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Assuming the same form of all mass matrices as motivated by quark-lepton symmetry, we discuss
conditions under which bilarge mixing in the lepton sector can be obtained with a minimal amount of
fine-tuning requirements for possible models. We assume hierarchical mass matrices, dominated by the
3-3 element, with off-diagonal elements much smaller than the larger neighboring diagonal element.
Characteristic features of this scenario are strong hierarchy in masses of right-handed neutrinos, and
comparable contributions of both lighter right-handed neutrinos to the resulting left-handed neutrino
Majorana mass matrix. Because of obvious quark-lepton symmetry, this approach can be embedded into
grand unified theories. The mass of the lightest neutrino does not depend on details of a model in the
leading order. The right-handed neutrino scale can be identified with the GUT scale in which case the
mass of the lightest neutrino is given as �m2

top=MGUT�jU�1j
2.
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I. INTRODUCTION

A global analysis of neutrino oscillation data [1,2]
gives the best fit to the neutrino mass-squared differences:
	m2

sol � m2
�2
�m2

�1
’ 6:9 � 10�5 eV2 and 	m2

atm �

m2
�3
�m2

�1
’ 2:6 � 10�3 eV2, which, in the case m�1

�

m�2
; m�3

, can be interpreted as

m�2
’

�������������
	m2

sol

q
’ 8:3 � 10�3 eV; (1)

m�3
’

��������������
	m2

atm

q
’ 5:1 � 10�2 eV: (2)

The 3
 ranges for 1-2 and 2-3 mixing angles are

0:23 	 sin2�sol 	 0:39; (3)

0:31 	 sin2�atm 	 0:72; (4)

and the 3
 upper bound on the 1-3 mixing angle is

sin 2�13 	 0:054: (5)

In grand unified theories [GUTs], both quarks and
leptons originate from the same multiplets of unified
gauge symmetry. For example, one generation of standard
model quarks and leptons together with the right-handed
neutrino naturally fits into the 16-dimensional represen-
tation of SO(10). Therefore, one would like to relate the
results above to what we observe in the quark sector
and understand them as a consequence of assumptions,
the same for both quarks and leptons, we make about the
structure of mass matrices. However, we know that
mixing angles in the quark sector are small. The
Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM is
close to the identity matrix with off-diagonal elements
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dominated by small Cabibbo angle (1-2 mixing). On the
other hand, as we see from the results above, mixing
in the lepton sector is large. The 2-3 mixing is close to
maximal, 1-2 mixing is large, somewhat smaller than
maximal, and 1-3 mixing is small, close to zero. There is
no obvious quark-lepton symmetry in this pattern which
makes the unified understanding of mass matrices quite
challenging.

It has been realized that the lepton mixing can be
enhanced by the seesaw mechanism even if the Dirac
Yukawa couplings of leptons have a similar structure to
that in the quark sector [3,4].

In a democratic approach (where all elements of mass
matrices are equal in the leading order), it has been shown
that a bilarge mixing can be obtained while assuming the
same form of all Yukawa matrices and the right-handed
neutrino Majorana mass matrix [5,6]. Even the form of
perturbations can be the same for all mass matrices. This
makes the approach manifestly quark-lepton symmetric
and so it can be embedded into GUT models. The lepton
mixing matrix is predominantly given by the matrix
diagonalizing the charged lepton Yukawa matrix.
Furthermore, there exists a well-defined framework
(without exactly specifying perturbations) in which the
left-handed neutrino mass matrix contributes the mini-
mal amount of mixing to the lepton mixing matrix. In
this case the lepton mixing matrix is given in terms of
two parameters (neglecting phases) and the value of one
mixing angle, sin�13, can be predicted [6]. If embedded
into grand unified theories, the third generation Yukawa
coupling unification is a generic feature (without neces-
sity of distinguishing the third generation from the other
two by family symmetries or in any other way), while
masses of the first two generations of charged fermions
depend on small perturbations. In the neutrino sector, the
heavier two neutrinos are model dependent, while the
16-1  2004 The American Physical Society



RADOVAN DERMÍŠEK PHYSICAL REVIEW D 70 073016
mass of the lightest neutrino in this approach does not
depend on perturbations in the leading order. Finally, the
right-handed neutrino mass scale can be identified with
the GUT scale in which case the mass of the lightest
neutrino is given as �m2

top=MGUT�jU�1j
2 [6]. This frame-

work has everything one could wish for: obvious quark-
lepton symmetry, third generation Yukawa coupling uni-
fication, bilarge lepton mixing with a prediction for
sin�13 in the minimal case, and, more importantly, no
need for an intermediate right-handed neutrino scale and
with that associated prediction for the mass of the lightest
neutrino. There is one problem, however: It is not straight-
forward to build a concrete model with the usual use of
family symmetries (for discussion see [6]).

