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We study the competition between chiral symmetry restoration and two flavor color superconduc-
tivity (2SC) using a relativistic quark model with covariant nonlocal interactions in the mean field
approximation. We consider two different nonlocal regulators: a Gaussian regulator and a Lorentzian
regulator. We find that, although the phase diagrams are qualitatively similar to those obtained using
models with local interactions, in our case the superconducting gaps at medium values of the chemical
potential are larger. Consequently, we obtain that in that region the critical temperatures for the
disappearance of the 2SC phase might be of the order of 100–120 MeV.We also find that, for ratios of the
quark-quark and quark-antiquark couplings somewhat above the standard value 3=4, the end point and
triple point in the T �� phase diagram meet and a phase where both the chiral and diquark
condensates are non-negligible appears.
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I. INTRODUCTION

The understanding of the QCD phase diagram has
become one of the most interesting issues in the physics
of strong interactions. Such a phase diagram is relevant to
phenomena in the early universe, in the interior of neu-
tron stars, and in relativistic heavy ion collisions. Already
in the seventies it was suggested that there should be two
distinct phases: a low temperature and density phase in
which quarks and gluons are confined within hadrons and
chiral symmetry is broken, and a high temperature and
density phase (the so-called quark-gluon plasma) in
which these particles are deconfined and chiral symmetry
is restored. Although the possible existence of other
phases (e.g., the color superconducting phase) was also
suggested quite long ago [1], this two-phase structure
became the standard picture of the QCD phase diagram
for more than two decades. In recent years, however, it
has been established that at low temperatures and me-
dium densities several other phases might appear (see,
e.g., Ref. [2] for recent reviews). In particular, for the case
of two light flavors it has been shown that there should be
a non-negligible region in the QCD phase diagram where
strongly interacting matter is a color superconductor (2SC
phase) [3]. Unfortunately, due to difficulties in dealing
with finite chemical potential, ab initio calculations (as,
e.g., lattice QCD) are not yet able to provide a detailed
knowledge of the QCD phase diagram [4] (see, however,
Ref. [5] for recent developments in that field). Thus, most
theoretical approaches are based on the use of effective
models of QCD. Among them, the Nambu-Jona-Lasinio
(NJL) model [6] is one of the most popular. In this model,
the quark fields interact via local four point vertices
which are subject to chiral symmetry. If such an interac-
tion is strong enough, chiral symmetry is spontaneously
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broken at zero temperature and density, and pseudoscalar
Goldstone bosons appear. It has been shown by many
authors that, when the temperature and/or density in-
crease, the chiral symmetry is restored [7]. When effec-
tive quark-quark interactions are added to the effective
Lagrangian other phases also appear [8]. As an improve-
ment on the local NJL model, some covariant nonlocal
extensions have been studied in the past few years [9].
Nonlocality arises naturally in the context of several
successful approaches to low-energy quark dynamics as,
for example, the instanton liquid model [10] and the
Schwinger-Dyson resummation techniques [11]. It has
been also argued that nonlocal covariant extensions of
the NJL model have several advantages over the local
scheme. Several studies [12–14] have shown that these
nonlocal models provide a satisfactory description of the
hadron properties at zero temperature and density.
Recently [15], the characteristics of the chiral phase
transition have been investigated within the mean field
approximation using this kind of models. The aim of the
present work is to extend such studies to the case in which
a superconducting phase can appear.

This article is organized as follows. In Sec. II, we
introduce the model and formalism. Our results for
some specific nonlocal regulators are presented in
Sec. III. In Sec. IV we analyze the dependence of our
results on the strength of the diquark correlations. Finally,
in Sec. V we give our conclusions.
II. THE FORMALISM

Let us begin by stating the Euclidean action for the
nonlocal chiral quark model in the case of two light
flavors. We consider
26-1  2004 The American Physical Society
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where mc � �mu �md�=2 is the current quark mass. The
currents js;p;d�x� are given by
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d4y d4z r�y� x�r�x� z� � �y� �z�;
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(2)

where �2 and �2 are Pauli and Gell-Mann matrices cor-
responding to the flavor and color groups, respectively.
The function r�x� y� is a nonlocal regulator. It can be
translated into momentum space,

r�x� z� �
Z d4p

�2��4
e�i�x�z�pr�p�: (3)

Lorentz invariance implies that r�p� can only be a func-
tion of p2. Hence, we will use for the Fourier transform of
the regulator the form r�p2� from now on. In addition, in
Eq. (1) we have used

 C�x� � �2�4
� t�x�; � C�x� �  t�x��2�4: (4)

