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Starting with a hidden local symmetry Lagrangian at the vector manifestation (VM) fixed point that
incorporates heavy-quark symmetry and matching the bare theory to QCD, we calculate the splitting of
chiral doublers of heavy-light mesons proposed by Nowak, Rho, and Zahed [M. A. Nowak, M. Rho,
and I. Zahed, Phys. Rev. D 48, 4370 (1993).] and Bardeen and Hill [W. A. Bardeen and C. T. Hill, Phys.
Rev. D 49, 409 (1994).]. We show, in the three-flavor chiral limit, that the splitting is directly
proportional to the light-quark condensate h �qqi and comes out to be � 1

3mN where mN is the nucleon
mass, implying that the splitting vanishes in the chiral limit at the chiral restoration point —
temperature Tc, density nc, or number of flavors Ncf. The result turns out to be surprisingly simple
with the vector (�) meson playing the crucial role in quantum corrections, pointing to the relevance of
theVM to QCD in the way chiral symmetry is manifested in hadronic matter. We also make predictions
on the hadronic decay processes of the excited heavy- (charm) light mesons ~D.
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I. INTRODUCTION

Based on the manifestation of chiral symmetry of the
linear sigma model, it was predicted a decade ago [1,2]
that the mass splitting �M between the M�0�; 1�� and
~M�0�; 1�� mesons where M denotes a heavy-light me-

son consisting of heavy quark Q and light antiquark �q
should be of the size of the constituent quark mass.
Recently, BABAR [3], CLEO [4], and sub-
sequently the Belle Collaborations [5] discovered new D
mesons with Q � c, c being charm quark, which most
likely have spin-party 0� and 1� and the mass difference
to the D�0�; 1�� is in fair agreement with the prediction
of [1,2]. In a recent article, Nowak, Rho, and Zahed [6]
proposed that the splitting of M and ~M mesons could
carry direct information on the property of chiral sym-
metry at some critical density or temperature at which the
symmetry is restored.1 In this paper we pick up this idea
and make a first step in consolidating the proposal of
Ref. [6]. In doing this, we shall take the reverse direction:
Instead of starting with a Lagrangian defined in the
chiral-symmetry broken phase and then driving the sys-
tem to the chiral-symmetry restoration point by an ex-
ternal disturbance, we will start from an assumed
structure of chiral symmetry at its restoration point and
then make a prediction as to what happens to the splitting
llows, unless otherwise specified, we will refer to
esons generically as D but the arguments should

o heavier-quark mesons. Numerical estimates will
ade solely for the (open charm) D mesons.
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in the broken phase. We find that the splitting is directly
proportional to the light-quark condensate and comes out
to be of the size of the constituent quark mass consistent
with the prediction of Refs. [1,2]. We shall associate this
result as giving a link between the assumed structure of
the chiral restoration point and the broken phase.

Our procedure is based on the result that the effective
field theory (EFT) implementing hidden local symmetry
(HLS) [7,8], when matched to QCD at a suitable matching
scale �M, represents QCD up to the matching scale [9,10]
and the ‘‘vector manifestation’’ (VM) [9,11] is realized in
the chiral limit at the chiral restoration point generically
denotedC� (critical temperature Tc [12] or density nc [13]
or number of flavors Ncf [11]). In the HLS theory consist-
ing of pions and vector mesons, the VM is characterized
by the existence of a fixed point called VM-fixed point at
which the HLS gauge coupling constant g and the vector-
meson mass mV vanish with the longitudinal components
of the vector mesons joining in the multiplet with the
pions and the pion decay constant f� ! 0. In this the-
ory—referred to in short as HLS/VM, the system flows
uniquely to the fixed point as one approaches C� from
below. The VM-fixed point implies that light vector-
meson masses vanish proportionally to the quark conden-
sate h �qqi—the order parameter of chiral symmetry—as
one approaches C�, supporting the scenario suggested in
Brown-Rho (BR) scaling [14]. We assume that the heavy-
light hadrons are described by a VM-fixed point theory at
C� and by introducing the simplest form of the VM
breaking terms, we compute the mass splitting of the
02-1  2004 The American Physical Society
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chiral doublers in matter-free space in terms of the quan-
tities that figure in the QCD correlators.2

Before going into our main theme, we should note that
the presence of light vector mesons near the VM-fixed
point makes certain predictions that are basically differ-
ent from the standard scenario in which the only relevant
(hadronic) degrees of freedom near the critical point are
the pions (and a light scalar). For instance, the HLS/VM
[9] predicts that the pion velocity approaches the speed of
light as T ! Tc [15] in stark contrast to the standard
picture where the pion velocity goes to zero [16].
Whether or not the light vectors do actually figure im-
portantly in the vicinity of the chiral phase transition
should ultimately be checked by lattice calculations. At
the moment, there is no clear evidence either for or
against the VM scenario: What is needed but not yet
available is measurement of dynamical correlation func-
tions. The forthcoming ‘‘maximum entropy method’’
(MEM) analysis [17] for excitations just below Tc might
shed light on this important issue. In this paper, we shall
simply assume that the chiral restoration is described by
HLS/VM and ask whether this assumption is consistent
with the splitting observed by BABAR, CLEO, and Belle.

This paper is organized as follows: In Sec. II, we write
down the EFT Lagrangian that defines our approach. In
Sec. III we perform the matching to determine the bare
parameters of the EFT Lagrangian. Section IV is devoted
to computing the quantum correction to the mass split-
ting and obtaining the renormalization-group equation
(RGE) for the parameter expressing the splitting. In
Sec. V, we give a semiquantitative estimate of the value
of the mass splitting. To see whether or not our scenario
based on the VM differs from that of the linear sigma
model, we study the consequences of our scenario on the
hadronic decay processes of the open charm ~D meson in
Sec. VI. We give a brief summary and discussions in
Sec. VII.

II. LAGRANGIAN

In this section we give our reasoning that leads to the
Lagrangian that defines our approach. Here we construct
the Lagrangian using the approximate chiral SU�3�L 

SU�3�R symmetry in the light-quark sector and the
heavy-quark symmetry in the heavy-quark sector. We
will start from the Lagrangian given at the VM fixed
point. We first describe how to construct the fixed-point
Lagrangian based on the VM. Then, we account for the
effect of spontaneous chiral-symmetry breaking by add-
ing a bare parameter for the mass splitting in the heavy
sector and including the deviation of the HLS parameters
2Introducing vector mesons in the light-quark sector of
heavy-light mesons was considered in Ref. [1] but without
the matching to QCD and hence without the VM-fixed point.
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from the values at the VM-fixed point. The explicit form
of the Lagrangian so constructed is shown in Sec. II C.