A similar approach, also assuming the same form of all
mass matrices in the leading order, was recently discussed
in Ref. [7]. Instead of democratic mass matrices, the
starting point is a singular matrix of the form
�2; ; 1�T 
 �2; ; 1�.

Motivated by these findings, we want to identify the
corresponding picture in the hierarchical approach. After
all, a democratic mass matrix [and a matrix of the type
�2; ; 1�T 
 �2; ; 1� as well] is equivalent to a matrix
with the 3-3 element only. This is the usual starting point
of hierarchical models.

In this letter we assume hierarchical mass matrices,
dominated by the 3-3 element, with off-diagonal elements
much smaller than the larger neighboring diagonal ele-
ment:

Yf �
0 �f �f
�f �f �f
�f �f 1

0
B@

1
CAf; f � u; d; e; �; (6)

where 0 � �f � �f � 1 represent only orders of mag-
nitude of different elements of Yukawa matrices. Clebsch-
Gordan coefficients (or order one couplings) necessary to
explain quark-lepton mass relations of the first two gen-
erations are understood. Yukawa matrices of this type
naturally explain hierarchy in masses of charged fermi-
ons and mixing in the quark sector. Rather than starting
with a specific model or texture, we discuss conditions
under which bilarge mixing in the lepton sector can be
obtained assuming the same generic structure of the
neutrino Yukawa matrix. We find that the characteristic
feature of this scenario is a strong hierarchy in masses of
right-handed neutrinos and comparable contributions of
both lighter right-handed neutrinos to the resulting left-
handed neutrino mass matrix. Furthermore, the heaviest
right-handed neutrinos have to contribute negligibly
which leads to a prediction for the mass of the lightest
neutrino. The right-handed neutrino scale can be identi-
fied with the GUT scale in which case (assuming third
generation Yukawa coupling unification) the mass of the
lightest neutrino is given as �m2

top=MGUT�jU�1j
2. It does

not depend on details of a model (�’s and �’s). Finally, we
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discuss how a suitable right-handed neutrino sector can
be naturally obtained in SO(10) models.
II. CONDITIONS FOR BILARGE LEPTON
MIXING

We assume that the right-handed neutrino Majorana
mass matrix has the same hierarchical structure as
Yukawa matrices (this is not necessarily required by
quark-lepton symmetry, but it is well motivated, see the
discussion later). For simplicity, we work in the basis
where the right-handed neutrino Majorana mass matrix
is diagonal, defined as

M�R �

r1 0 0
0 r2 0
0 0 1

0
@

1
AM0; (7)

where r1 � r2 � 1, and M0 is the scale at which right-
handed neutrino masses are generated. Later we take
M0 � MGUT. In this basis the neutrino Yukawa matrix
(defined with doublets on the left) is in general given as

Y� �
�11 �12 �13

�21 �22 �23

�31 �32 1

0
@

1
A�; (8)

where we assume the same order of perturbations �ij as in
Eq. (6), namely, �11 � �21 � �31 � �22 � �32 � 1 with
�ij � �ji. The inverse of the right-handed neutrino
Majorana mass matrix is given as

M�1
�R �

1

r1r2M0

r2 0 0
0 r1 0
0 0 r1r2

0
@

1
A: (9)

When right-handed neutrinos are integrated out, we ob-
tain the left-handed neutrino Majorana mass matrix
given by the seesaw formula [8]:

M�L � �v2
uY�M�1

�R Y
T
� : (10)

In our basis it can be written in three terms, each corre-
sponding to the contribution of one right-handed neu-
trino:

