturbative EFT description m	L * 1.
When 
m	L�

2
fL�2 & 1, and therefore m	L� 1, mo-
mentum zero modes must be treated nonperturbatively
[15,16] and one is in the so-called 
 regime.1

We will consider the range of pion masses,2 130 &

m	 & 300 MeV, and therefore we will take L * 2 fm,
keeping in mind that the EFT may be reaching the limits
of its validity when this bound on L is saturated, particu-
larly when the pions are light. For the observables con-
sidered here, finite-volume effects tend to be small for
L> 4 fm. It is therefore of interest to have control over
the finite-volume dependence of hadronic observables in
the range 2<L � 4 fm. Chiral perturbation theory
(
PT), which provides a systematic description of low-
energy QCD near the chiral limit, is the appropriate EFT
to exploit the hierarchy of scales described above and to
describe the dependence of hadronic observables on L
[15,18–20]. Recent work has investigated the finite-
volume dependence in the meson [21–29] sector and in
the baryon [30–35] sector.

In this paper we compute the leading finite-volume
dependence of the axial-vector charge of the nucleon in
heavy-baryon 
PT (HB
PT), including the � resonance
as an explicit degree of freedom. The finite-volume cor-
rections to the axial-vector charge of the nucleon depend
on the �-nucleon mass splitting and on the chiral-limit
29-1  2004 The American Physical Society
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values of the nucleon, �-nucleon and � axial-vector
charges. Traditionally, the nucleon and � axial couplings
have been estimated using the spin-flavor SU(4) symme-
try of the quark model, and in recent work [36] the
authors have conjectured the chiral-limit values of these
couplings.We point out that lattice QCD measurements of
finite-volume effects in the axial-vector charge (and
mass) of the nucleon will provide a clean determination
of the nucleon and �-resonance axial-vector couplings.

II. THE NUCLEON AXIAL CHARGE
IN A FINITE VOLUME

At the one-loop level, the matrix elements of the axial-
vector current between nucleons of flavor ‘‘a’’ and ‘‘b’’
may be written as

hNbjj�;5jNai � ��ab � cab�2UbS�Ua; (1)

where cab represents a counterterm with a single insertion
of the light-quark mass matrix. The leading-order
Lagrange density describing the interactions between
the pions and the low-lying baryons is

L � 2gANS�A�N � g�N�T
abc;�Ada;�Nb
cd � H:c:�

� 2g��T
�S�A�T�: (2)

This Lagrange density gives rise to the diagrams in
Fig. 1, which are the leading one-loop contributions to
the axial-current matrix elements. In the isospin limit one
finds [37]
074029
�NN � gA � i
4

3f2

�
4g3AJ1
m	; 0; ��

�4
�
g2�NgA �

25

81
g2�Ng��

�
J1
m	;�; ��

�
3

2
gAR1
m	;�� �

32

9
g2�NgAN1
m	;�; ��

�
; (3)

where J1
m;�; ��, R1
m;��, and N1
m;�; �� are loop
integrals defined in the Appendix and � is the
�-nucleon mass splitting. All ��
� poles have been sub-
tracted. They—and their associated counterterm cNN—
need not concern us here as the finite-volume corrections
do not depend on the ultraviolet behavior of the theory at
leading one-loop order. All of the couplings (including f)
in Eq. (3) take their chiral-limit values.

Using the notation �L
#� � #
L� � #
1� to denote
the finite-volume corrections to the quantity #, and the
results obtained in the Appendix, the finite-volume cor-
rections to �NN are

�L
�NN� � �gA

�
m2
	

3	2f2

�
g3AF1 �

�
g2�NgA �

25

81
g2�Ng��

�
F2

�gAF3 � g2�NgAF4

�
; (4)

where
F1
m;L� �
X
n�0

�
K0
mLjnj� �

K1
mLjnj�
mLjnj

�
;

F2
m;�; L� � �
X
n�0

"
K1
mLjnj�
mLjnj

�
�2 �m2

m2 K0
mLjnj� �
�

m2

Z 1

m
d!

2!K0
!Ljnj� � 
�2 �m2�LjnjK1
!Ljnj��������������������������������
!2 � �2 �m2

p
#
;

F3
m;L� � �
3

2

X
n�0

K1
mLjnj�
mLjnj

;

F4
m;�; L� �
8

9

X
n�0

"
K1
mLjnj�
mLjnj

�
	e�mLjnj

2�Ljnj
�

�2 �m2

m2�

Z 1

m
d!