A. The fixed-point Lagrangian

To define the notations, we briefly review the model
based on the HLS [7,8]. The HLS model3 is based on the
Gglobal 
Hlocal symmetry, where G � SU�3�L 
 SU�3�R
is the chiral symmetry and H � SU�3�V is the HLS. The
basic quantities are the HLS gauge boson and two matrix
valued variables �L�x� and �R�x� which transform as

�L;R�x� ! �0L;R�x� � h�x� � �L;R�x� � g
y
L;R; (2.1)

where h�x� 2 Hlocal and gL;R 2 �SU�3�L;R�global. These
variables are parametrized as

�L;R�x� � ei��x�=F�e�i��x�=F�; (2.2)

where � � �aTa denotes the pseudoscalar Nambu-
Goldstone bosons associated with the spontaneous sym-
metry breaking ofGglobal chiral symmetry, and� � �aTa
denotes the Nambu-Goldstone bosons associated with the
spontaneous breaking of Hlocal. This � is eaten up by the
HLS gauge boson becoming massive through the Higgs
mechanism. F� and F� are the decay constants of the
associated particles. The phenomenologically important
parameter a is defined by the ratio

a �
F2
�

F2
�
: (2.3)

The covariant derivatives of �L;R are given by

D �L � @ �L � iV �L; D �R � @ �R � iV �R;

(2.4)

where V is the gauge field of Hlocal.
The basic quantities in constructing the Lagrangian are

the following two 1-forms:

"̂ k �
1

2i
�D �R � �

y
R �D �L � �

y
L�;

"̂? �
1

2i
�D �R � �

y
R �D �L � �

y
L�:

(2.5)

They transform as

"̂  
?;k ! h�x� � "̂ 

?;k � h
y�x�: (2.6)

When HLS is gauge fixed to the unitary gauge, � � 0, �L
and �R are related with each other by

�yL � �R � � � ei�=F� : (2.7)

This unitary gauge is not preserved under the Gglobal
3In the modern interpretation [18], implementing HLS in the
chiral Lagrangian can be associated with the ‘‘ultraviolet
completion’’ to the fundamental theory of strong interactions,
i.e., QCD. The matching to QCD at a matching scale is there-
fore a crucial ingredient of the approach.
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4We assign the right chirality to H R and the left chirality to
H L. Then the interaction term has the right and left projection
operators. Note that the insertion of �1 � %5� to kinetic and
mass terms does not cause any difference.

5Actually, near the chiral restoration point, the Wilsonian
matching between HLS and QCD dictates [9] that (in the chiral
limit) the HLS gauge coupling be proportional to the quark
condensate: g� h �qqi.
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transformation, which in general has the following form:

Gglobal : �! �0 � � � gyR � gL � �

� exp�i�0��; gR; gL�=F�� exp�i�0=F��

� exp�i�0=F�� exp��i�0��; gR; gL�=F��: (2.8)

The unwanted factor exp�i�0��; gR; gL�=F�� can be elim-
inated if we simultaneously perform the Hlocal gauge
transformation with

Hlocal : h � exp�i�0��; gR; gL�=F�� � h��; gR; gL�:

(2.9)

Then the system has a global symmetry G � SU�3�L 

SU�3�R under the following combined transformation:

G : �! h��; gR; gL� � � � g
y
R � gL � � � h��; gR; gL�:

(2.10)

Under this transformation the HLS gauge boson field V 
in the unitary gauge transforms as

G : V ! h��; gR; gL� � V � hy��; gR; gL�

�i@h��; gR; gL� � hy��; gR; gL�; (2.11)

which is nothing but the transformation property of
Weinberg’s ‘‘� meson’’ [19]. The two 1-forms "̂ 

k
and

"̂ ? transform as

"̂  
?;k ! h��; gR; gL� � "̂

 
?;k � h

y��; gR; gL�: (2.12)

Then, we can regard these 1-forms as the fields belonging
to the chiral representations �1; 8� � �8; 1� and �1; 8� �
�8; 1� under SU�3�L 
 SU�3�R.

Let us next consider theVM at the point at which chiral
symmetry is restored (in the chiral limit). At theVM at its
fixed point characterized by �g; a� � �0; 1�, the two 1-
forms become

"k �
1

2i
�@ �R � �

y
R � @ �L � �

y
L�;

"? �
1

2i
�@ �R � �

y
R � @ �L � �

y
L�:

(2.13)

Note that the above "k and "? do not contain the HLS
gauge field since the gauge coupling g vanishes at the
VM-fixed point. It is convenient to define the (L;R) 1-
forms:

"R � "k � "? �
1

i
@ �R � �

y
R;

"L � "k � "? �
1

i
@ �L � �

y
L;

(2.14)

which can be regarded as belonging to the chiral repre-
sentation �1; 8� and �8; 1�, respectively, transforming
under chiral SU�3�L 
 SU�3�R as

"R ! gR"R g
y
R; "L ! gL"L g

y
L: (2.15)

By using these 1-forms, the HLS Lagrangian at the VM-
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fixed point can be written as [9]

L �
light �

1
2F

2
�tr�"R "

 
R � �

1
2F

2
�tr�"L "

 
L �; (2.16)

where the � affixed to the Lagrangian denotes that it is a
fixed-point Lagrangian, and F� denotes the bare pion
decay constant. Note that the physical pion decay con-
stant f� vanishes at the VM-fixed point by the quadratic
divergence although the bare one is nonzero [9]. It should
be stressed that the above fixed-point Lagrangian is ap-
proached only as a limit of chiral-symmetry restoration
[9].

Next we consider the fixed-point Lagrangian of the
heavy-meson sector at the chiral restoration point iden-
tified with the VM-fixed point. Let us introduce two
heavy-meson fields H R and H L transforming under
chiral SU�3�R 
 SU�3�L as

H R ! H Rg
y
R; H L ! H Lg

y
L: (2.17)

By using these fields together with the light-meson 1-
forms " L;R, the fixed-point Lagrangian of the heavy
mesons is expressed as4

L�
heavy � �tr�H Riv @ H R� � tr�H Liv @ H L�

�m0tr�H RH R �H LH L�

�2ktr
�
H R"R % 

1 � %5

2
H R

�H L"L %
 1 � %5

2
H L

�
; (2.18)

where v is the velocity of the heavy meson, m0 repre-
sents the mass generated by the interaction between heavy
quark and the ‘‘pion cloud’’ surrounding the heavy quark,
and k is a real constant to be determined.

B. Effects of spontaneous chiral-symmetry breaking

Next we consider what happens in the broken phase of
chiral symmetry. In the real world at low temperature and
low density, chiral symmetry is spontaneously broken by
the nonvanishing quark condensate. In the scenario of
chiral-symmetry manifestation of the linear sigma
model, the effect of spontaneous chiral-symmetry break-
ing is expressed by the vacuum expectation value of the
scalar fields. In the VM, on the other hand, it is signaled
by the HLS Lagrangian departing from the VM-fixed
point: There the gauge coupling constant g � 05 and we
-3



6Here and in the rest of the paper, the heavy meson is denoted
by D with the open charm heavy meson in mind. However the
arguments (except for the numerical values) are generic for all
heavy mesons M.
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have the kinetic term of the HLS gauge bosons L�kin �

� 1
2 tr�� &� &�. The derivatives in the HLS 1-forms be-

come the covariant derivatives and then "L and "R are
covariantized:

@ ! D � @ � ig� ;

"R ! "̂R � "R � g� ;

"L ! "̂L � "L � g� :
(2.19)

These 1-forms transform as "̂R�L� ! h"̂R�L� hy with
h 2 �SU�3�V�local as shown in Eq. (2.6).