M�L � �
2v2

u

r1r2M0
�M1 M2 M3�; (11)

where

M 1 � r2

�2
11 �11�21 �11�31

�21�11 �2
21 �21�31

�31�11 �31�21 �2
31

0
B@

1
CA � r2 ~e1: ~eT1 ; (12)

M 2 � r1

�2
12 �12�22 �12�32

�22�12 �2
22 �22�32

�32�12 �32�22 �2
32

0
B@

1
CA � r1 ~e2: ~eT2 ; (13)
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M 3 � r1r2

�2
13 �13�23 �13

�23�13 �2
23 �23

�13 �23 1

0
@

1
A � r1r2 ~e3: ~e

T
3 ; (14)

and ~ei is the ith column of the neutrino Yukawa matrix.
Each of these three matrices have two zero eigenvalues
and a combination of any two of them still has one zero
eigenvalue. The left-handed neutrino mass matrix can be
diagonalized by a single unitary matrix,

Mdiag
�L � U�LM�LU

T
�L: (15)

Finally, the lepton mixing matrix which appears in the
charged current Lagrangian is given as

U � UeU
y
�L ; (16)

where Ue is the matrix diagonalizing the charged lepton
Yukawa matrix, Ydiag

e � UeYeV
y
e . Because of the hier-

archical nature of the charged lepton Yukawa matrix,
Ue ’ 1, and we will neglect it in our discussion.

A. Step 1: The dominant mass matrix

It is clear that if M3 dominates it is not possible to
achieve large 2-3 mixing under the assumption of 3-3
dominance. The maximal 2-3 mixing corresponds to
�23 � 1 which goes against our motivation. Several mod-
els of this type, usually called ‘‘lopsided, ’’ were con-
structed [9]. The right-handed neutrino scale M0 cannot
be identified with the GUT scale, since the resulting mass
of the heaviest neutrino would be too small,
m�3

�m2
top=MGUT � 10�3 eV.

Let us assume that the M2 matrix is the dominant
contribution to M�L and let us neglect for a moment M1

and M3. In this case maximal 2-3 mixing corresponds to
�32 � �22. This is actually quite good, since �32 and �22

are of the same order of magnitude in many models. At
this point only the mass of the heaviest neutrino is gen-
erated. The eigenvalues of M2 are f0; 0; r1j ~e2j

2g. The
eigenvector corresponding to m�3

is ~e2, and since U ’

Uy
�L it will appear (properly normalized) in the third

column of the lepton mixing matrix. As a consequence
of degenerate zero eigenvalues, the first two columns of
the lepton mixing matrix are not uniquely specified. In
general, they can be any orthogonal linear combinations
of two unit vectors orthogonal to ~e2. Therefore, at this
stage the 1-2 mixing angle is not specified, and compar-
ing ~e2 with the third column of U, parametrized in
general as �s13; s23c13; c23c13�

T , where s13 � sin�13 and
so on, the 2-3 and 1-3 mixing angles are given as

tan�23 �
e22

e32
or sin2�23 �

e2
22

e2
22  e2

32

; (17)
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and

sin�13 �
e12

j ~e2j
: (18)

Finally, if M1 dominates, the discussion is similar to
the case of M2 dominance with ~e2 being replaced by ~e1.
Namely, the eigenvalues of M1 are f0; 0; r2j ~e1j

2g and the
2-3 and 1-3 mixing angles are given as

tan�23 �
e21

e31
or sin2�23 �

e2
21

e2
21  e2

31

; (19)

and

sin�13 �
e11

j ~e1j
: (20)

If the 1-3 mixing angle turns out to be much smaller than
the present experimental upper bound, Eq. (5), this pos-
sibility will become strongly favored, since e11 can be
arbitrarily small, and typically, e11 � 0 in many models.