!K0
!Ljnj��������������������������������
!2 � �2 �m2

p
#
;

(5)
and K#
z� is a modified Bessel function of the second
kind. The extension of this result to partially quenched
QCD, including strong isospin violation, is straightfor-
ward to extract from Ref. [38] using the results of this
paper. We do not give an asymptotic expression for �gA as
we do not find it useful for L< 10 fm for the pion masses
of interest, however, it may be found by taking the
appropriate asymptotic limits of Eq. (5) using technology
developed in Refs. [28,35].
III. EXTRACTING AXIAL CHARGE FROM
LATTICE QCD

A. Model-independent considerations

The finite-volume corrections to �NN depend only on
infrared quantities, i.e., the axial-vector charges and the
pion decay constant, the meson mass, and the �-nucleon
mass splitting. Hence, with precise determinations of f
(chiral-limit value), m	, and �, lattice data at several
-2
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FIG. 1 (color online). One-loop graphs that contribute to the
matrix elements of the axial-current in the nucleon. Solid,
thick-solid, and dashed lines denote a nucleon, a � resonance,
and a pion, respectively. The solid squares denote an axial
coupling given in Eq. (2), while the crossed circle denotes an
insertion of the axial-vector current operator. (a)–(e) are vertex
corrections, while (f) and (g) give rise to wave function
renormalization.

3We use the physical �-nucleon mass splitting, � �
293 MeV. In principle, this quantity should be measured by
the lattice simulation.

4For a recent discussion of current knowledge of the chiral-
limit value of gA, see Ref. [17].
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different values of L will allow a determination of the
axial-vector charges. However, in order to separate the
various contributions to Eq. (4), one must ensure that the
Fi scale differently over the relevant values of L. In Fig. 2
we plot F1 and the ratios F2=F1, F3=F1, and F4=F1 as
functions of L for various pion masses. For F2 and F4 we
use � � 293 MeV. It is clear from Fig. 2 that the ratios of
the Fi scale differently and therefore, in principle, the
coefficients of the Fi in Eq. (4) may be extracted from the
L dependence of �gA. Of course, in practice, the expo-
nentially suppressed finite-volume effects must compete
against the typical error of a lattice QCD simulation and
extraction of the axial charges will be difficult.

B. A Conjecture and an estimate

In a recent paper by the authors [36], based on earlier
work by Weinberg [39– 42], it was conjectured that in the
chiral limit, the helicity one-half components of the
nucleon, � and the Roper (N0
1440�) fall into the reduc-
ible 
2; 3� � 
1; 2� representation of SU
2�L � SU
2�R with
074029
maximal mixing. Denoting the mixing angle between the
irreducible representations as  (with maximal mixing
corresponding to  � 	=4), the conjecture determines
the chiral-limit values gA � 1� 
2=3�cos2 , g�N �
�2 cos , and g�� � �3. Inserting these values into
Eq. (4) leads to

�gA �
m2
	

3	2f2

�
F1 � F3 �

�
2F1 �

8

27
F2 �

2

3
F3

� 4F4

�
cos2 �

4

3

F1 � 2F2 � 2F4�cos

4 

�
8

27
F1cos

6 
�
: (6)

It would be interesting to have a direct lattice determi-
nation of  using this formula. The spin-flavor SU(4)
(naive constituent quark-model) results are recovered
with  � 0. However, the conjectured values (with  �
	=4) are in much better agreement with existing experi-
mental knowledge [36,43]. We use Eq. (6) to estimate our
current knowledge of the finite-volume dependence of the
nucleon axial-vector charge.3 This expression is plotted
as a function of L for various pion masses in Fig. 3 for the
two cases  � 	=4 and  � 0. Variation of  provides a
measure of the experimental uncertainty associated with
the chiral-limit values of the axial-vector couplings [44–
46].4 It is encouraging that the two scenarios lead to quite
distinct predictions for �gA, and therefore a precise deter-
mination of the volume dependence of gA will allow for a
determination of the mixing-angle  . In both cases it is
clear that for L * 2 fm, finite-volume effects are at the
few-percent level for all relevant pion masses.
IV. CONCLUSIONS

It has long been known that the infinite-volume S
matrix can be extracted from power-law suppressed
finite-volume effects that arise when a two-particle state
is put in a finite volume [47–51], and very recently it has
been shown that this method may be extended to include
the effect of external electroweak gauge fields [52].
Therefore, a lattice calculation of the energy levels of a
pion and a nucleon in a finite volume can, in principle,
allow for an extraction of the axial-vector couplings.
Important information may also be extracted from ex-
ponentially suppressed finite-volume effects that arise
from quantum loops [20]. An important observation is
that ultraviolet physics (counterterms) enters the chiral
expansion for finite-volume effects beyond leading one-
loop order in the expansion [32]. Finite-volume effects
therefore offer a clean probe of infrared physics.
-3
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FIG. 2. Plot of F1 and the ratios F2=F1, F3=F1, and F4=F1 vs L. The solid and dashed lines correspond to m	 � 139 and 300 MeV,
respectively, for the physical �-nucleon mass splitting, � � 293 MeV.
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Moreover, this method is optimal form	 <� where the �
resonance is unstable and a direct probe of � properties is
problematic. One should, however, keep in mind that the
exponentially suppressed nature of the finite-volume cor-
rections in the p regime renders an extraction of chiral-
limit axial charges a difficult task. However, we believe
that it is worthy of investigation in lattice QCD simula-
tions where one can make a definitive determination of
whether our method has merit.