Although a � 1 at theVM-fixed point, generally a � 1
in the broken phase. We therefore expect to have a term of
the form 1

2 �a� 1�F2
�tr�"̂L "̂

 
R �. Thus the Lagrangian for

the light mesons takes the following form:

Llight �
a� 1

4
F2
�tr�"̂R "̂

 
R � "̂L "̂

 
L �

�
a� 1

2
F2
�tr�"̂R "̂

 
L � �L�kin: (2.20)

By using "̂k and "̂? given in Eq. (2.5), this Lagrangian
is rewritten as

L light � F2
�tr�"̂? "̂

 
?� � F

2
�tr�"̂k "̂

 
k
� �L�kin; (2.21)

which is nothing but the general HLS Lagrangian.
We next consider the spontaneous breaking of chiral

symmetry in the heavy-meson sector. One of the most
important effects of the symmetry breaking is to generate
the mass splitting between the odd-parity multiplet and
the even-parity multiplet [1]. This effect can be repre-
sented by the Lagrangian of the form:

L �SB � 1
2�Mtr�H LH R �H RH L�; (2.22)

where H R�L� transforms under the HLS as H R�L� !

H R�L�hy. Here �M is the bare parameter corresponding
to the mass splitting between the two multiplets. An
important point of our work is that the bare �M can be
determined by matching the EFT with QCD as we will
show in Sec. V. The matching actually shows that �M is
proportional to the quark condensate:

�M� h �qqi: (2.23)

C. Lagrangian in parity eigenfields

In order to compute the mass splitting between M and
~M, it is convenient to go to the corresponding fields in the

parity eigenstate, H (odd parity) and G (even parity) as
defined, e.g., in Ref. [6]:

H R �
1���
2

p �G� iH%5�; H L �
1���
2

p �G� iH%5�:

(2.24)

Here, the pseudoscalar meson P and the vector meson P�
 

are included in the H field as
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H �
1 � v %

 

2
�i%5P� % P�

 �; (2.25)

and the scalar meson Q� and the axial-vector meson Q 
are in G as

G �
1 � v %

 

2
�Q� � i% %5Q �: (2.26)

In terms of the H and G fields, the heavy-meson
Lagrangian off the VM-fixed point is of the form

L heavy � Lkin �Lint; (2.27)

with

Lkin � tr�H�iv D �MH� �H�

�tr�G�iv D �MG� �G�; (2.28)

Lint � k�tr�H% %5"̂
 
?

�H� � tr�Hv "̂
 
k

�H�

�tr�G% %5"̂
 
?

�G� � tr�Gv "̂
 
k

�G�

�itr�G"̂? %
 %5

�H� � itr�H"̂? %
 %5

�G�

�itr�G"̂k %
 �H� � itr�H"̂k %

 �G��; (2.29)

where the covariant derivatives acting on �H and �G are
defined as

D �H � �@ � ig� � �H; D �G � �@ � ig� � �G:

(2.30)

In the above expression,MH andMG denote the masses of
the parity-odd multiplet H and the parity-even multiplet
G, respectively. They are related to m0 and �M as

MH � �m0 �
1
2�M; MG � �m0 �

1
2�M: (2.31)

The mass splitting between G and H is therefore given by

MG �MH � �M: (2.32)
III. MATCHING TO THE OPERATOR PRODUCT
EXPANSION

The bare parameter �Mbare which carries information
on QCD should be determined by matching the EFT
correlators to QCD ones. We are concerned with the
pseudoscalar correlator GP and the scalar correlator GS.
In the EFT sector, the correlators at the matching scale
are of the form6

GP�Q2� �
F2
DM

4
D

M2
D �Q2 ; GS�Q2� �

F2
~D
M4

~D

M2
~D
�Q2 ; (3.1)

where FD (F ~D) denotes the D-meson ( ~D-meson) decay
-4
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constant and the spacelike momentum Q2 � �MD �
�M�

2 with �M being the matching scale. We note that
the heavy-quark limitMD ! 1 should be taken with �M
kept fixed since �M must be smaller than the chiral-
symmetry breaking scale characterized by �� � 4�f�.
Then, Q2 should be regarded as Q2 ’ M2

D in the present
framework based on the chiral and heavy-quark symme-
tries. If we ignore the difference between FD and F ~D
which can be justified by the QCD sum rule analysis
[20], then we get

�SP�Q2� � GS�Q2� �GP�Q2� ’
3F2

DM
3
D

M2
D �Q2 �MD: (3.2)

In the QCD sector, the correlatorsGS andGP are given by
the operator product expansion (OPE) as [21]

GS�Q2� � G�Q2�jpert �
m2
H

m2
H �Q2




�
�mHh �qqi �

"s
12�

hG &G &i
�
;

GP�Q2� � G�Q2�jpert �
m2
H

m2
H �Q2




�
mHh �qqi �

"s
12�

hG &G &i
�
;

(3.3)

where mH is the heavy-quark mass. To the accuracy we
are aiming at, the OPE can be truncated at O�1=Q2�. The
explicit expression for the perturbative contribution
G�Q2�jpert is available in the literature but we do not
need it since it drops out in the difference. From these
correlators, the �SP becomes

�SP�Q2� � �
2m3

H

m2
H �Q2 h �qqi: (3.4)

Equating Eq. (3.2) to Eq. (3.4) and neglecting the differ-
ence �mH �MD�, we obtain the following matching con-
dition:

3F2
D�M ’ �2h �qqi: (3.5)

Thus at the matching scale, the splitting is

�Mbare ’ �
2

3

h �qqi

F2
D

: (3.6)

As announced, the bare splitting is indeed proportional to
the light-quark condensate. The quantum corrections do
not change the dependence on the quark condensate [see
Sec. IV].
M∆g gL RH H
_

FIG. 1. Diagram contributing to the mass difference.
IV. QUANTUM CORRECTIONS AND RGE

Given the bare Lagrangian whose parameters are fixed
at the matching scale �M, the next step is to decimate the
theory á la Wilson to the scale at which �M is measured.
074002
This amounts to calculating quantum corrections to the
mass difference �M in the framework of the present EFT.

This calculation turns out to be surprisingly simple for
a � 1. If one sets a � 1 which is the approximation we
are adopting here, "L does not mix with "R in the light
sector, and then "L couples to only H L and "R to only
H R. As a result H L�R� cannot connect to H R�L� by the
exchange of "L or "R. Only the � loop links between the
fields with different chiralities as shown in Fig. 1.We have
verified this approximation to be reliable since correc-
tions to the result with a � 1 come only at higher-loop
orders (see next paragraph). The diagram shown in Fig. 1
contributes to the two-point function as

%LRjdiv � �
1

2
�MC2�Nf�

g2

2�2 �1 � 2k� k2� ln�; (4.1)

where C2�Nf� is the second Casimir defined by �Ta�ij

�Ta�jl � C2�Nf�,il with i, j, and l denoting the flavor
indices of the light quarks. This divergence is renormal-
ized by the bare contribution of the form %LR;bare �
1
2 �Mbare. Thus the RGE takes the form

 
d�M
d 

� C2�Nf�
g2

2�2 �1 � 2k� k2��M: (4.2)

For an approximate estimate that we are interested in at
this point, it seems reasonable to ignore the scale depen-
dence in g and k. Then the solution is simple:

�M � �Mbare 
 Cquantum; (4.3)

where we define Cquantum by

Cquantum � exp
�
�C2�Nf�

g2

2�2 �1 � 2k� k2� ln
�

 

�
: (4.4)

This shows unequivocally that the mass splitting is dic-
tated by the ‘‘bare’’ splitting �Mbare proportional to h �qqi
corrected by the quantum effect Cquantum.