The effective action Eq. (1) might arise via Fierz
rearrangement from some underlying more microscopic
action and is understood to be used, at the mean field
level, in the Hartree approximation. In general, the ratio
of the coupling constant H=G depends on such micro-
scopic action. For example, one-gluon-exchange (OGE)
interactions as well as instanton model interactions lead
to H=G � 0:75. However, since the precise form of the
microscopic interaction cannot be derived directly from
QCD, this value is subject to rather large uncertainties. In
fact, thus far there is no strong phenomenological con-
straint on the ratio H=G, except for the fact that values
larger that H=G
 1 are quite unlikely to be realized in
QCD since they might lead to color symmetry breaking
in the vacuum.
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The partition function for the model is defined as

Z �
Z

D � D e�SE��;T�; (5)

where the Euclidean action at finite temperature T and
chemical potential � is obtained from Eq. (1) by going to
momentum space and performing the replacement

Z d4p

�2��4
F� ~p; p4� ! T

X1
n��1

Z d3 ~p

�2��3
F� ~p;!n � i��; (6)

where!n are the Matsubara frequencies corresponding to
fermionic modes, !n � �2n� 1��T. As in Ref. [15], we
are assuming here that the quark interactions depend only
on the temperature and chemical potential through the
argument of the regulators. To proceed it is convenient to
perform a standard bosonization of the theory. Thus, we
introduce the bosonic fields #, �a, and 
 corresponding
to the sigma meson, pion meson, and scalar diquark
fields, respectively, and integrate out the quark fields. In
what follows we will work within the mean field approxi-
mation (MFA), in which these bosonic fields are expanded
around their vacuum expectation values and the corre-
sponding fluctuations neglected. Since the mean field
values of the pion fields vanish due to symmetry reasons,
in what follows only those of the sigma and diquark fields,
�# and �
, will be explicitly considered. Within this ap-
proximation and employing the Nambu-Gorkov formal-
ism, the mean field thermodynamical potential per unit
volume reads

�MFA � �
T
V

lnZMFA

�
�#2

2G
�
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2H

�T
X1

n��1

Z d3 ~p

�2��3
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2
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�
1

T
S�1� �#; �
�

�
; (7)

where Tr stands for the trace over the Dirac, flavor, color,
and Nambu-Gorkov bispinor indexes. The inverse propa-
gator S�1� �#; �
� is
S�1� �#; �
� �
� ~p � ~�� �!n � i���4 � �p i�5�2�2
p
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; (8)
where

�p � mc � �#r2
p; 
p � �
jrpj2; (9)
and rp � r� ~p2 � �!n � i��2�. After some straightfor-
ward algebra �MFA can be more explicitly expressed as
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�#2
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where

Ap � !2
n � ~p2 ��2 � j�pj

2;

Bp � 4 ~p2��2 � Im2�p�;

Cp � �Re�p �!nIm�p:
(11)

For finite values of the current quark mass, �MFA turns
out to be divergent. The regularization procedure used
here amounts to defining

�MFA
�reg� � �MFA � �free � �free

�reg�; (12)

where �free
�reg� is the regularized expression for the thermo-

dynamical potential of a free fermion gas,
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The mean field values �# and �
 are obtained from the
coupled pair of gap equations

d�MFA
�reg�

d �#
� 0;

d�MFA
�reg�

d �

� 0: (14)

The explicit form of these equations is
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�

�
jrpj

4
Ap � j
pj

2

�Ap � j
pj
2�2 � Bp � 4C2

p
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; (15)

where, in addition to the definitions given in Eq. (11), we
have used

Ep � Re�pRer2
p � Im�pImr2

p; Fp � 2 ~p2Im�pImr2
p;

Gp � �Rer2
p �!nImr2

p: (16)

It should be noticed that, in general, there might be
regions for which there is more than one solution for
each value of T and �. In such regions we identify the
stable solution by requiring it to be an overall minimum
of the potential.
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Given the thermodynamic potential, the expressions
for all other relevant quantities can be easily derived.
For each flavor the quark-antiquark condensate h �  i
and the quark density (q are given by

h �  i �
@�MFA

�reg�

@mc
; (q � �

@�MFA
�reg�

@�
: (17)

In the case of the quark-quark condensate an extra source
term �* � C�x�i�5�2�2 �x� has to be added to the effec-
tive action. It is easy to see that this leads to a thermody-
namic potential �MFA�*� which has the form given in
Eq. (10) but where 
p has been replaced by 
p � *. Then,
we get

h  i � �
@�MFA

�reg� �*�

@*









*�0
: (18)