B. Step 2: Masses of the heavier two neutrinos and the
mixing matrix

The second eigenvalue is lifted and the lepton mixing
matrix is specified when the contribution from the sub-
leading right-handed neutrino is taken into account. To
determine which matrix should be next to dominant, let
us look at the eigenvector corresponding to the massless
eigenvalue. The eigenvector corresponding to the largest
eigenvalue ( ~e1 if M1 dominates and ~e2 if M2 dominates)
which represents the third column of the lepton mixing
matrix is ~e� �s13; c13s23; c13c23�

T . Let ~g be ~ei in the case
Mi is next to dominant. The normalized eigenvector
corresponding to the zero eigenvalue is perpendicular to
both ~e and ~g and so it can be written as

~v 0 �
~g� ~e
j ~g� ~ej

: (21)

This vector will appear in the first column of the lepton
mixing matrix. The first component of this vector (the 1-1
component of the lepton mixing matrix) is given as

� ~v0�1 �
c13�g2c23 � g3s23�

j ~gj sin 
; (22)

where  is the angle between ~e and ~g,

cos �
1

j ~gj
�g1s13  g2c13s23  g3c13c23�: (23)

Comparing � ~v0�1 with the 1-1 element ofU, parametrized
in general as c12c13, we can read out cos�12, and with the
use of Eq. (23) we find

sin�12 �
g1c13 � �g2s23  g3c23�s13

j ~gj sin 
; (24)

or equivalently,
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tan�12 �
g1c13 � �g2s23  g3c23�s13

g2c23 � g3s23
: (25)

This relation was derived in a different way in Ref. [10].
Since s23 � c23, c13 � 1, and s13 � 1, in order to gen-

erate large 1-2 mixing, we need either g1 ’ g2 � g3 or
g2  g3 � g2 � g3 assuming nonzero s13. This cannot be
satisfied for ~g � ~e3. In this case we need �23 ’ 1 and we
would be back to lopsided textures. So M3 cannot be next
to dominant for the same reason it cannot be dominant.
On the other hand, both M1 and M2 can easily satisfy
the above relations. For example, in the case M2 is next
to dominant, ~g � ~e2, and we need �12 ’ �22 � �32, which
can be satisfied for �12 � �22, and �22 � �32 which we
already assume anyway.

Let us summarize. If M1 dominates, large 2-3 mixing
is generated for �21 � �31 � �, and at this point, the 1-3
mixing is zero or very small as a consequence of �11 � 0.
Large 1-2 mixing is generated when subdominant M2 is
taken into account and it occurs for �12 ’ �22 � �32.
Alternatively, if M2 dominates, large 2-3 mixing is
generated for �22 � �32 � �, and at this point the 1-3
mixing is small, sin�13 ’ �12=�22 ’ �=�. Large 1-2 mix-
ing is generated when subdominant M1 is taken into
account, and it occurs for �21 ’ �31. In this case tan�12 ’
s13��21  �31�=��21 � �31�. Both situations are viable.
However, we will see shortly that it is not possible to
generate the observed hierarchy in neutrino masses under
the assumption of single right-handed neutrino domi-
nance while keeping the structure of mass matrices
strictly hierarchical as given in Eq. (6).

The nonzero eigenvalues of M1 M2 can be written
as

m� �
1

2
t
	
1 �

���������������
1 �

4d

t2

s �
; (26)

where

t � r2j ~e1j
2  r1j ~e2j

2; (27)

d � r1r2j ~e1 � ~e2j
2 � r1r2j ~e1j

2j ~e2j
2sin2 ; (28)

and  is the angle between ~e1 and ~e2. If M1 dominates,
r1j ~e2j

2 � r2j ~e1j
2 and

m�

m
’
d

t2
’
r1j ~e2j

2sin2 

r2j ~e1j
2 : (29)

Numerically, from Eqs. (1) and (2), we find m�=m ’
0:16. However, examining Eq. (24) we see that, in order
to get large 1-2 mixing,

sin �
�12

�22
; (30)

which is naturally of order �=� and not larger than about
0.2. Therefore, the naturally generated hierarchy in
073016
masses of the heavier two neutrinos is at least of order
100 (assuming single right-handed neutrino dominance).

The tension between generating large 1-2 mixing and
mild hierarchy in masses of the heavier two neutrinos can
be relieved when assuming �12 ’ �22, while keeping �12 ’
�22 � �32. For a model of this type, see Ref. [11]. This
solution, however, goes against our motivation and is
technically the same as the lopsided texture.

In the next section we propose another solution, which
keeps the desired form of mass matrices given in Eq. (6).
Rather we abandon the idea of single right-handed neu-
trino dominance.

