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Quark-mass dependence of Tc in QCD: Working up from m � 0 or down from m � 1?

Adrian Dumitru,* Dirk Röder,† and Jörg Ruppert‡

Institut für Theoretische Physik, J.W. Goethe Universität, Postfach 11 19 32, D-60054 Frankfurt am Main, Germany
(Received 11 November 2003; revised manuscript received 27 July 2004; published 11 October 2004)
*Electronic
†Electronic
‡Electronic

1550-7998=20
We analyze the dependence of the QCD transition temperature on the quark (or pion) mass. We find
that a linear sigma model, which links the transition to chiral symmetry restoration, predicts a much
stronger dependence of Tc onm� than seen in present lattice data form� * 0:4 GeV. On the other hand,
working down from m� � 1, an effective Lagrangian for the Polyakov loop requires only small
explicit symmetry breaking, b1 � exp��m��, to describe Tc�m�� in the above mass range. Physically,
this is a consequence of the flat potential (large correlation length) for the Polyakov loop in the three-
color pure gauge theory at Tc. We quantitatively estimate the end point of the line of first-order
deconfining phase transitions: m� ’ 4:2

����
�

p
’ 1:8 GeV and Tc ’ 240 MeV for three flavors and three

colors.
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I. INTRODUCTION

Lattice QCD calculations at finite temperature and
with dynamical fermions are presently performed for
quark masses exceeding their physical values; for a recent
review see [1]. To date, pion masses as low as 	400 MeV
are feasible [2], about 3 times the physical pion mass.
When comparing effective theories to first-principles nu-
merical data obtained on the lattice it is therefore impor-
tant to fix the parameters (coupling constants, vacuum
expectation values, and so on) such as to match the values
of physical observables, e.g., of m�, to those of the lattice
calculations. For example, the QCD equation of state in
the confined phase appears to be described reasonably
well by that of a hadron resonance gas model, after
extrapolating the physical spectrum of hadrons and reso-
nances to that from the lattice [3]. Thus, lattice data on the
dependence of various observables on the quark (or pion)
mass constrain effective theories for the QCD phase
transition at finite temperature and could provide relevant
information on the driving degrees of freedom.

In this paper, we analyze the dependence of the chiral
symmetry restoration temperature on the vacuum mass of
the pion using a linear sigma model in Sec. III. The linear
sigma model provides an effective Lagrangian approach
to low-energy QCD near the chiral limit [4,5]. It incor-
porates the global flavor symmetry, assuming that
‘‘color’’ can be integrated out. For example, it allows
one to discuss the order of the Nf � 2
 1 chiral phase
transition as a function of the quark masses [4–7].

Instead of working up from zero quark mass, one could
start with the quark masses taken to infinity, that is, with
a pure gauge theory. Then, one can discuss the deconfine-
ment transition at finite temperature within an effective
Lagrangian for the Polyakov loop with global Z�Nc�
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symmetry [8–15] (Nc is the number of colors). For finite
pion mass, the symmetry is broken explicitly, and the
phase transition (or crossover) temperature is shifted,
relative to the pure gauge theory where pions are infinitely
heavy. In Sec. IV, we determine the end point of the line of
first-order transitions for three colors, and extract the
magnitude of the explicit Z�3� breaking from lattice
data on Tc.
II. PION MASS AND DECAY CONSTANT IN
VACUUM

The Lagrangian of QCD with the quark-mass matrices
set to zero is invariant under independent rotations of the
Nf right-handed and left-handed quark fields. It exhibits
a global SU�Nf�R � SU�Nf�L symmetry, leading to
2�N2

f � 1� conserved currents. Those are N2
f � 1 vector

currents, V�i � �q���iq=2, and N2
f � 1 axial currents,

A�i � �q���5�iq=2, with �i the generators of SU�Nf�,
normalized according to tr�i�j � 2�ij. The SU�Nf�V
subgroup of vector transformations is preserved in the
vacuum [16], while the SU�Nf�A is broken spontaneously
by a nonvanishing chiral condensate h �qRqLi � 0, leading
to nonconservation of the axial currents.