Next we lift the condition a � 1 made in the above
analysis. For this purpose, we compute the quantum
effects to the masses of 0� �P� and 0� �Q�� D-mesons
by calculating the one-loop corrections to the two-point
functions of P andQ� denoted by %PP and %Q�Q� (for the
explicit calculation, see the Appendix). We find that
-5
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σ
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_

σ
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Q*

Q
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(e)

(b)

π

π

Q*
_

_
Q* Q*

_

ρ

Q*
Q*

(c)

Q* 
_

ρ

Q*
P*
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FIG. 3. Diagrams contributing to the Q�-Q� two-point func-
tion.
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amazingly, the resultant form of the quantum correction
exactly agrees with the previous one which was obtained
by taking a � 1. To arrive at this result, it is essential that
P (or P�

 ) be the chiral partner of Q� (or Q ) as follows:
The loop diagrams shown in Figs. 2 and 3 have power and
logarithmic divergences. However all the divergences of
the diagrams with pion loop are exactly canceled among
themselves since the internal (or external) particles are
chiral partners. In a similar way, the exact cancellation
takes place in the diagrams with � loop. Finally, the
logarithmic divergence from the � loop does contribute
to the mass difference. This shows that the effect of
spontaneous chiral-symmetry breaking introduced as
the deviation of a from 1 does not get transferred to the
heavy sector. Thus even in the case of a � 1, the bare
mass splitting is enhanced by only the vector-meson loop,
with the pions not figuring in the quantum corrections at
least at one-loop order. Solving the RGE (A11), which is
exactly the same as Eq. (4.2), we obtain exactly the same
mass splitting as the one given in Eq. (4.3).

V. MASS SPLITTING

In this section we make a numerical estimation of the
mass splitting for the chiral doublers in the open charm
system. (Here D denotes the open charm meson.) Since
we are considering the chiral limit, strictly speaking, a
precise comparison with experiments is not feasible par-
ticularly if the light quark is strange, so what we obtain
should be considered as semiquantitative at best. This
caveat should be kept in mind in what follows.

Determining the bare mass splitting from the matching
condition (3.6) requires the quark condensate at that scale
and the D-meson decay constant FD. For the quark con-
densate, we shall use the so-called ‘‘standard value’’ [22]
h �qqi � ��225 � 25 MeV�3 at 1 GeV. Extrapolated to the
scale �M � 1:1 GeV we shall adopt here, this gives

h �qqi�M
� ��228 � 25 MeV�3: (5.1)

Unfortunately this value is not firmly established, there
being no consensus on it. The values found in the litera-
ture vary widely, even by a factor of �2, some higher [23]
and some lower [24]. (We will study the dependence on
the values of the mass splitting of those of the quark
condensate later.) Here we take the standard value as a
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FIG. 2. Diagrams contributing to the P-P two-point function.
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median.7 As for theD-meson decay constant, we take as a
typical value FD � 0:205 � 0:020 GeV obtained from
the QCD sum rule analysis [20]. Plugging the above input
values into Eq. (3.6) we obtain

�Mbare ’ 0:19 GeV: (5.2)

By taking  � m� � 771 MeV, � � �M � 1:1 GeV,
and g � g�m�� � 6:27 determined via the Wilsonian
matching for ��M;�QCD� � �1:1; 0:4� GeV in Ref. [9]
and k ’ 0:59 extracted from the D� ! D� decay (see
Sec. VI A) in Eq. (4.4), we find for Nf � 3

Cquantum � 1:6: (5.3)

This is a sizable quantum correction involving only the
vector meson. If one takes into account the uncertainties
involved in the condensate and the decay constant, the
quantum-corrected splitting �M comes out to be

�M � 0:31 � 0:12 GeV: (5.4)

Despite the uncertainty involved, (5.4) is a pleasing result.
It shows that the splitting is indeed of the size of the
constituent quark mass of a chiral quark 3 �mp=3 �

310 MeV and is directly proportional to the quark
condensate.

We emphasized in the above analysis that there is a
great deal of uncertainty on the value of the quark con-
densate at the relevant matching scale �M. Here we list a
few examples to show what sort of uncertainty we are
faced with. We took h �qqi1 GeV � ��225 � 25 MeV�3 in
the above analysis as a standard value. For comparison,
we shall take two other values quoted in Ref. [23] (with-
7It was shown in Ref. [24] that there is a strong Nf depen-
dence on the quark condensate and the value of the quark
condensate for QCD with three massless quarks is smaller
than the value used in estimating the value of the mass splitting
in Sec. V. In the present analysis, we extract the value of the
coupling constant k from the experiment. To be consistent, we
need to use the quark condensate together with other parame-
ters involved determined at the same scale from experimental
and/or lattice data. This corresponds to the standard value of
the condensate we are using here.

-6



CHIRAL DOUBLING OF HEAVY-LIGHT HADRONS AND . . . PHYSICAL REVIEW D 70 074002
out making any judgments on their validity). Consider
therefore

h �qqi1 GeV � ��225 � 25 MeV�3;

h �qqi2 GeV �

�
��273 � 19 MeV�3;
��316 � 24 MeV�3:

(5.5)

Brought by RGE to the scale we are working at, �M �
1:1 GeV, and substituted into our formula for �M, we get
the corresponding quantum-corrected splitting

�M �

8<
:

0:31 � 0:12 GeV;
0:43 � 0:12 GeV;
0:67 � 0:20 GeV:

(5.6)

This result clearly shows that the splitting cannot be
pinned down unless one has a confirmed quark
condensate.

We should stress several other caveats associated with
(5.4). Apart from the sensitivity to the quark condensate,
if one naively plugs in the matching scale �M into the
RGE solution, one finds the splitting is not insensitive as it
should be to the scale change. This is neither surprising
nor too disturbing since our RGE solution is obtained
with the scale dependence in both g and k ignored. In
order to eliminate this dependence on the matching scale,
it will be necessary to solve the RGE with the full scale
dependence taken into account, which is at the moment
beyond our scope here. The best we can do within the
scheme adopted is to pick the optimal �M determined
phenomenologically from elsewhere [9] and this is what
we have done above.
VI. HADRONIC DECAY MODES

In this section we turn to the hadronic decay processes
of the ~D mesons and make predictions of our scenario
based on the VM of chiral symmetry. Here we adopt the
notations Du;d and ~Du;d for the heavy ground-state me-
sons and heavy excited mesons composed of c �u and c �d,
and Ds and ~Ds for those composed of c�s. The spin-parity
quantum numbers will be explicitly written as Du;d�0��.
For the heavy vector meson, we follow the notation
adopted by the Particle Data Group (PDG) [25] and write
D�
u;d�1

�� and D�
s�1

��. Unless otherwise noted, the masses
of the ground-state heavy mesons will be denoted as MD
and those of the excited states as M ~D.