To conclude, we have computed the leading finite-
volume corrections to nucleon matrix elements of the
axial-vector current and argued that, in principle, a lat-
tice QCD measurement of this finite-volume dependence
can determine the chiral-limit values of the axial-vector
charges of the nucleon and � resonance.
APPENDIX: LOOP INTEGRALS

In this Appendix we review some standard one-loop
integrals that arise in HB
PT [37] and give their finite-
volume dependence. First we consider the generic one-
074029
loop integral

I0
m;�; �� � �

Z dnq


2	�n
1

q0 � �� i

1

q2 �m2 � i


�
i

8	2

"
� log

m2

�2 � 2��
�����������������������������
�2 �m2 � i


p

� log

 
��

�����������������������������
�2 �m2 � i


p

��
�����������������������������
�2 �m2 � i


p

!#

� �
i

8	2	F 
m;�; ��; (A1)

where 	F 
m; 0; �� � 	m, 
 � 4� n, and we have sub-
tracted the ��

� divergence. Evaluating the energy in-
tegral yields

I0
m;�; �� �
i
2
�


Z 1

m
d!

!�������������������������������
!2 � �2 �m2

p
�
Z dn�1q


2	�n�1

1

�jqj2 � !2�3=2
; (A2)
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FIG. 3 (color online). The volume dependence of gA for chiral-multiplet mixing angles  � 	=4 and  � 0. The left panel shows
�gA vs L with  � 	=4, where the solid, dotted, and dashed lines correspond to m	 � 139, 200 , and 300 MeV, respectively. The
right panel shows �gA vs L with  � 0 [spin-flavor SU(4) values of axial-vector couplings]. The physical �-nucleon mass splitting,
� � 293 MeV, is used for both panels.
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where !
)�2 � )2 � 2)��m2 and we have performed a
change of variable that is valid only for �> 0, as the
relation is noninvertible for �< 0. Using the master
relation

�L

�Z d3k


2	�3
1

�jkj2 �M2�#

�

�
M3�2#

21=2�#	3=2�
#�

X
n�0


MLjnj�#�3=2K3=2�#
MLjnj�;

(A3)

which has been derived previously [32,35], one finds the
finite-volume corrections

�L�I0
m;�; ��� �
i

4	2

Z 1

m
d!

!�������������������������������
!2 � �2 �m2

p
�
X
n�0

K0
!Ljnj�: (A4)

Notice that there is no renormalization-scale dependence.
In general, the integral over ! cannot be performed
analytically, however, for � � 0

�L�I0
m; 0; ��� �
i

8	L

X
n�0

e�mLjnj

jnj
: (A5)

Next we consider the integral, I1
m;�; ��, which ap-
pears in the one-loop contribution to the nucleon mass,
074029
I1
m;�; �� � �

Z dnq


2	�n

S � q�2

v � q� �� i

1

q2 �m2 � i


�
1

4
��R1
m;�� � 
�2 �m2�I0
m;�; ���;

(A6)

where

R1
m;�� � �

Z dnq


2	�n
1

q2 �m2 � i


�
i

16	2m
2

�
�

� � 1� log

m2

�2

�
: (A7)

This integral contributes to the pion-tadpole diagram in
Fig. 1(e). Subtracting them2�

� divergence, one then has

I1
m;�;�� �
i

32	2

(

m2 ��2�

" ����������������������������
�2 �m2 � i


p
log
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����������������������������
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p
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����������������������������
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p
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m2

�2 � 2�

#
�
1

2
m2�log

m2
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1

2
m2�

)

�
i

32	2F
m;�;��: (A8)

Using the master relation, Eq. (A3), one finds

�L�R1
m;��� � �
im

4	2L

X
n�0

K1
mLjnj�
jnj

: (A9)
Finally, we find [35]

�L�I1
m;�; ��� �
i

16	2

Z 1

m
d!

!3�������������������������������
!2 � �2 �m2

p X
n�0

�
K1
!Ljnj�
!Ljnj

� K0
!Ljnj�
�
: (A10)
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Another useful integral is J0
m;�; �� � @I0
m;�; ��=@�,

J0
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Z dnq


2	�n
1
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�2 �m2 � i


p

��
�����������������������������
�2 �m2 � i


p

��
: (A11)

The finite-volume corrections are
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!Ljnj�: (A12)

The one-loop contributions to wave function renormalization, Figs. 1(f) and 1(g), and to the vertex diagrams,
Figs. 1(a) and 1(b), for the axial-vector current operator depend on
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The finite-volume corrections may be written as
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Finally, the vertex diagrams, Figs. 1(c) and 1(d), for the axial-vector current operator depend on
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The finite-volume corrections are simply

�L�N1
m;�; ��� �
1

�
��L�I1
m;�; ���

� �L�I1
m; 0; ����; (A16)

where one uses Eq. (A10).
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