In reality, of course, even SU�Nf�V is broken explicitly
by the nonvanishing quark-mass matrix. Nevertheless,
since at least mu and md are very small in the physical
limit, the SU�2�V symmetry is almost exact in QCD. The
small explicit breaking of SU�2�V is responsible for the
nonvanishing pion mass, as given by the Gell-Mann,
Oakes, Renner relation

m2
� �

1

f2�
mqh �qqi: (1)

We neglect isospin breaking effects here and so assume
that mu � md � mq. h �qqi denotes the sum of the vacuum
expectation values of the operators �uRuL and �dRdL, and
their complex conjugates. The proportionality constant f�
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ADRIAN DUMITRU, DIRK RÖDER, AND JÖRG RUPPERT PHYSICAL REVIEW D 70 074001
is the pion decay constant. It should be noted that (1) is
valid only at tree level, and that loop effects induce an
implicit dependence of both f� and h �qqi onmq. For small
mq, this dependence can be computed in chiral perturba-
tion theory [17]. For example, at next-to-leading order,

m2
� � M2

�
1�

1

2

�
M
4�F

�
2
log

�2
3

M2

�
; (2)

f� � F
�
1


�
M
4�F

�
2
log

�2
4

M2

�
; (3)

where M and F are the couplings of the effective theory
(equivalent to h �qqi and mq), and �3 and �4 are two
renormalization-group invariant scales. These relations
link the behavior of f� to that of m�, the mass of a
physical state. (In what follows, we use m� to vary the
strength of explicit symmetry breaking rather than using
directly the scale dependent quark masses.)

More accurate results than Eqs. (2) and (3) can perhaps
be obtained by computing quark propagators for various
quark masses on the lattice. Reference [18] analyzed the
propagators for gauge field configurations generated with
the standard Wilson gauge action (‘‘quenched QCD’’),
using overlap fermions with exact chiral symmetry.
They obtained a parametrization of both m� and f� in
terms of the massmq of u and d quarks (see Sec. 2 in [18])
which allows us to express f� as a function of m�. Their
data cover an interval of 0:4 & m� & 1 GeV, and
0:15 &

���
2

p
f� & 0:22 GeV.
III. LINEAR SIGMA MODEL AT FINITE
TEMPERATURE

In this section, we discuss chiral symmetry restoration
at finite temperature, and, in particular, the dependence
of the symmetry restoration temperature on the pion
mass. For simplicity, we restrict ourselves here to the
two-flavor case. Our emphasis is not on the order of the
transition as the strange quark mass is varied but rather
on how the temperature at which the transition occurs (be
it either a true phase transition or just a crossover) de-
pends on the pion mass. Such dependence arises from two
effects: first, of course, due to explicit symmetry break-
ing occurring when m� > 0. Second, due to the ‘‘indi-
rect’’ dependence of spontaneous symmetry breaking,
i.e., of the condensate h �qqi respectively, f�, on the pion
mass (through pion loops, see previous section). The tree-
level potential of the linear sigma model with SU�2�V �
SU�2�A � O�4� symmetry is given by

V��; ~�� �
1

2
m2�2 


�
4
�4 �H�; (4)

with �a � ��; ~��. For m2 < 0 the O�4� symmetry of the
vacuum state is broken spontaneously to O�3�, leading to
a nonvanishing scalar condensate h�i � f�. The explicit
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symmetry breaking term �H provides a mass to the
pions. At tree level, the masses are given by

m2
� � m2 
 3��2; m2

� � m2 
 ��2: (5)

Below, we employ the Hartree approximation to inves-
tigate the dependence of the transition temperature on the
pion mass. This approximation scheme is known to ex-
hibit problems in the chiral limit in that the Goldstone
theorem is violated and the phase transition is incorrectly
predicted to be of first order (for Nf � 2). However, here
we are interested only in the model with explicit symme-
try breaking, where the theory exhibits a crossover.
Specifically, we consider the region of pion masses cov-
ered by the lattice data in [2], m� * 0:4 GeV.

In [19] it was shown that such truncated nonperturba-
tive resummation schemes can be renormalized with
local counter terms obtained in the vacuum (see also
[20] for ��4 theory). These ideas were applied in [21]
to theories with global symmetries, and a Bogoliubov-
Parasiuk-Hepp-Zimmerman–like renormalization
scheme was introduced for the O�4� linear sigma model
in Hartree approximation without explicit symmetry
breaking. The scheme can be straightforwardly extended
to the case H > 0; see Eqs. (9)–(11) below. Those renor-
malized gap equations coincide with those introduced
first by Lenaghan and Rischke in Ref. [22].