A. D� ! D� �

Before studying the decay processes of the excited
heavy mesons, we first calculate the decay width of
D�
u;d ! Du;d � � so as to determine the coupling con-

stant k. The decay widths of the �0 and the �� modes are
given by
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4�D�
u;d�1

�� ! Du;d�0
�� � �0� �

�p3
�

24�M2
D�

�
MQ

k
F�

	
2
;

4�D�
u;d�1

�� ! Du;d�0
�� � ��� �

�p3
�

12�M2
D�

�
MQ

k
F�

	
2
;

(6.1)

where �p� � j ~p�j denotes the three-momentum of the
pion in the rest frame of the decaying particle D�

u;d�1
��,

andMQ the ‘‘heavy-quark mass’’ introduced for correctly
normalizing the heavy-meson field. In the present analy-
sis we use the following reduced mass for definiteness:

MQ � 1
4�MD�0�� � 3MD��1��� � 1974 MeV: (6.2)

The total width is not determined forD�
u�1

��, although
the branching fractions for both the �0 and the �� decay
modes are known experimentally. For D�

d�1
�� meson, on

the other hand, the total width is also determined. Using
the values listed in the PDG table [25], the partial decay
widths are estimated to be

4�D�
d�1

�� ! Dd�0
�� � �0� � 29:5 � 6:8 keV;

4�D�
d�1

�� ! Du�0
�� � ��� � 65 � 15 keV:

(6.3)

Here the �0 mode will be used as an input to fix k. From
the experimental masses MD�

u�1
�� � 2010:1 MeV,

MDd�0�� � 1869:4 MeV, and M�0 � 134:9766 MeV to-
gether with the value of the pion decay constant F� �
92:42 � 0:26 MeV, we obtain

k � 0:59 � 0:07: (6.4)

Note that the error is mainly from that of the D�
d�1

�� !
Dd�0�� � �0 decay width.

In the following analysis, we shall use the central value
of k to make predictions for the decay widths of ~D
mesons. Each prediction includes at least about 20% error
from the value of k. For the masses of excited D
mesons, we use M ~Ds�0��

� 2317 MeV determined by
BABAR [3], M ~Ds�1��

� 2460 MeV by CLEO [4], and
�M ~Du;d�0��

;M ~Du;d�1��
� � �2308; 2427� MeV by Belle [5].

Table I summarizes the input parameters used in the
present analysis.

B. ~D ! D� �

For the systems of c �u and c �d, the following decay
processes of the ~Du;d meson into the Du;d meson and
one-pion are allowed by the spin and parity:

~Du;d�0�� ! Du;d�0�� � �;
~Du;d�1�� ! D�

u;d�1
�� � �:

(6.5)

Their partial decay widths are given by
-7



TABLE I. The values of input parameters. We use the values of M ~Ds�0��
[3], M ~Ds�1��

[4], and
M ~Du;d�0� ;1�� [5]. The D mesons in the ground state, light mesons and decay widths 4�5;�� are
the values listed by the PDG table [25]. As for the parameters associated with the �0-2
mixing, we use the values given in Refs. [26,27].

Du;d meson masses M ~Du;d�1�� M ~Du;d�0�� MD�
u;d�1

�� MDu;d�0��

(MeV) 2427 2308 2010 1865
Ds meson masses M ~Ds�1

�� M ~Ds�0
�� MD�

s �1
�� MDs�0��

(MeV) 2460 2317 2112 1969
Light-meson masses M� M� M2 M5

(MeV) 138.039 771.1 547.30 1019.456
�0-2 mixing A11 A21 %�02 �MeV�2 K�02

0.71 �0:52 �4:25 
 103 �1:06 
 10�2

5-� mixing 45!���� (MeV) 4�!���� (MeV)
3:11 
 10�4 149.2

The Belle Collaboration [29–31] gives M ~Du;d�1��
�2427�

26�20�17 MeV and M ~Du;d�0��
� 2308 � 17 � 15 � 28 MeV.
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4� ~Du;d ! Du;d � �
�� �

�p�
4�

�
k
F�

MQ

M ~D
E�

	
2
;

4� ~Du;d ! Du;d � �0� �
�p�
8�

�
k
F�

MQ

M ~D
E�

	
2
;

(6.6)

where E� is the energy of the pion, and the reduced mass
MQ is defined in Eq. (6.2). With the input parameters
given in Table I, these decay widths come out to be

4� ~Du;d�0�� ! Du;d�0�� � �0� � 73:7 MeV;

4� ~Du;d�0
�� ! Du;d�0

�� � ��� � 147 MeV;

4� ~Du;d�1
�� ! D�

u;d�1
�� � �0� � 57:2 MeV;

4� ~Du;d�1�� ! D�
u;d�1

�� � ��� � 114 MeV:

(6.7)

For the system of c�s there are two decay processes of
the ~Ds meson into the Ds meson and one-pion:

~D s�0
�� ! Ds�0�� � �0; ~Ds�1�� ! D�

s�1
�� � �0:

(6.8)

These processes violate the isospin invariance and hence
are suppressed. In the present analysis we assume as in
Ref. [28] that the isospin violation occurs dominantly
through the �0-2 mixing. In other words, we assume
that the ~Ds meson decays into the Ds meson and the
virtual 2 meson which mixes with the �0 through the
�0-2 mixing. Then, the decay width is given by

4� ~Ds ! Ds � �0� �
�p�
2�

�
k
F�

MQ

M ~D
E���02

	
2
; (6.9)

where ��02 denotes the �0-2 mixing and takes the fol-
lowing form [26,27]:

��02 � �
A11A21

M2
2 �M

2
�0

�%�02 � K�02M
2
�0� (6.10)
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with %�02 and K�02 being the mass-type and kinetic-
type �0-2 mixing, respectively. A11 and A21 are the
components of the 2-20 mixing matrix in the two-mix-
ing-angle scheme [26]. By using the values listed in
Table I, the �0-2 mixing is estimated as

��02 � �5:32 
 10�3: (6.11)

From this value, the decay widths are predicted as

4� ~Ds�0
�� ! Ds�0

�� � �0� � 4:17 keV;

4� ~Ds�1
�� ! D�

s�1
�� � �0� � 3:75 keV:

(6.12)
C. ~D�1�� ! ~D�0�� � �

With the masses of ~Du;d�1�� and ~Du;d�0�� listed in
Table I, the intramultiplet decay ~Du;d�1�� ! ~Du;d�0�� �
� is not allowed kinematically. Since the experimental
errors for the masses are large,8 this decay mode may still
turn out to be possible. To show how large the possible
decay width is, we use M ~Du;d�0��

� 2272 MeV and
M ~Du;d�1��

� 2464 MeV together with the formulas

4� ~Du;d�1
�� ! ~Du;d�0

�� � �0� �
�p3
�

24�

�
MQ

M ~D�1��

k
F�

	
2
;

4� ~Du;d�1
�� ! ~Du;d�0

�� � ��� �
�p3
�

12�

� MQ

M ~D�1��

k
F�

	
2
:

(6.13)

The resultant decay widths are given by

4� ~Du;d�1
�� ! ~Du;d�0

�� � �0� � 0:729 MeV;

4� ~Du;d�1
�� ! ~Du;d�0

�� � ��� � 1:46 MeV:
(6.14)

8
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TABLE II. The predicted values of the hadronic decay processes.

