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Generating extremal neutrino mixing angles with Higgs family symmetries
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The existence of maximal and minimal mixing angles in the neutrino mixing matrix motivates the
search for extensions to the standard model that may explain these angles. A previous study [C. I. Low
and R. R. Volkas, Phys. Rev. D 68,, 033007 (2003)], began a systematic search to find the minimal
extension to the standard model that explains these mixing angles. It was found that in the minimal
extensions to the standard model which allow neutrino oscillations, discrete unbroken lepton family
symmetries only generate neutrino mixing matrices that are ruled out by experiment. This paper
continues the search by investigating all models with two or more Higgs doublets and an Abelian
family symmetry. It is found that discrete Abelian family symmetries permit, but cannot explain,
maximal atmospheric mixing; however, these models can ensure �13 � 0.
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I. INTRODUCTION

The approximate form of the neutrino mixing matrix,
or Maki-Nakagawa-Sakata (MNS) matrix
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has been determined by neutrino oscillation experiments
(Majorana phases have not been included).

The mixing matrix, parameterized in the usual way, is
formed by three very different mixing angles. The atmos-
pheric mixing angle �23 has a maximal value of �=4 at
best fit [1–4], the solar mixing angle �12 has been found
to be large �12 � 33� [5], but not maximal, by solar
neutrino oscillation experiments [6–12], and the angle
�13, measured by the nonobservation of �e disappearance
[13], is small and has only an upper bound and is set to
zero in Eq. (1). A special case of Eq. (1) is tri-bimaximal
mixing, when sin�12 �

1��
3

p [14–17], and �13 is exactly

zero. Two out of the three angles in Eq. (1) assume
extreme positions in parameter space —the minimum
possible value and the maximum possible value —so it
has been suggested by many authors that this mixing
pattern is not accidental but could be due to a family
symmetry.

A. Family symmetry models

The symmetries of the standard model (SM) do not
dictate the Yukawa coupling strength between each fer-
mion and the Higgs field. As a result, in the SM the
charged-lepton and neutrino mass matrices are 3� 3
matrices with each element a free variable. In the SM,
Dirac mass matrices have nine free variables, and
Majorana mass matrices have six. Diagonalizing the
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mass matrices generates the mixing matrix which can
be any unitary 3� 3 matrix. Family symmetries con-
strain the form of the neutrino and charged-lepton mass
matrices by relating elements of the mass matrix, or
forcing elements to be zero, thus reducing the number of
free variables in the mass matrix.

For a family symmetry to fully predict a mixing
matrix, all mixing angles must be independent of the
free variables in the mass matrix and must be prescribed
by the form of the mass matrix. Mass matrices that can
generate mixing matrices in this approach have been
called ‘‘form-diagonalizable’’ matrices [18]. This can
happen when there are three variables in the mass matrix
corresponding to three unknown masses, and no free
variables remaining for the mixing angles. An example
of a form-diagonalizable matrix is the circulant matrix
which can be generated by a Z3 symmetry [14]:
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is diagonalized by
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where ! � ei2�=3 and has eigenvalues a� b� c, a�
!b�!�c, a�!�b�!c.

The mixing matrix [Eq. (1)] may be created by par-
tially form-diagonalizable matrices, where the zero and
maximal mixing angles are not related to any free pa-
rameter, and arise from the form of the mass matrices,
while the solar mixing angle may be related to a free
parameter.

An Abelian family symmetry—individual lepton
number U	1
Le � U	1
L� � U	1
L� —is conserved when
neutrinos are massless but is broken when the three neu-
trinos gain different mass values. The special form of (1),
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and even more so the particular tri-bimaximal case
makes it conceivable that a remnant of this Abelian group
remains unbroken with massive neutrinos, constraining
the mixing pattern. This further motivates the study of
family symmetries, and Abelian symmetries, in
particular.

Many models with family symmetries have been pro-
posed. A number of these models [14,19,20] produce the
desired form of the mixing matrix but use symmetries
that cannot be easily incorporated into the SM as the left-
handed neutrinos transform in a different way to the left-
handed charged leptons, thus breaking SU	2
L. Most
models that do preserve SU	2
L require additional fields
such as singlet or triplet Higgs fields [21–23] or additional
heavy fermions [24]. The models with the least new
particle content require a number of Higgs doublets
[25–27] and some soft symmetry breaking terms to gen-
erate Eq. (1).