In this renormalization scheme a mass renormalization
scale � is introduced and the couplings then depend on
that scale (cf., e.g., [22]). However, choosing

�2 � exp
�
m2
��lnm

2
� � 1� �m2

��lnm
2
� � 1�

m2
� �m2

�

�
; (6)

the four-point coupling ���� � �tree retains its tree-level
(classical) value [22]. In other words, this renormalization
prescription evolves the renormalization scale � in such a
way as to keep � constant.

Explicitly, this leads to the following expressions for
the couplings [22]:

� �
1

2

m2
� �m2

�

f2�
; H � f��m

2
� � 2�f2��;

m2 � �
1

2
�m2

� � 3m2
�� � 6�Q��m��;

(7)

where

Q��M� �
1

�4��2

�
M2 ln

M2

�2 �M
2 
�2

�
: (8)

These equations determine the couplings in vacuum in
terms of m�, f�, and m�. The dependence of f� on m� is
taken from the data of Ref. [18] (cf. their Figs. 1 and 2 and
the corresponding fits therein), as mentioned above.
Roughly, for m�:0:4 ! 1 GeV, f� increases by about
50%, leading to an increase of the explicit symmetry
breaking term H by a factor of 10. We also require the
-2
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dependence of m� on m�, which we take from a recent
computation with standard Wilson fermions [23]. Those
authors find thatm� is essentially a linear function ofm2

�.
We checked how our results in Fig. 1 depend on this
assumption by using, alternatively, a linear dependence
m� � m� 
 const, with m� � 0:6 GeV for m� �
0:14 GeV. We found essentially the same dependence of
Tc on m�.

At finite temperature, we use the effective potential for
composite operators [24] to determine the masses and the
scalar condensate in the Hartree approximation. We fol-
low the derivation outlined in [22,25]. The resulting gap
equations are

H � h�i�m2
� � 2�h�i2�; (9)

m2
� � m2 
 3�fh�i2 
 �QT�m�� 
Q��m���


�QT�m�� 
Q��m���g; (10)

m2
� � m2 
 �fh�i2 
 �QT�m�� 
Q��m���


5�QT�m�� 
Q��m���g; (11)

where the finite-temperature contribution of the tadpole
diagram is given by

QT�m� �
Z d3k

�2��3
1

%k�m�
1

exp�%k�m�=T� � 1
;

%k�m� �
�����������������
~k2 
m2

q
:

(12)

Here,m�,m�, and h�i denote the effective masses and the
scalar condensate at finite temperature, respectively. The
self-consistent solution of the above gap equations for a
given vacuum pion mass determines the temperature de-
pendence of the scalar condensate as the order parameter
of chiral symmetry restoration. For explicitly broken
chiral symmetry, H > 0, the transition in this approach
is a crossover. We define the crossover temperature Tc by
the peak of @h�i=@T.
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FIG. 1 (color online). Left panel: The crossover temperature Tc
linear sigma model with O�4� symmetry in comparison to lattice da
set by the zero-temperature string tension in the pure gauge theory,
function of temperature for various pion masses.
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The dependence of Tc on m� is depicted in Fig. 1 (left
panel), where we have also shown lattice results obtained
with two and three degenerate quark flavors, respectively
[2] (the Nf � 2 data with standard action, the Nf � 3
data with improved p4 action). Driven by the increase of
both f� andH withm�, the linear sigma model predicts a
rather rapid rise of Tc with the pion mass, as compared to
the data which is nearly flat on the scale of the figure.
While lattice data indicate a rather weak dependence of
Tc on the quark mass (see also Ref. [26]), models with
spontaneous symmetry breaking in the vacuum naturally
predict a rather steep rise of Tc with the vacuum expec-
tation value h�ivac � f�, which itself increases with the
quark (or pion) mass. Our findings here are in qualitative
agreement with those from Ref. [27] who employed non-
perturbative flow equations to compute the effective po-
tential for two-flavor QCD within the linear sigma
model. They also find a steeper slope of Tc�m�� than
indicated by the lattice, even though their analysis ap-
pears to predict a somewhat weaker increase of f� with
m� than the data of [18], which we employ here.