C. Comparable contribution of M1 and M2

In the previous two sections, we showed that in order to
obtain large 2-3 and 1-2 mixing angles it is necessary that
the contribution of M3 is neither dominant nor next to
dominant. However, the relative contribution M1 and
M2 to the resulting left-handed neutrino mass matrix
was not important at all. No matter which one dominates,
the observed pattern of mixing angles can be recovered.
In the case M1 dominates, interpreting the condition for
large 1-2 mixing angle as �12 ’ �22 � �32, with �12 � �22

rather than �12 � �22 � �32 coincides with the condition
for large 2-3 mixing angle if the M2 matrix dominates.
Therefore, as far as 2-3 mixing is concerned the contri-
bution from M1 and M2 to the left-handed neutrino
mass matrix can be equal. The masses of the heavier
two neutrinos can be then anything, from highly hier-
archical to degenerate [which happens when t in Eq. (26)
is zero].

Because of mild hierarchy in masses of the heavier two
neutrinos, the simplest possibility is that M1 only
slightly dominates, r2j ~e1j

2 * r1j ~e2j
2. The relations for

mixing angles, Eqs. (19) and (20), are now just a rough
approximation. The 2-3 mixing will be close to maximal,
as far as �21 � �31 and �22 � �32. The 1-3 mixing will be
roughly given by the larger of Eqs. (18) and (20). Finally,
the 1-2 mixing can be again obtained by looking at the
first component of the eigenvector corresponding to the
zero eigenvalue. Assuming �11 � 0 and �21 � �31, we get

~v 0 / ~e1 � ~e2 � ��32 � �22; �12;��12�
T; (31)

which does not depend on relative dominance of M1 and
M2. Comparing the first component of ~v0 with the 1-1
element of the lepton mixing matrix, c12c13, and taking
cos�13 ’ 1, we find

sin�12 ’

���
2

p
�12�����������������������������������������

��32 � �22�
2  2�2

12

q ; (32)

or equivalently,

tan�12 ’

���
2

p
�12

�32 � �22
: (33)
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Although these relations are similar to those in Eqs. (24)
and (25) derived in the framework of single right-handed
neutrino dominance, they are independent on any as-
sumption about the dominance of M1 or M2.

We see that we can successfully obtain close to maxi-
mal atmospheric mixing angle, large solar mixing angle,
and small 1-3 mixing angle assuming that both M1 and
M2 contribute comparably to the left-handed neutrino
mass matrix. Furthermore, in this case mild hierarchy (or
no hierarchy at all) in masses of the heavier two neutrinos
can be achieved. We will demonstrate that this scenario
works on a simple example. Before we do that, let us
discuss what changes when the contribution from M3 is
included.

D. Step 3: Mass of the lightest neutrino

The mass of the lightest neutrino is lifted when M3 is
taken into account. Since we assume it is just a small
correction to the first two terms, it can be treated as a
perturbation. Adding this perturbation does not signifi-
cantly affect the heavy two eigenvalues and the diago-
nalization matrix, but it is crucial for the lightest
eigenvalue which is exactly zero in the limit when this
term is ignored. In the case of nondegenerate eigenvalues,
corrections to eigenvalues mi of a matrix M generated by
a matrix �M are given as

�mi � uyi �Mui; (34)

where ui are normalized eigenvectors. In our case,

�M � �
2v2

u

M0

�2
13 �13�23 �13

�23�13 �2
23 �23

�13 �23 1

0
B@

1
CA; (35)

and the vector ~v0 corresponding to the zero eigenvalue is
the first row of U�L obtained from M1 and M2. It
corresponds to the first column of the lepton mixing
matrix U, see Eq. (16), since Ue ’ 1. Therefore, we have
~v0 ’ �Ue1; U"1; U�1�

y. Since �M is strongly dominated by
the 3-3 element, we get the mass of the lightest neutrino
in the form

m�1
�
2
�v

2
u

M0
jU�1j

2; (36)

which does not depend on perturbations (�ij) in the lead-
ing order.

Although we do not measure U�1, it is related to the
observed mixing angles due to the unitarity of the lepton
mixing matrix. In the case sin�13 ’ 0, it is simply given as
U�1 ’ sin�23 sin�12. A global analysis of neutrino oscil-
lation data [1] gives the 3
 range: 0:20 	 jU�1j 	 0:58.