It is clear there are models that can produce Eq. (1); the
question this work addresses is, what is the minimal
predictive model. The approach taken is to construct the
simplest model and find out whether the model can gen-
erate the mixing matrix or whether it can be ruled out. If
it is ruled out, the next simplest model is investigated. A
previous study [18] began a systematic search to find the
minimal extension to the SM that can generate the mix-
ing matrix form of Eq. (1). The study found that for
models with one SM Higgs doublet unbroken discrete
Abelian family symmetries cannot produce the matrix.
In fact, these symmetries can generate only mixing ma-
trices that are ruled out by experiment, or mixing matri-
ces that are completely unconstrained by the symmetry.
Non-Abelian family symmetries are also ruled out as
they dictate that the charged leptons are degenerate.
The structure of the next simplest model is a subjective
question. I chose to study extensions to the SM with two
or more Higgs doublets that transform under an Abelian
family symmetry. Abelian symmetries were chosen as
the symmetry group could be a subgroup of U	1
Le �

U	1
L� � U	1
L� , and for simplicity. This case also differs
from the single Higgs doublet case as it is possible for the
exact family symmetry to be spontaneously broken by the
Higgs vacuum expectation values (VEVs).

B. Outline

Section II presents the mathematics of family trans-
formations and shows how the mass and mixing matrices
can be constrained by the family symmetry transforma-
tions. Three neutrino mass generation mechanisms are
considered: left- and right-handed neutrinos coupling to
the Higgs doublets to create a Dirac neutrino mass ma-
trix, left-handed neutrinos coupling to the Higgs to form
a dimension-5 operator, and the seesaw mechanism where
the right-handed neutrinos get a bare Majorana mass. The
types of mixing matrices that can be generated by an
073013
Abelian group are described in Sec. III. I find that it is
possible for Abelian symmetries to dictate that �13 � 0,
and although the symmetries permit all atmospheric
mixing angles, the symmetries cannot specify that the
atmospheric mixing angle is maximal. Section IV lists
group transformation matrices that give a mixing matrix
with �13 � 0. Section V draws conclusions about these
models and suggests other models and symmetries that
may be more successful.
II. HOW HIGGS AND LEPTON FAMILY
SYMMETRIES CONSTRAIN MASS AND MIXING

MATRICES

The following section describes how a single trans-
formation can restrict the Higgs-lepton coupling matri-
ces. For a symmetry group of order n there are n of these
transformations. However, if the Lagrangian is un-
changed by a transformation X, it will also be unchanged
by Xm, where m is a positive integer. For Zn, the group of
the addition of integers modulo n, the group is made up of
the powers of one transformation, so a single transforma-
tion is sufficient to describe the restrictions placed on the
coupling matrices. For all other groups more than one
transformation is required.

A. The symmetry transformations

The family symmetry transformation matrices act on
the different families of Higgs fields and leptons. The
lepton transformation is

‘L
�L

� 	
! XL

‘L
�L

� 	
; ‘R ! X‘R‘R; �R ! X�R�R;

(4)

where ‘L, �L, ‘R and �R are each 3-vectors in family
space, ‘L and ‘R are the vectors of left- and right-handed
charged leptons, �L and �R are the vectors of left- and
right-handed neutrinos. Each X matrix is a 3� 3 unitary
transformation matrix in lepton family space. To preserve
SU	2
L, the left-handed neutrinos transform in the same
way as the left-handed charged leptons.
n families of Higgs fields transform via

� ! A��; (5)

where

� �

�1

�2

..

.

�n

0
BBBB@

1
CCCCA;

is an n-vector in Higgs family space, containing all the
Higgs fields, and A� is an n� n unitary matrix.
-2



GENERATING EXTREMAL NEUTRINO MIXING ANGLES. . . PHYSICAL REVIEW D 70 073013
B. Constraints on the Higgs-lepton coupling matrices
from the symmetry

1. The charged-lepton-Higgs coupling term

The charged-lepton-Higgs coupling transforms as

‘L	�0
T�‘R ! ‘LX
y
L	�

0
TAT��X‘R‘R; (6)

where �0 is an n-vector in Higgs family space containing
just the neutral component of the Higgs doublet. The term
	�0
T indicates a transpose in Higgs family space. � is an
n-vector in Higgs family space, where each element of �
is a 3� 3 Yukawa coupling matrix in lepton family space.
Without any family symmetry the � matrices can be any
3� 3 matrices, but the existence of the family symmetry
constrains them by

� � Xy
LA

T
��X‘R: (7)

Note that XL commutes with � as XL acts only on lepton
family space, and � is a lepton family singlet. The
charged-lepton mass matrix is made up of the matrices
in �:

M‘ � 	h�0i
T�: (8)
2. The Dirac neutrino-Higgs coupling term

The Higgs field can couple to neutrinos in a number of
ways. A Dirac neutrino coupling term transforms like

� L	�
0
y�Dirac�R ! �LX

y
L	�

0
yAy
��DiracX�R�R; (9)

where �Dirac is an n-vector in Higgs family space made up
of 3� 3 Yukawa coupling matrices in lepton family
space. Without the symmetry, the Yukawa coupling ma-
trices can be any 3� 3 complex matrices. Imposing the
symmetry the matrices are constrained by

�Dirac � Xy
LA

y
��DiracX�R; (10)

which alters the Dirac neutrino mass matrix through

M�Dirac � 	h�0i
y�Dirac: (11)
3. The dimension-5 neutrino-Higgs coupling term

A dimension-5 Higgs-neutrino coupling term trans-
forms like

1

�
�L�y���	�L
c !