Figure 1 also shows the temperature dependence of the
� condensate (right panel). With m� a linear function of
m2
� [23], the width of the crossover is approximately

independent of the pion mass for 0:4 & m� & 1 GeV,
while we found considerable broadening when m� is
linear in m� (not shown). The chiral susceptibility
@h�i=@T at its maximum is 	0:25, i.e., the crossover is
in fact quite broad for the range of m� considered. Since
this is at variance with lattice data on QCD thermody-
namics (pressure and energy density as functions of tem-
perature, see, e.g., the review in [1]), one might argue that
the crossover is in fact not driven by the order parameter
field but by heavier degrees of freedom [3,17]. Such de-
grees of freedom could reduce the pion-mass dependence
of the transition substantially: using three-loop chiral
perturbation theory (i.e., the nonlinear model), Gerber
and Leutwyler find [17] that Tc increases rapidly from
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	190 MeV in the chiral limit (using their set of cou-
plings) to 	240 MeV for physical pion mass. However,
when heavy states are included (in the dilute gas approxi-
mation), then Tc increases less rapidly, from 	170 MeV
in the chiral limit to 	190 MeV for physical pion mass.

Hence, perhaps the transition is not primarily driven by
an order parameter field and infrared dynamics. Another
possible approach is discussed in the next section.

IV. EFFECTIVE LAGRANGIAN FOR THE
POLYAKOV LOOP AT FINITE TEMPERATURE

In the limit mq ! 1 the quarks decouple and drop out
of the theory. The (gauge-invariant) order parameter for
the deconfining phase transition in such a pure gauge
theory with Nc colors is the Polyakov loop

‘ �
1

Nc
trP exp

�
ig

Z 1=T

0
A0� ~x; +�d+

�
: (13)

A0 denotes the temporal component of the gauge field in
the fundamental representation, g is the gauge coupling,
and path ordering is with respect to imaginary time +. Its
expectation value, ‘0�T�, vanishes when T < Tc and is
nonzero above Tc. Indeed, by asymptotic freedom, ‘0 ! 1
as T ! 1. The simplest guess for a potential for the
Polyakov loop is

V�‘� � �
b2
2
j‘j2 


1

4
�j‘j2�2 �Nc � 2�: (14)

The Polyakov loop model [9–12] is a mean-field theory
for ‘. In a mean-field analysis all coupling constants are
taken as constant with temperature, except for the mass
term, �b2j‘j2. About the transition, condensation of ‘
is driven by changing the sign of the two-point coupling:
b2 > 0 above Tc [b2�T� ! 1 for T ! 1], and <0
below Tc.

For two colors, (14) is a mean-field theory for a second
order deconfining transition [28]. The ‘ field is real, and
so the potential defines a mass: �m‘=T�2 � �1=Zs�@

2V=
@‘2, where Zs is the wave function normalization constant
for ‘ [29]. The mass is measured from the two-point
function of Polyakov loops in coordinate space, / �1=r��
exp��m‘r� as r! 1.

For three colors, ‘ is a complex valued field, and a term
cubic in ‘ appears in V�‘�,

V�‘� � �
b2
2
j‘j2 �

b3
3

‘3 
 ‘�3

2



1

4
�j‘j2�2 �Nc � 3�:

(15)

At very high temperature, the favored vacuum is pertur-
bative, with ‘0 	 1, times Z�3� rotations. We then choose
b3 > 0 so that in the Z�3� model, there is always one
vacuum with a real, positive expectation value for ‘0.
This produces a first-order deconfining transition, where
‘0 jumps from 0 at T�

c to ‘c � 2b3=3 at T

c [10,11]; Tc is

given by b2�Tc� � �2b23=9. The ‘ field has two masses,
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from its real (m‘) and imaginary ( ~m‘) parts. At T

c ,�����

Zs
p

m‘=T � ‘c. The mass for the imaginary part of ‘ is�����
Zs

p
~m‘�T�=T /

��������
b3‘

p
; at T


c , ~m‘=m‘ � 3, twice the value
expected from a perturbative analysis of the loop-loop
correlation function, obtained by expanding ‘ from
Eq. (13) to order A3

0 [30]. This mass ratio receives correc-
tions if five-point and six-point couplings are included in
the effective Lagrangian [30] but those are not crucial for
the present discussion.We note that, in principle, all of the
above coupling constants could be determined on the
lattice. The lattice regularization requires nonperturba-
tive renormalization of the Polyakov loop in order to
define the proper continuum limit of ‘ [31,32].