Finally, a magnitude which is important to determine the
characteristic of the chiral phase transition is the chiral
susceptibility +. It can be calculated as

+ � �
@2�MFA

�reg�

@m2
c

� �
@h �  i
@mc

: (19)
III. NUMERICAL RESULTS FOR DIFFERENT
REGULATORS

In this section, we concentrate on the numerical results
obtained for two different regulators often used in the
literature: the Gaussian regulator and the Lorentzian
regulator. In each case we have considered G, mc, and �
as input parameters fixed so as to reproduce the phenome-
nological values of the chiral condensate, pion mass, and
pion decay constant at vanishing temperature and den-
sities [12,15]. Moreover, we have set H=G � 3=4 as im-
plied by, for example, OGE interactions [3,8]. The
dependence of our results on this ratio will be discussed
in the following section.

A. Gaussian regulator

In this case the regulator is given by

r�p2� � exp��p2=2�2�; (20)

where � plays the role of a cutoff parameter. We have
considered two different sets of parameters. Set I corre-
sponds to G � 50 GeV�2, mc � 10:5 MeV, and � �
627 MeV while Set II to G � 30 GeV�1, mc �
7:7 MeV, and � � 760 MeV. Although for both sets the
zero temperature and density properties mentioned above
are well reproduced, in the case of Set I the quark propa-
gator has no purely real poles while for Set II it does.
Thus, following Ref. [12], Set I might be interpreted as a
confining one, since quarks cannot materialize on-shell in
Minkowski space.
-3
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FIG. 1. Behavior of mean fields �#, �
 and condensates h �qqi,
hqqi for the Gaussian regulator, as a function of chemical
potential for three different values of the temperature. Left
panels correspond to Set I and right ones to Set II. Solid lines
correspond to T � 0, dashed lines to T � 67 MeV for Set I
(T � 57 MeV for Set II), and dotted lines to T � 100 MeV.
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The mean field values �# and �
 as a function of� and T
are obtained by numerically solving Eq. (15). The corre-
sponding results as a function of� for various values of T
are displayed in Fig. 1, where left panels correspond to
Set I while right ones to Set II. It can be seen that, for
small values of T and� (full lines in Fig. 1), the system is
in the chiral phase for which �# � 0 and �
 � 0. If we
increase � keeping T fixed, at some critical value of �
there is a sudden drop of �# and a simultaneous sudden
increase in �
 so that we get into the 2SC phase charac-
TABLE I. Critical temperatures, chemical potentials,

Triple point
Regulator T3P �3P TE

Gaussian—Set I 64 193 69
Gaussian—Set II 54 215 58
Lorentzian 48 217 59
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terized by �# � 0 and �
 � 0. In particular, the values of
the diquark gap at the critical chemical potential and T �
0 can be found in Table I. If we repeat the process with a
higher value of T, something similar happens until we
reach the ‘‘triple point’’ (3P). For temperatures slightly
higher than T3P (dashed lines in Fig. 1) the sudden drop in
�# and the increase �
 start to happen at two different
values of �. Between these values of �, we have �# � 0
and �
 � 0. Moreover, there is no discontinuity in the
behavior of �
 as a function of �. For temperatures above
the ‘‘end point’’ (EP) the discontinuity in �# also disap-
pears (dotted lines in Fig. 1). Finally, for temperatures
above the critical temperature for � � 0, Tc�� � 0�, we
get �# � 0 for all values of �. In the region corresponding
to the crossover, the transition point is defined by the
point at which the chiral susceptibility + has a maximum.
The positions of the different critical points are summa-
rized in Table I. Also shown in Fig. 1 are the correspond-
ing chiral h �  i and diquark h  i condensates. Their
behavior is quite similar to those of the mean field values
�# and �
, respectively. It is worthwhile mentioning that
the fact that the chiral condensate approaches some posi-
tive value for large values of � is due to the subtraction
scheme used to regularize the thermodynamical poten-
tial, Eq. (12). In fact, it is not difficult to see that for finite
values of mc the regularized free thermodynamical po-
tential �free

�reg�, Eq. (13), has such behavior.
The corresponding phase diagrams are displayed in

Fig. 2. Again left panels correspond to Set I and right ones
to Set II. On the other hand, the upper panels correspond
to the phase diagrams in the T �� plane and the lower
ones to the diagrams in the T � (=(0 plane, where the
nuclear matter density (0 � 1:3 � 106 MeV. In all the
cases we have indicated with full lines the first order
transition lines, with dashed lines the second order tran-
sition lines, and with dotted lines the lines corresponding
to the crossover between the chiral phase and the weakly
interacting quark phase.