Decaying particle Process Width (MeV)

~Du;d 0� ! 0� � �0 7:37 
 101

0� ! 0� � �� 1:47 
 102

0� ! 1� � ���0 1:54 
 10�5

1� ! 1� � �0 5:72 
 101

1� ! 1� � �� 1:14 
 102

1� ! 0� � ���0 3:14 
 10�1

1� ! 1� � ���0 1:18 
 10�2

~Ds 0� ! 0� � �0 4:17 
 10�3

1� ! 0� � �0 1:87 
 10�6

1� ! 1� � �0 3:75 
 10�3

1� ! 0� � ���� (through 5! �0 ! ����) 2:13 
 10�7
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They are smaller by the order of 10�2 than other one-pion
modes (see Table II). This is caused by the suppression
from the phase space.

With the present input values of ~D masses, the process
~Ds�1�� ! ~Ds�0�� � �0 is kinematically allowed.
Similarly to the ~Ds ! Ds � �0 decay, we assume that
this decay is dominated by the process through the �0-2
mixing. Then, the decay width is given by

4� ~Ds�1
�� ! ~Ds�0

�� � �0� �
�p3
�

6�

�
k
F�

MQ

M ~D�1��
��02

	
2

� 1:87 
 10�3 keV: (6.15)

This is very tiny due to the isospin violation and the
phase-space suppression.

D. ~D ! D� 2�

There are several processes such as ~D! D� ���� to
which the light scalar mesons could give important con-
tributions. In models based on the standard scenario of
the chiral-symmetry restoration in the light-quark sector,
the scalar-meson coupling to the heavy-quark system is
related to the pion coupling, enabling one to compute the
decay width. In our model based on theVM of the chiral-
symmetry restoration, on the other hand, it is the cou-
pling constant of the vector meson to the heavy system
that is related to the pion coupling constant: Here cou-
pling of the scalar meson is not directly connected, at
least in the present framework which contains no explicit
scalar fields,9 to do that of the pion. So, while we cannot
make firm predictions to processes for which scalar me-
sons might contribute, we can make definite predictions
on certain decay widths for which scalar mesons do not
figure. If one ignores isospin violation, the two-pion decay
9Scalar excitations can of course be generated at a high loop
level to assure unitarity or with the account of QCD trace
anomaly but we shall not attempt this extension in this paper.
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processes ~Du;d ! Du;d � �
��0 receive no contributions

from scalar mesons. We give predictions for these pro-
cesses below. As for the two-pion decay modes of the ~Ds
meson, the scalar mesons could give a contribution. To
have an idea, we shall also compute the vector-meson
contribution to this process.

First, consider ~Du;d�0
�� ! D�

u;d�1
�� � ���0. In this

process, there are two contributions:

~Du;d�0
�� ! D�

u;d�1
�� � ���0 �direct�;

D�
u;d�1

�� � ��� ! ���0� �� mediation�:
(6.16)

The decay width is given by

4� ~Du;d�0
�� ! D�

u;d�1
�� � ���0�

�
M2
Q

64�2��3M3
~D

k2

F4
�

Z
dm2

D�



Z
dm2

��jF ~DDj
2

�
m2
�� � 4M2

�

�
1

4M2
D

�m2
�� �M2

~D
�M2

D

�2M2
� � 2m2

D��
2

�
; (6.17)

with m2
D� � �pD � p��2 and m2

�� � �p1� � p2��
2. The

form factor F ~DD is taken to be of the form

F ~DD � 1 �
M2
�

m2
�� �M2

�
: (6.18)

The first term of the form factor comes from the direct
contribution and the second from the � mediation. Here
we have neglected the � meson width in the propagator,
since the maximum value of m�� is about 300 MeV with
the input values listed in Table I. We can see that the form
factor F ~DD vanishes in the limit of m�� ! 0, which is a
-9
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consequence of chiral symmetry.10 We note that
m��jmax ’ 300 MeV makes this decay width strongly
suppressed due to the large cancellation between the
direct and the �-mediated contributions. Furthermore,
since 300 MeV is close to the two-pion threshold, addi-
tional suppression comes from the phase space. Because
of these two types of suppressions the predicted decay
width is predicted to be very small, of the order of
10�2 keV.11

Next we consider the process ~Du;d�1
�� ! D�

u;d�1
�� �

��. Again there are two contributions, direct and �
mediated:

~Du;d�1�� ! D�
u;d�1

�� � ���0 �direct�;
D�
u;d�1

�� � ��� ! ���0� �� mediation�:
(6.19)

The resultant decay width is given by

4� ~Du;d�1
�� ! D�

u;d�1
�� � ���0�

�
M2
Q

96�2��3M3
~D

k2

F4
�

Z
dm2

D�



Z
dm2

��jF ~DDj
2

�
m2
�� � 4M2

�

�
1

4M2
~D

�m2
�� �M2

~D
�M2

D

�2M2
� � 2m2

D��
2

�
: (6.20)

Similarly to 4� ~Du;d�0
�� ! D�

u;d�1
�� � ���0�, the width

is again suppressed due to the large cancellation between
the direct and the �-mediated contributions. The suppres-
sion from the phase space, on the other hand, is not so
large sincem��jmax ’ 420 MeV is not so close to the two-
pion threshold. The resulting decay width is

4� ~Du;d�1�� ! D�
u;d�1

�� � ���0� � 11:8 keV: (6.21)

The decay width of the process

~Du;d�1�� ! Du;d�0�� � ���0 �direct�;
Du;d�0�� � ��� ! ���0� �� mediation�;

(6.22)

is given by
10It should be stressed that this cancellation occurs because
the vector meson is included consistently with chiral symme-
try, and that it is not a specific feature of the VM. The chiral-
symmetry restoration based on the VM implies that the cou-
pling constant of the vector meson to the heavy system is equal
to that of the pion.