Within the above mean-field theory, dynamical quarks
act like a ‘‘background magnetic field’’ which breaks the
Z�3� symmetry explicitly, and a term linear in ‘ also
appears in V�‘� [33–36]:

V�‘� � �b1
‘
 ‘�

2
�
b2
2
j‘j2 �

b3
3

‘3 
 ‘�3

2



1

4
�j‘j2�2

�Nc � 3; m� <1�:
(16)

Hence, as m� decreases from infinity, b1�m�� turns on.
The normalization of b2�T� for T ! 1 is such that ‘0 !
1, i.e., b2�T � 1� � 1� b1 � b3.

We first consider the case where b1 is very small and
take the term linear in ‘ as a perturbation; then the
weakly first-order phase transition of the pure gauge
theory persists (in what follows, the critical temperature
in the pure gauge theory with b1 � 0 will be denoted T�

c ).
The critical temperature is determined from

b2�Tc� � �
2

9
b23

�
1


27

2

b1
b33

�

O�b21�: (17)

The order parameter jumps at Tc, from

‘0�T
�
c � �

9

2

b1
b23


O�b21�; (18)

to

‘0�T

c � �

2

3
b3 �

9

2

b1
b23


O�b21�: (19)

Note that numerically ‘0�T�
c � could be much larger than

b1 if the phase transition in the pure gauge theory is weak
and so the correlation length . � 1=m‘ near Tc is large
(i.e., if b3 is small), as indeed appears to be the case for
Nc � 3 colors [37]. In other words, it could be that on the
lattice ‘ quickly develops a nonvanishing expectation
value at T�

c already for rather large quark (or pion)
masses, but this does not automatically imply a large
explicit symmetry breaking (see also Fig. 2).

From Eq. (17) we can estimate the shift of Tc induced
by letting m� <1. Writing the argument of b2 in that
equation as T�

c 
 Tc and expanding to first order in Tc
we obtain
-4
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FIG. 2 (color online). Left panel: The expectation value for the Polyakov loop, ‘0�b2�T��, for various values of the explicit
symmetry breaking coupling, b1. All curves terminate at ‘0 � 1 , T � 1. Right panel: b1 as a function of m�, obtained by
matching to three flavor lattice data for Tc�m��. The solid line corresponds to an exponential increase of b1 with decreasingm�; see
text. The dashed horizontal line displays the end point of the line of first-order phase transitions in terms of b1; the intersection with
the b1�m�� curve then gives the corresponding pion mass.
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Tc
T�
c

� �3
b1
b3

�
T
@b2
@T

�
�1

T�T�c


O�b21�

� �
2

3
‘0�T�

c �b3

�
T
@b2
@T

�
�1

T�T�c


O�b21�: (20)

The shift in Tc with decreasing pion mass is proportional
to the expectation value of the Polyakov loop just below
Tc; all other factors on the right-hand side of Eq. (20) do
not depend on b1 or m�. Numerical values for b3 and for
b2�T� were obtained in [10,12,38] by fitting the effective
potential (15) to the pressure and energy density of the
pure gauge theory with three colors: those are b3 	 0:9
and b23=�T

�
c@b2�T

�
c �=@T� 	 1, to within 10%. We therefore

expect that numerically Tc=T
�
c is roughly equal to

‘0�T�
c �.

Equations (18) and (19) seem to indicate that the dis-
continuity of ‘0 at Tc vanishes, i.e., that the phase tran-
sition turns into a crossover, at a pion mass such that
b1�m�� � 2b33=27. However, we cannot really extend
our O�b1� estimates to the end point of the line of first-
order transitions because it applies, near Tc, only if
�4b2�Tc� � b23, which translates into b1 � b33=108; see
Eq. (17). To find the end point of the line of first-order
transitions we solve numerically for the global minimum
of (16) as a function of b2, for given b1; see Fig. 2 (left
panel). The numerical solution is ‘‘exact’’ and does not
assume that b1 is small. We employ b3 � 0:9 to properly
account for the small latent heat of the pure gauge theory
[10–12,30,38]. Also, for b1 � 0, this b3 corresponds to
‘c � 0:6, which is close to the expectation value of the
renormalized (fundamental) loop for the Nc � 3 pure
gauge theory [31,32].