1
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�
��

�X�
L	�L


c;

(12)

where � is now an n� n matrix in Higgs family space
with each component a 3� 3 symmetric matrix in lepton
family space. � is constrained by the symmetry through

� � Xy
LA

y
��A

�
�X

�
L; (13)
073013
which consequently alters the mass matrix, defined by

M� � 	h�0i
y�	h�0i
�: (14)

4. Higgs coupling terms for seesaw neutrinos

In the seesaw mechanism the right-handed neutrinos
couple to form a bare mass term. The Higgs fields are not
involved, so the mass term transforms as

�R cMR�R ! �RcXT
�RMRX�R�R; (15)

restricting the heavy right-handed mass matrix MR by

MR � XT
�RMRX�R: (16)

The resultant light neutrino mass matrix, given by
M� � MDiracM

�1
R MT

Dirac is affected by the symmetry
through the constraints on the heavy Majorana mass
matrix and the Dirac neutrino mass matrix (listed in
Sec. II B 2).

The seesaw case can be reduced to the dimension-5
operator case by relating

�DiracMR�TDirac � � from dimension-5 case: (17)

�DiracMR�
T
Dirac has all the constraints of � plus additional

restrictions from the transformation of the right-handed
neutrinos.

C. Abelian groups create mass matrices with zero or
unconstrained elements

The restrictions family symmetries have on mass ma-
trices depend on the transformation matrices that are
chosen. If the set of matrices Xi form a group then Yi �
UyXiU form the same group, where U is any unitary
matrix. Sets of matrices related in this way are called
equivalent representations. Appendix A shows that choos-
ing different equivalent representations for the lepton
family symmetry transformations corresponds to choos-
ing a different weak basis for the leptons. The constraints
on the masses and on the mixing matrix are identical for
two different equivalent representations. This makes it
possible to eliminate groups, as each group has only a
finite set of nonequivalent representations.

This result simplifies the study of Abelian groups. As
all Abelian groups are equivalent to a diagonal represen-
tation, only these representations need to be considered.
Since the transformation matrices must be unitary, the
diagonal elements are phases.

This makes the charged-lepton restriction of Eq. (7)
become

�ij � 	Xy
L
iiA

T
��ij	X‘R
jj no summation; (18)

where i, j are lepton family indices.
This restriction means that �1

ij (the ijth element of the
Yukawa coupling matrix for �1) can be related to the ij
element of the other Yukawa coupling matrices. The sym-
-3
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metry, however, does not relate an element of � with a
different element of �. If the ijth elements of all �
matrices are zero then M‘ij � 0, otherwise M‘ij will
most likely be nonzero and unrestricted by the symmetry.
However, if two or more ijth elements are related, and the
Higgs VEVs are related, then there could be cancellation:
M‘ij � �ijh�0i � 0. A relationship between VEVs is pos-
sible as the symmetry also constrains the form of the
Higgs potential. If there is not a cancellation, the element
of the mass matrix is unrestricted by the symmetry—it is
a free parameter of the model.

Consequently, a symmetry does not dictate the rela-
tionship between any elements in the mass matrix. What
the symmetry does do is force some elements of the mass
matrix to be zero, leaving all other elements unrestricted.
This is true for instances where there is cancellation and
when there is not a cancellation. This makes the analysis
of Abelian groups easier, as only mass matrices with zero
and unrestricted elements need to be considered, and
analysis of the Higgs potential is not required.

There is only one Dirac mass matrix of this type that is
form-diagonalizable —the diagonal matrix which is di-
073013
agonalized by the identity—so most charged-lepton di-
agonalization matrices will depend on the elements that
are unrestricted by the symmetry. Partially form-
diagonalizable matrices are possible, for example, a
mass matrix which is in 2� 2 block diagonal form is
diagonalized by a unitary matrix which is in 2� 2 block
diagonal form, which has one Euler angle depending on
the free parameters, and the other two angles zero.