As it is clear from the T �� phase diagrams, at the
triple point the three phases can coexist. It is interesting
to remark that for values of the chemical potential below
�3P the transition line (both the first order and crossover
sections) coincides exactly with that obtained in the
absence of diquark correlations (H � 0). On the other
hand, for �>�3P the first order transition line is differ-
ent from that obtained in Ref. [15]. This is more clearly
and �
c�T � 0� (all in MeV) for different regulators.

End point

P �EP Tc�� � 0� �
c�T � 0�

180 115 182
207 120 132
195 116 114
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FIG. 2. Phase diagrams for the Gaussian regulator. Left pan-
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display the T �� phase diagrams and the lower ones the T �
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seen in the corresponding T � (=(0 diagrams. There we
have indicated with dash-dotted lines the first order tran-
sition line corresponding to H � 0. As we observed, the
existence of diquark correlations increases the size of the
mixed phase. Note that for T < T3P such a mixed phase is
composed by the chiral and 2SC phases while for T > T3P

it is a mixture of the chiral and the free quark gas phases.
As for the comparison between the results of Set I and

Set II, we see that they are qualitatively very similar, with
only small quantitative differences in the position of the
critical points.

B. Lorentzian regulator

The Lorentzian regulator we have considered has the
form

r�p2� �
1

1 � p2=�2 : (21)

The input parameters are G � 28:38 GeV�2, mc �
4:57 MeV, and � � 940 MeV. Once again, we have
solved the gap equations for different values of the tem-
perature and chemical potential. The qualitative behavior
074026
of the mean field values and condensates is very similar to
that found using the Gaussian regulator (Fig. 1) and, thus,
will not be explicitly shown. Nevertheless, it is interesting
to note that, as shown in Table I, in this case the T � 0
diquark gap at the critical chemical potential �
c is some-
what smaller. The corresponding phase diagrams in the
T �� and T � (=(0 planes are also similar to those
obtained with the Gaussian regulator. As in the previous
cases, we observe the existence of an ‘‘end point,’’ at
which the first order chiral phase transition line becomes
a crossover line, and a triple point at which the three
phases coexist. The position of these points, which are
quite similar to those of the Gaussian regulator Set II, are
given in Table I.

IV. DEPENDENCE OF THE PHASE DIAGRAMS
ON THE DIQUARK COUPLING CONSTANT

In the previous section we have assumed H=G � 3=4
as favored by various effective models of quark-quark
interactions. However, as mentioned in Sec. II, this value
is subject to rather large uncertainties. Thus, it is worth-
while to explore the consequences of varying H=G in the
range 0<H=G � 1. Larger values of this ratio are quite
unlikely to be realized in QCD and might lead to color
symmetry breaking in the vacuum. Since the results ob-
tained above for different regulators are qualitatively
very similar in what follows, we will consider only the
Gaussian regulator with the set of parameters Set II.

For values of H=G in the range 0:17<H=G< 0:82,
the resulting phase diagrams look qualitatively similar to
the one displayed in Fig. 2, although the details (in
particular, the position of the critical points; see below)
do depend on H=G. For H=G< 0:17 there is a qualitative
change since the triple point ceases to exist. In this case,
even at very low temperatures, as we increase � at some
point we find a first order phase transition between the
chiral phase and the free quark gas phase. For values
slightly above this critical � we have �# ’ �
 � 0. If we
continue to increase � we find a second order phase
transition between the free quark gas phase and the 2SC
phase. The corresponding T �� phase diagram is shown
in the upper panel of Fig. 3. Note that in this phase
diagram the transition line between the chiral and the
free quark gas phases (both its crossover and first order
sections) coincides exactly to the one obtained forH � 0.
For H=G> 0:82, the situation is again qualitatively dif-
ferent, since in such a range the triple point and the end
point merge together. In fact, as H=G comes closer from
below to H=G � 0:82, the first order transition line that
connects the 3P and the EP becomes shorter and shorter,
and at this particular value it disappears. Moreover, for
H=G> 0:82 there is small region at low temperatures at
which both �# and �
 take nonvanishing values. This
region is separated from the chiral phase by a second
order transition line and from the 2SC for a first order
-5
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transition line. This situation is illustrated in the lower
panel of Fig. 3, where the T �� phase diagram for
H=G � 0:90 is shown. The possible existence of this
type of phase was already noticed in Refs. [16,17].