Clearly, for very small b1 the order parameter ‘0 jumps
at some bc2 � b2�Tc�, i.e., the first-order phase transition
persists. [The abscissa is normalized by jb2�T�

c �j �
2b23=9.] We find that the discontinuity vanishes at bc1 �
0:026�1�, so there is no true phase transition for b1 > bc1.
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Nevertheless, we define bc2 even in the crossover regime
via the peak of @‘0�b2�=@b2. The shift of bc2 with increas-
ing b1 can now be converted into the shift of Tc itself by
expanding about T�

c :

Tc
T�
c

� bc2

�
T
@b2
@T

�
�1

T�T�c

; (21)

as already discussed above. We also note that from Fig. 2
(left panel), the susceptibility for the Polyakov loop at its
maximum is @‘0=@b2 ’ 3:5, 2, and 1.5 for b1 � 0:06, 0.1,
and 0.126, respectively. That is, the crossover is rather
sharp for the values of b1 shown in the figure.

Explicit breaking of the Z�3� symmetry of the gauge
theory has previously been studied in [34–36] and has
been identified as the essential factor in determining the
end point of deconfining phase transitions. Moreover,
while the term �b1 quickly washes out the transition,
those studies showed that along the line of first-order
transitions the shift of Tc (or, alternatively, of the critical
coupling /c) is moderate, which agrees with our findings.
However, the numerical values for the critical ‘‘external
field’’ at the end point obtained in [35,36] from actual
Monte Carlo simulations cannot be compared directly to
our estimate for bc1 because we work here with the renor-
malized (continuum-limit) loop, not the bare loop.

Reference [2] studied finite-temperature QCD with
Nf � 3 flavors and various quark masses on the lattice
(with improved p4 action) and determined the critical (or
crossover) temperature as a function of the pion mass.
Using Eq. (21) we can match our Tc=T�

c to the data from
[2] to determine b1�m��. In other words, we extract the
function b1�m�� required to match the effective
Lagrangian (16) to Tc�m�� found on the lattice. The result
is shown in Fig. 2 on the right. (Again, the pion mass is
normalized to the zero-temperature string tension in the
pure gauge theory,

����
�

p
’ 0:425 GeV.)
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FIG. 3 (color online). Schematic phase diagram in the tem-
perature vs quark-mass plane [7]. C is the chiral critical point,
D the deconfining critical point.
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Evidently, the 	33% reduction of Tc from m� � 1
(pure gauge theory) to m�=

����
�

p
	 1 requires only small

explicit breaking of the Z�3� symmetry for the Polyakov
loop ‘: we find that b1 < 0:15 even for the smallest pion
masses available on the lattice. This is due to the rather
weak first-order phase transition of the pure gauge theory
with Nc � 3 colors, reflected by the strong dip of the
string tension in the confined phase near T�

c and of the
Polyakov loop screening massm‘ in the deconfined phase
near T


c [37]; cf. also the discussion in [9–11,30].
Moreover, b1�m�� appears to follow the expected be-

havior � exp��m��. The exponential fit shown by the
solid line corresponds to b1�m�� � a exp��bm�=

����
�

p
�,

with a � 0:19 and b � 0:47. Surprisingly, by naive ex-
trapolation one obtains a pretty small explicit symmetry
breaking even in the chiral limit, b1 	 0:2.

Finally, the end point of the line of first-order transi-
tions at bc1 � 0:026 (indicated by the dashed horizontal
line) intersects the curve b1�m�� at m�=

����
�

p
	 4:2. For

heavier pions the theory exhibits a first-order deconfining
phase transition, which then turns into a crossover for
m� & 4:2

����
�

p
	 1:8 GeV. According to our estimate, the

end point of the line of first-order transitions occurs at
Tc=T

�
c 	 12%, which is slightly less than a previous

(qualitative) estimate of 26% from Ref. [14].
Of course, so far our analysis is restricted to pion

masses m�=
����
�

p
* 1. On the other hand, one might cross

a chiral critical point for some pion massm�=
����
�

p
< 1 [7].