In simple SO(10) models u � �, in which case the
lightest and the heaviest fermion of the standard model
are connected through the relation above where 2

�v2
u is

replaced by m2
top (actually to be precise, u � � is a
073016
relation at the GUT scale and the effects of the renormal-
ization group running between the GUT scale and the
electroweak scale should be taken into account). This is a
very pleasant feature since we can further identify M0

with the GUT scale, MGUT � 2 � 1016 GeV, in which
case we get

m�1
�

m2
top

MGUT
jU�1j

2; (37)

and predict the mass of the lightest neutrino to be be-
tween 5 � 10�5 and 5 � 10�4 eV depending on the value
of U�1. This prediction does not depend on details of a
model. It represents a realization of Yukawa coupling
unification in the neutrino sector and adds to predictions
of Yukawa coupling unification in quark and charged
lepton sector [12].

E. A simple example

Let us demonstrate on a simple example that the sce-
nario discussed in the above sections really works. Let us
assign the following values to elements of the neutrino
Yukawa matrix: �11 � 0, �21 � �31 � �12 � �13 � �,
�22 � �, and �32 � �23 � � 2�, where � � 0:01 and
� � 0:002, and let us take r1 � 9 � 10�8 and r2 � �5 �
10�6. This choice of parameters certainly satisfies the
desired texture in Eq. (6). For simplicity, we assume a
symmetric Yukawa matrix; however, it is not crucial in
any way. For example, exact values of �23, �13 are not
relevant at all, and would not significantly change nu-
merical results below even if changed by a factor of 10.
Also, �21 does not have to be equal to �12. The only
crucial relations are �21 ’ �31 and �32 ’ � 2�. Finally,
let us make the minimal and the most interesting assump-
tion that M0 � MGUT and � � u. With these values of
parameters we find

sin 2�23 � 0:71; (38)

sin 2�12 � 0:35; (39)

sin 2�12 � 0:03; (40)

and

m�3
� 4:9 � 10�2 eV; (41)

m�2
� 7:8 � 10�3 eV; (42)

m�1
� 2:5 � 10�4 eV; (43)

which is in good agreement with experimental values.
The sin2�23 is somewhat too large (but still within 3
).
We are not trying to provide the best fit to data, but rather
demonstrate that bilarge mixing can be achieved with a
simple choice of parameters with the neutrino Yukawa
matrix of the form given in Eq. (6). Note, we parame-
-5
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trized the neutrino Yukawa matrix by two parameters and
we specified values of all parameters to one digit only.
Keeping this in mind, we actually find the results above
quite remarkable. Relaxing the exact relations between
elements of the neutrinoYukawa matrix, there is certainly
enough freedom to fit all mixing angles and masses very
accurately. Furthermore, in a realistic scenario one
should take into account corrections from the right-
handed neutrino mass matrix not being exactly diagonal,
and also the contribution from diagonalization of the
charged lepton Yukawa matrix.

Masses of the right-handed neutrinos in this example,
M3 � MGUT, M2 ’ 1011 GeV, and M1 ’ 109 GeV, are in
an interesting range for leptogenesis [13]. The value of
r2j ~e1j

2=r1j ~e2j
2 ’ �1:5 measures the relative contribution

of M1 and M2. It shows that the contributions of the two
right-handed neutrinos to the left-handed neutrino mass
matrix do not have to be extremely close.

Finally, we can check if the formula we derived for the
mass of the lightest neutrino works. Plugging U�1 � 0:41
and m2

top=MGUT � 0:0014 eV (the same value used in the
evaluation of the masses above) to Eq. (37), we findm�1

�

2:4 � 10�4 eV which is in very good agreement with the
numerical result in Eq. (43).
III. ORIGIN OF STRONG RIGHT-HANDED
NEUTRINO HIERARCHY

In SO(10) models, the right-handed neutrino is part of
the 16-dimensional representation. Therefore the
Majorana mass term is not allowed by SO(10) symmetry
and it is generated in the process of GUT symmetry
breaking. A simple possibility is to assume that a 16, 16
pair of Higgs fields gets a vacuum expectation value in the
right-handed neutrino direction. In models where the two
Higgs doublets originate from 10-dimensional represen-
tation of SO(10), Yukawa couplings are generated from
operators of the form