11Note that the prediction on the decay width is very sensitive
to the precise value of the mass of the ~D�0�� meson.
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4� ~Du;d�1
�� ! Du;d�0

�� � ���0�

�
M2
Q

192�2��3M3
~D

k2

F4
�

Z
dm2

D�



Z
dm2

��jF ~DDj
2

�
m2
�� � 4M2

�

�
1

4M2
~D

�m2
�� �M2

~D
�M2

D

�2M2
� � 2m2

D��
2

�
: (6.23)

In the present case, m��jmax ’ 560 MeV is much larger
than the two-pion threshold and hence the width becomes
larger than other two-pion processes. We find

4� ~Du;d�1�� ! Du;d�0�� � ���0� � 314 keV: (6.24)

Finally we turn to the decay ~Ds�1�� ! Ds�0�� �
���� which as mentioned could receive direct contri-
butions from scalar excitations. Since we have not incor-
porated scalar degrees of freedom in the theory, we might
not be able to make a reliable estimate even if we were to
go to higher-loop orders. Just to have an idea as to how
important the vector-meson contribution can be, we cal-
culate the decay width in which the ~Ds meson decays into
two pions through the 5 meson. This isospin violating
decay can occur through the direct 5-�-� coupling and
the 5-� mixing:

~Ds�1
�� ! Ds�0

�� � �5! ����� �direct�;
Ds�0�� � �5! �0 ! ����� �5-� mixing�:

(6.25)

Since the main contribution to the5! �� is expected to
be given by the 5-� mixing, we shall neglect the direct
5-�-�-coupling contribution in the following. Then the
decay width is given by

4� ~Ds�1�� ! Ds�0�� � �����

�
M2
Q

192�2��3M3
~D

k2

F4
�

Z
dm2

D�



Z
dm2

��

� M2
�%5�

�m2
�� �M2

5��m
2
�� �M2

��

�
2




�
m2
�� � 4M2

� �
1

4M2
~D

�m2
�� �M2

~D
�M2

D

�2M2
� � 2m2

D��
2

�
; (6.26)

where %5� denotes the 5-� mixing given by

%2
5� � �M2

5 �M2
��

2

�
�p����
�p��5�

	
3M2

5

M2
�

4�5! �����

4��! �����
;

(6.27)
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with �p��X� being the three-momentum of pion in the rest
frame of the decaying particle X � 5;�. Using the val-
ues listed in Table I, we have

%5� � 530 �MeV�2 (6.28)

so the decay width is predicted to be

4
�

~Ds�1
�� ! Ds�0

�� � ����

�
� 2:13 
 10�4 keV:

(6.29)

The 5-� mixing is caused by the isospin violation, and
this process is highly suppressed. We conclude that should
a measured width come out to be substantially greater
than what we found here, it would mean that either scalars
must figure importantly or theVM is invalid in its present
form.

E. Summary of hadronic decay modes

Our predictions of the decay widths are summarized
in Table II. It should be stressed that the values obtained in
this paper on the one-pion reflect only that the ~Dmeson is
the chiral partner of theDmeson. They are not specific to
the VM. We therefore expect that as far as the one-pion
processes are concerned, there will be no essential dif-
ferences between our predictions and those in Ref. [28].
However, in the two-pion decay processes in which the
scalar meson does not mediate, our scenario based on the
VM can make definite predictions which might be dis-
tinguished from that based on the standard picture.
Especially for ~Du;d�1�� ! Du;d�0�� � ���0, we obtain
a larger width than for other two-pion modes. Although
the predicted width is still small, perhaps too small to be
detected experimentally, it is important because of the
following reason. In our approach, since the excited
heavy-meson multiplets of ~D�0�� and ~D�1�� denoted by
G are the chiral partners to the ground-state multiplets
denoted by H, the G- �H-� coupling is the same as the
H- �H-� coupling [see the fifth and first terms of
Eq. (2.29)]. Thus the width which is dependent on the
strength of k is a good probe to test our scenario. The
common k is also essential for the ratio of the widths of
the two-pion modes to those of the one-pion modes,
which has no k dependence. These are therefore definite
predictions of our scenario. From the values listed in
Table II, we obtain

4� ~Du;d�1
�� ! Du;d�0

�� � ���0�

4�had�
��2�

� 1:83 
 10�3;

(6.30)

where 4�had�
��2� is the sum of the widths of the one-pion and

two-pion modes of the decaying ~Du;d�1��.
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VII. SUMMARY AND DISCUSSIONS

Let us summarize what we have accomplished in this
paper. In Ref. [6], it was suggested that the chiral dou-
bling of the heavy-light mesons could be exploited as a
litmus indicator for chiral-symmetry restoration by mea-
suring the splitting at high temperature or density. If the
splitting is indeed tied to the quark condensate which is
an order parameter of chiral symmetry, one could observe
the splitting disappearing at the critical point C�. In this
paper, we go the other way around. We start by the
observation that at the critical point, the VM is realized
[9,11] so that hadron masses vanish in a manner predicted
by BR scaling [14]. By introducing the deviation from the
VM-fixed point in terms of chiral-symmetry breaking in
the heavy-light system and matching the EFT so con-
structed to QCD at the matching scale, the bare mass
splitting of the chiral doublers is determined in terms of
the quark condensate and other QCD parameters of the
system. The physical splitting is then determined by doing
renormalization-group evolution of the parameters with
the bare Lagrangian matched to QCD. It is found to
reproduce semiquantitatively—modulo the spin assign-
ments—the observed splitting which is related to the
constituent quark mass. This result suggests rather
strongly that identifying the chiral restoration as the
VM-fixed point and the chiral doubling as a signal of
spontaneous breaking of chiral symmetry are mutually
consistent.

One of the significant results of the analysis presented
in this paper is that the vector meson plays an important
role in accounting for the splitting in theD and ~D mesons:
The bare mass splitting determined through the matching
is estimated as about 190 MeV, too small to explain the
observed mass difference. However by including the
quantum corrections through the hadronic loop, the
bare mass splitting is enhanced by �60%, where only
the loop effect of the vector meson contributes to the
running of the mass splitting. The contributions from the
pion loop are completely canceled among themselves.
This implies that the observed mass difference cannot
be understood if one takes only the pion as the relevant
degree of freedom and that we need other degrees of
freedom. In the VM, it is nothing but the vector meson.
The situation here is much like that in the calculation of
pion velocity at the chiral restoration point: The pion
velocity is zero if the pion is the only effective degree
of freedom but approaches 1 if the vector meson with the
VM is included [15].

Moreover, the result is independent of the deviation of a
from the fixed-point value 1 at one-loop level. In other
words, the resultant form of the quantum correction at the
one-loop level is completely independent of a. This im-
plies that the deviation of a from 1 which reflects the
effect of spontaneous chiral-symmetry breaking in the
light-quark sector does not get transmitted to the heavy
-11
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sector. This strongly suggests that the deviation from a �
1 involves physics that is not as primary as the nonvan-
ishing gauge coupling g � 0 in the description of the
broken phase: The deviation seems to be a ‘‘secondary’’
phenomenon, which is generated from g � 0 as expected
in Refs. [32,33].12 In fact, even when we start from the
HLS theory with g � 0 and a � 1, the physical quantities
obtained through the Wilsonian matching are in good
agreement with experimental results as discussed in [9].
This observation supports the above argument. It is in-
triguing to note that a� 1 is realized in the structure of
both nonexotic and exotic baryons such as the nucleon
electromagnetic form factor [35] and the Skyrmion de-
scription of the 6� pentaquark [36].

In Sec. VI we studied the hadronic decay processes of
the ~D mesons and showed the predictions of our scenario.
The predictions on the one-pion processes are the con-
sequences of the fact that the ~D meson is the chiral
partner to the D meson, and there are no essential differ-
ences between our predictions and those in Ref. [28]. On
the other hand, in the two-pion decay processes in which
the scalar meson does not mediate, our scenario gives
definite predictions, since the vector-meson coupling to
the heavy system is equivalent to the pion coupling due to
the VM. Although the predicted values of widths are
small, we hope that they are clarified in future
experiments.