Attempting a fit with the model (16) beyond that point
would then lead to deviations from b1 � exp��m��.

V. DISCUSSION

Three-color QCD exhibits a (weakly) first-order de-
confining phase transition at a temperature Tc=

����
�

p
	

0:63 in the limit of infinitely heavy quarks (
����
�

p
	

0:425 GeV denotes the string tension at T � 0 in this
theory). Near Tc, the screening mass for the fundamental
Polyakov loop ‘ drops substantially [37], and so one
might hope to capture the physics of the phase transition
using some effective Lagrangian for ‘ [8–15].

For finite quark masses, a term linear in ‘ appears
which breaks the Z�3� center symmetry explicitly. This
reduces the deconfinement temperature, with Tc=T

�
c on

the order of the expectation value of the Polyakov loop at
T�
c ; cf. Eq. (20).
At some point then, the line of first-order deconfine-

ment phase transitions ends [7,34–36,39]; see Fig. 3. We
have provided a quantitative estimate of this point, m� ’
4:2

����
�

p
’ 1:8 GeV and Tc ’ 240 MeV for Nf � 3 degen-

erate flavors, by matching our effective Lagrangian for
the Polyakov loop to lattice data on Tc�m�� [2]. Assuming
that b1 / Nf [36] shifts ‘‘D’’ tom� ’ 1:4 GeV forNf � 2
and to 0.8 GeV for Nf � 1.

Going to even smaller quark (or pion) masses leaves a
crossover between the low-temperature and high-
074001
temperature regimes of QCD. The dependence of the
crossover temperature Tc on the pion mass appears to
be well described by a small explicit breaking of the
Z�3� center symmetry, b1 � exp��m��, down to
m�=

����
�

p
’ 1, which is the smallest pion mass covered by

the lattice data of Ref. [2]. On the other hand, a linear
sigma model leads to a stronger dependence of Tc on m�
than seen in the data.

In turn, in the chiral limit, and for Nf � 3 flavors, one
expects a first-order chiral phase transition [4,7,39]. The
linear sigma model should then be an appropriate effec-
tive Lagrangian for low-energy QCD [4–7]. The first-
order chiral phase transition ends in a critical point ‘‘C’’
if either the mass of the strange quark or those of all three
quark flavors increase. Given that the explicit symmetry
breaking term for the Polyakov loop remains rather small
when extrapolated tom� ! 0, that is b1 ! 0:2, we specu-
late that C might be rather close to the chiral limit.
Indeed, recent lattice estimates for Nf � 3 place C at
m� ’ 290 MeV [40] for standard staggered fermion ac-
tion and Nt � 4 lattices; improved (p4) actions predict
values as low as m� ’ 67 MeV [41].

Of course, the question arises why, for pion masses
down to ’ 400 MeV, the QCD crossover is described
rather naturally by a slight ‘‘perturbation’’ of the m� �
1 limit, in the form of an explicit breaking of the global
Z�Nc� symmetry for the Polyakov loop. Physically, the
reason is the flatness of the potential for ‘ in the pure
gauge theory at Tc, see, e.g., the figures in [10,38], which
causes the sharp drop of the screening mass for ‘ near T


c
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[37]. This is natural, given that finite-temperature expec-
tation values of Polyakov loops at Nc � 3 are close to
those at Nc � 1 [32], where the potential at Tc becomes
entirely flat [32,42]. Hence, a rather small ‘‘tilt’’ of the
potential (due to explicit symmetry breaking) quickly
washes out the deconfining phase transition of the pure
gauge theory and causes a significant shift Tc of the
crossover temperature already for small b1. If so, then for
Nc ! 1, at the Gross-Witten point, the end point D
should be located at b1 � 0; the discontinuity for the
Polyakov loop at Tc, which in a mean-field model for
the pure gauge theory is 1=2 at Nc � 1 [32,42] then
vanishes for arbitrarily small explicit symmetry break-
074001
ing. This has previously been noted by Green and Karsch
[34] within a mean-field model. If confirmed by lattice
Monte Carlo studies, we might improve our understand-
ing of the degrees of freedom driving the QCD crossover
for pion masses above the chiral critical point C.
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