16 i�:::�ij1016j; i � 1; 2; 3; (44)

where 10 contains the two Higgs doublets of minimal
supersymmetric standard model, and �
 
 
�ij is a flavor
dependent part responsible for generating the desired
structure of Yukawa matrices. It typically contains flavon
fields responsible for generating hierarchy between gen-
erations and other Higgs fields, for example, 45 of SO(10),
responsible for the right quark-lepton mass relations of
the first two generations. Besides these, there can also be
operators where 10 of Higgs and one 16i are replaced by
h16i !� and SO(10) singlet fields Ni of the form

16 i�
 
 
�ijh16i !�Nj: (45)

These operators generate a mass matrix, YN, between
right-handed neutrinos and SO(10) singlets. It has natu-
rally the same structure as other Yukawa matrices,
073016
although it is not identical, because �
 
 
�ij distinguishes
between different fields in 16-dimensional representation.
A mass term for singlet fields effectively leads to a
Majorana mass matrix for right-handed neutrinos:

M�R � YNM
�1
N YTN: (46)

A simple mass term for singlet fields of the form, MN ’
diag�1; 1; 1�MN, where for simplicity we use MN for both
the matrix and the scale itself, automatically leads to a
strong hierarchy in masses of right-handed neutrinos. If
the hierarchy in mass eigenvalues of YN is ���N; �N; 1�
(similar to eigenvalues of other Yukawa matrices), the
hierarchy in right-handed neutrino masses is naturally
doubled ���2

N; �
2
N; 1�.

The left-handed neutrino Majorana mass term can be
written as

M�L � Y�YT�1
N MNY�1

N YT� : (47)

If YN is identical to Y�, then M�L � MN and all three
neutrinos have almost the same mass. This is to demon-
strate that it is actually very natural to expect that all
three right-handed neutrinos contribute roughly equally
to the resulting left-handed neutrino mass matrix. The
desired situation when M1 and M2 contribute more is
possible to achieve in two ways: either to manage �N
and �N to be somewhat smaller than the corresponding
perturbations in Y�, or simply assume that MN1

’ MN2
>

MN3
. From a model building point of view, the second

choice does not represent a big challenge. As a by-
product, the stronger hierarchy of M�R makes it also
closer to the identity matrix, and corrections to the dis-
cussion in previous sections from it not being exactly
diagonal are smaller.
IV. CONCLUSIONS

We discussed conditions under which bilarge lepton
mixing can be achieved in hierarchical models in which
all mass matrices are dominated by the 3-3 element.
Many features of this framework are similar to those in
the democratic framework discussed in Ref. [6]. The
obvious quark-lepton symmetry makes it easy to embed
models of this type into GUTs. The right-handed neutrino
mass scale can be identified with the GUT scale in which
case the mass of the lightest neutrino is given as
�m2

top=MGUT�jU�1j
2, the same as in Ref. [6]. The third

generation Yukawa coupling unification is obvious in
this picture, since it is our starting point and we do not
allow any large off-diagonal elements. This can be under-
stood from two possible ways permutation symmetry
can be used in model building. A matrix with a 3-3
element only can be also motivated by permutation sym-
metry under which the first two families transform as a
doublet [14]. Both approaches require strong hierarchy in
masses of right-handed neutrinos and negligible contri-
-6
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bution of the heaviest one to the left-handed neutrino
mass matrix.

There are few major differences however. There is a
tension between achieving the observed spectrum of
heavier two neutrinos and bilarge mixing in the hierarch-
ical approach, which is avoided when the two lighter
right-handed neutrinos contribute comparably to the
left-handed neutrino mass matrix. In the democratic ap-
proach there is no tension at all, since bilarge mixing
originates predominantly from the matrix diagonalizing
the charged lepton Yukawa matrix and so neutrino masses
can be adjusted arbitrarily. Furthermore, in the demo-
cratic approach, there is a well-defined framework (with-
out exactly specifying perturbations) in which the
left-handed neutrino mass matrix contributes the mini-
073016
mal amount of mixing to the lepton mixing matrix
and the value of one mixing angle, sin�13, can be
predicted [6]. We do not see the equivalent situation in
the hierarchical approach. Finally, it seems to be much
easier to build concrete GUT models with hierarchical
Yukawa matrices of the type discussed here than demo-
cratic ones.
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