Several comments are in order:
In this paper, we introduced spontaneous chiral-

symmetry breaking in the heavy sector by �Mbare only.
Although we took the common coefficient k for all the
interaction terms in Eq. (2.29), each interaction term
generally has its own coefficient different from others.
However, we expect that the effect of these interaction
terms is suppressed by the factor 1=� and as a result the
12Although a � 1 is the fixed point of the RGE at the one-loo
renormalization part once we allow the deviation of the gauge cou
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contribution to �M is small since the dimension of them
is higher than that of the mass term.

It is interesting that the bare splitting depends on the
heavy-meson decay constant. This suggests that the split-
ting may show heavy-quark flavor dependence. This could
be checked with experiments once a systematic heavy-
quark expansion (which is not done here) is carried out. It
is only in this sense that (part of) the splitting can be
identified with the light-quark constituent mass discussed
in Refs. [1,2].
APPENDIX: EXPLICIT CALCULATION OF
QUANTUM CORRECTION

In this appendix, we compute the quantum effects on
the masses of 0� �P� and 0� �Q�� heavy-light M mesons
by calculating the one-loop corrections to the two-point
functions of P and Q� denoted by %PP and %Q�Q� . Here
we adopt the following regularization method to identify
the power divergences: We first perform the integration
over the temporal component of the integration momen-
tum, and then in the remaining integration over three-
momentum we make the replacements given by

Z � d3 ~k

�2��3
1
�k2
!

�

2
���
2

p
�2
;

Z � d3 ~k

�2��3
1
�k
!

�2

8�2 ;

Z � d3 ~k

�2��3
!

�3

12
���
2

p
�2
: (A1)

Here we use the ’t Hooft-Feynman gauge for fixing the
gauge of the HLS.

The diagrams contributing to %PP are shown in Fig. 2.
In the limit of zero external momentum, the divergent
parts of these contributions are given by
%�a���P�
PP jdiv �

2k2

F2
�

�
�
MH

�4��2
��2 � 2M� ln�� �

M2
H

4�2

�
����
2

p �MH ln�
	�
;

%�b���P��
PP jdiv �

2k2

F2
�

�
�3

24
���
2

p
�2

�
MH

�4��2
�2 �

M2
H

4�2

�
����
2

p �MH ln�
	�
; %�c���P�

PP jdiv �
g2

2�2 �1 � k�2
�

����
2

p �MH ln�
	
;

%�d���Q�
PP jdiv �

2k2

F2
�

�
�3

24
���
2

p
�2

�
MG

�4��2
��2 � 2M2

� ln�� �
M2
G �M2

�

4�2

�
����
2

p �MG ln�
	�
;

%�e���Q��
PP jdiv �

2k2

F2
�

�
�
MG

�4��2
�2 �

M2
G

4�2

�
����
2

p �MG ln�
	�
; %�f���Q�

PP jdiv �
3g2

2�2 k
2

�
����
2

p �MG ln�
	
:

(A2)

The particles that figure in the loop are indicated by the suffix in square brackets; e.g., ��P�� indicates that � and P�

enter in the internal lines. Here and henceforth, we suppress, for notational simplification, the group factor C2�Nf�
defined as �Ta�ij�Ta�jl � C2�Nf�,il.

The relevant diagrams contributing to %Q�Q� are shown in Fig. 3. The divergent parts of these contribu-
tions in the low-energy limit are expressed as
p level, the deviation of a from 1 is generated by the finite
pling g from 0 [34].
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%�a���Q��
Q�Q� jdiv �

2k2

F2
�

�
�
MG

�4��2
��2 � 2M2

� ln�� �
M2
G

4�2

�
����
2

p �MG ln�
	�
;

%�b���Q�
Q�Q� jdiv �

2k2

F2
�

�
�3

24
���
2

p
�2

�
MG

�4��2
�2 �

M2
G

4�2

�
����
2

p �MG ln�
	�
; %�c���Q��

Q�Q� jdiv �
g2

2�2 �1 � k�2
�

����
2

p �MG ln�
	
;

%�d���P��
Q�Q� jdiv �

2k2

F2
�

�
�3

24
���
2

p
�2

�
MH

�4��2
��2 � 2M2

� ln�� �
M2
H �M2

�

4�2

�
����
2

p �MH ln�
	�
;

%�e���P�
Q�Q� jdiv �

2k2

F2
�

�
�
MH

�4��2
�2 �

M2
H

4�2

�
����
2

p �MH ln�
	�
; %�f���P��

Q�Q� jdiv �
3g2

2�2 k
2

�
����
2

p �MH ln�
	
:

(A3)
Now, let us compute the difference of %Q�Q� � %PP.
It is easy to show that %�b�e�

PP jdiv exactly cancels with
%�b�e�
Q�Q� jdiv. From the explicit forms given in Eqs. (A2) and

(A3), we have

%�b���Q�
Q�Q� � %�e���Q��

PP jdiv �
2k2

F2
�

�3

24
���
2

p
�2
;

%�e���P�
Q�Q� � %�b���P��

PP jdiv � �
2k2

F2
�

�3

24
���
2

p
�2
:

(A4)

Note that the logarithmic, linear, and quadratic divergen-
ces in %Q�Q� are exactly canceled by those in %PP. This
cancellation simply reflects that the external particles are
chiral partners. This immediately leads to

%�b�e�
Q�Q� � %�b�e�

PP jdiv � 0: (A5)

The cubic divergence in %Q�Q� is exactly canceled by that
in %PP, reflecting the fact that the internal particles are
chiral partners to each other.

In a similar way, a partial cancellation takes place
between %�a�

Q�Q� and %�d�
PP as well as between %�d�

Q�Q� and

%�a�
PP:

%�a���Q��
Q�Q� � %�d���Q�

PP jdiv �
2k2

F2
�

�
�

�3

24
���
2

p
�2

�
M2
�

4�2

�
����
2

p �MG ln�
	�
;

%�d���P��
Q�Q� � %�a���P�

PP jdiv �
2k2

F2
�

�
�3

24
���
2

p
�2

�
M2
�

4�2

�
����
2

p �MH ln�
	�
:

(A6)

These lead to

%�a�d�
Q�Q� � %�a�d�

PP jdiv � �g2 k
2

2�2 �MG �MH� ln�; (A7)

where we used M2
� � g2F2

�. The remaining contributions
074002
sum to

%�c�f�
Q�Q� � %�c�f�

PP jdiv � �g2 1 � 2k� 2k2

2�2


�MG �MH� ln�: (A8)

By summing up the contributions in Eqs. (A5), (A7),
and (A8), we obtain the divergent part of the correction to
the mass difference:

%Q�Q� � %PPjdiv � �C2�Nf�
g2

2�2 �1 � 2k� k2�


�MG �MH� ln�; (A9)

where we reinstated the group factor C2�Nf�. The loga-
rithmic divergence in the above expression is renormal-
ized by the bare contribution given by

%Q�Q� � %PPjbare � �Mbare: (A10)

Thus the RGE for the mass difference �M � MG �MH
has the following form:

 
d�M
d 

� C2�Nf�
g2

2�2 �1 � 2k� k2��M: (A11)

We should stress that this RGE is exactly the same as the
one in Eq. (4.2) obtained by setting a � 1, i.e., F� � F�.
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