The behavior of the critical points as a function ofH=G
is displayed in Fig. 4. In the upper panel we show the
position of critical chemical potential �c at T � 0. The
full line indicates the first order �c while the dashed line
the second order one. In the range 0:17<H=G< 0:82, we
have only a first order �c. For values below such �c the
system is in the chiral phase while for values above is in
the 2SC. For values H=G< 0:17 we have that the second
order �c, i.e., the point at which the second order tran-
sition line that separates the 2SC and free quark gas
phases meets the � axis in the T �� phase diagram,
grows rather fast as H=G decreases, signaling the almost
disappearance of the 2SC phase for very small values of
the diquark coupling constant. For H=G> 0:82 a second
order �c appears again, but now below the first order �c.
Thus, between these two critical chemical potentials we
have �# � 0 and �
 � 0. In the lower panel we display the
position of the triple point and the end point as functions
of H=G. Note that the temperature scale is given to the
074026
right while the chemical potential scale is given to the
left. For values of H=G< 0:17 only the EP exists. Its
position remains independent of the diquark coupling
constant up to H=G � 0:82 where it meets the 3P that
appears at H=G � 0:19 and whose position in tempera-
ture (chemical potential) increases (decreases) as H=G
increases. For values of H=G> 0:82 both critical points
transform into a single one whose position in temperature
(chemical potential) increases (decreases) as H=G
increases.
V. CONCLUSIONS

In this work we have studied the finite temperature and
chemical potential behavior of SU�2�f chiral quark mod-
els with nonlocal covariant separable interactions in both
the scalar quark-antiquark and quark-quark channels. In
our numerical calculations, we have considered two types
of regulators: the Gaussian regulator and the Lorentzian
regulator. In all these cases we have set the model pa-
rameters so as to reproduce the empirical values of the
pion mass and decay constant and to get a chiral quark
condensate in reasonable agreement to that determined
from lattice gauge theory or QCD sum rules. As for the
-6
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ratio between quark-quark and quark-antiquark interac-
tions H=G which is not well constrained by phenomenol-
ogy, we have in principle adopted the standard value
H=G � 3=4 which follows from some models of the
QCD interactions.We find that in all cases phase diagrams
are quite similar. In particular, we obtain that for two
light flavors there are always two critical points: a ‘‘triple
point’’ at which the second order transition line separat-
ing the 2SC and normal phases meets the first order
transition line which separate the chiral and 2SC phases
at low temperatures; an ‘‘end point’’ which appears at
higher temperatures and at which the first order transition
line becomes a crossover line. Of course, there is also a
critical temperature Tc�� � 0� above which the chiral
condensate always vanishes. As displayed in Table I, the
values of Tc�� � 0� are in the range 115–120 MeV, which
is somewhat below the values obtained in modern lattice
simulations which suggest Tc�� � 0� � 140–190 MeV
[4]. With this in mind, we note that our predictions for
the positions of the triple and end points are very similar
for all the cases considered. Perhaps, the only noticeable
difference between the different cases is the prediction
for the T � 0 diquark gap at the critical chemical poten-
tial, where we find values that range from 114 to 182 MeV.
These values are larger than those obtained within mod-
els with instantaneous interactions, either at the mean
field level [2,8] or using lattice methods that go beyond
such an approximation [18]. It should be noticed (see
Fig. 1) that in the present case the diquark gap also
registers a stronger increase with � after the phase tran-
sition. This leads to rather large values of the gap for
chemical potentials of the order of 400 MeV, above which
strange degrees of freedom have to be taken into account.
074026
Consequently, for such values of �, we also get larger
values (100–120 MeV) for the critical temperature
needed to go to the free quark gas phase, as it can be
easily seen comparing our phase diagrams with those
obtained in, e.g., the NJL model [8].

In the final part of this work, we have explored the
consequences of varyingH=G in the range 0<H=G � 1.
Given the similarity of the results obtained for the two
regulators mentioned above, we have considered here
only the Gaussian regulator with the set of parameters
Set II. We found that for H=G< 0:17 there is no triple
point. On the other hand, for H=G> 0:82 the triple point
and the end point merge and a phase where both the chiral
and diquark condensates are non-negligible appears. It is
interesting to remark that the value H=G � 0:82 is quite
close to the standard oneH=G � 0:75 used in most model
calculations. Thus, it would be important to sort out
possible phenomenological consequences of having quark
matter with a phase diagram in which the 3P and EP
coincide.

In this work we have neglected the strangeness degrees
of freedom. To go beyond the values of chemical potential
considered here and thus study, for example, the color
flavor locked phase in the context of models with non-
local interactions, their effect has to be included. Work in
this direction is in progress.
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