Similarly, the Dirac neutrino-Higgs coupling matrices
are restricted by a diagonal transformation,

�Dirac ij � 	Xy
L
iiA

y
��Dirac ij	X�R
jj; (19)

which also yields mass matrices with elements that are
either zero or unrestricted. The dimension-5 neutrino-
Higgs coupling matrix is constrained by

�ij � 	Xy
L
iiA

y
��ijA

�
�	X

�
L
jj; (20)

which also constrains some mass matrix elements to be
zero. However, as Majorana mass matrices are symmetric,
more form-diagonalizable mass matrices can be created.
These mass matrices have a pseudo-Dirac form:
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The neutrinos that are mixed have mi � �mj.
Partially form-diagonalizable matrices also can be created:

0 a b
a 0 0
b 0 0

0
@

1
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0 0 a
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where � and � are angles which depend on the parameters a and b. Again, the two neutrinos that are maximally mixed
have mi � mj.
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Right-handed Majorana mass matrices are constrained B. Results

by a diagonal transformation by

MRij � 	XT
�R
iiMRijX�Rjj; (27)
and can also generate the form-diagonalizable matrices in
Eqs. (21)–(26).

D. Non-Abelian groups

For family symmetries where the Higgs fields do not
transform, non-Abelian symmetries ensure that at least
two charged leptons must be degenerate [18]. In this case
the mass matrix is constrained by the symmetry through
the equation M‘ � Xy

LM‘X‘R. Consider the mass basis,
where M‘ is diagonal. Non-Abelian representations can-
not be equivalent to a diagonal representation, so the
transformation associated with the mass basis will mix
the mass matrix elements and ensure that at least two of
the masses are equal. For cases with more than one trans-
forming Higgs field, the mass matrices are made up of a
number of Yukawa matrices, and the transformations act
on these matrices in a more complicated way than the one
Higgs field case. Non-Abelian transformations no longer
necessarily force equal mass constraints and as a result
cannot be ruled out in the same way as in Ref. [18].
III. MIXING ANGLES THAT CAN BE
GENERATED BY ABELIAN GROUPS

A. Mass matrices to investigate

To find the types of mixing matrices that can be created
by Abelian groups, a program was created to generate all
sets of neutrino and charged-lepton mass matrices with
zero and unrestricted elements. For a given set of neutrino
and charged-lepton mass matrix types two sets of mass
matrices were created— each with the same textures (i.e.
the same positions of the zeros) —but different random
numbers were used for the elements that were unre-
stricted. The unitary diagonalization matrix was found
for each mass matrix, and two mixing matrices were
created and compared. If an angle was the same for
both mixing matrices, the value of the angle was due to
the textures of the mass matrices, and thus, a result of the
symmetry. If an angle was different for the two mixing
matrices then the angle’s value was due to the random
numbers in the mass matrices and not concerned with the
symmetry.

This was done for Dirac neutrinos, Majorana neutrinos
which gained mass from a dimension-5 operator, and
seesaw neutrinos. For seesaw neutrinos only right-handed
Majorana neutrino mass matrices that were invertible
were used, as noninvertible matrices generate less than
three ultralight neutrinos [28,29].
073013
1. Abelian groups can generate zero and maximal
mixing angles

The only form-diagonalizable Dirac mass matrices that
can be generated by Abelian groups create diagonaliza-
tion matrices with Euler angles equalling zero (Sec.) II C.
Consequently, mixing angles for Dirac neutrinos are ei-
ther zero, or unfixed by the symmetry, meaning Dirac
neutrino models can ensure �13 � 0 but cannot fix the
atmospheric or solar mixing angles. These angles will be
free parameters and can take any value. In some cases
these two mixing angles can be related to lepton masses.

Majorana neutrino mass matrices, from seesaw and
dimension-5 operators, can create fixed zero mixing an-
gles, and also create fixed maximal mixing angles from
the pseudo-Dirac type mass matrix [Eq. (21)–(26)]. This
looks promising for creating a maximal atmospheric
mixing angle, and the fact that maximal mixing angles
can only be generated from Majorana matrices perhaps
could be a key to explaining why lepton mixing angles
are large but quark mixing angles are not. Unfortunately,
it was found that the maximal mixing angle cannot
correspond to atmospheric mixing.

2. Conditions for maximal mixing

Mixing angles that are fixed to be maximal can only
arise from the form-diagonalizable Majorana mass ma-
trices listed in Eqs. (21)–(26). These matrices have a 2�
2 pseudo-Dirac block and the maximally mixed neutrinos
always have mi � �mj, corresponding to  m2 � 0. This
means that there will be no oscillation; however, a small
mass squared difference could be created by breaking the
symmetry.

To demonstrate the difficulty in generating maximal
atmospheric mixing, consider mixing matrices that have
�13 � 0 and one maximal mixing angle. Matrices of this
type must have a pseudo-Dirac neutrino diagonalization
matrix [Eq. (21)–(26)] and a charged-lepton diagonaliza-
tion matrix that has either zero or one mixing angle. That
is,

U‘1 � I; U‘2 �

cos" � sin" 0

ei sin" ei cos" 0

0 0 1

0
BB@

1
CCA;

U‘3 �

1 0 0

0 cos" � sin"

0 ei sin" ei cos"

0
BB@

1
CCA;

U‘4 �

cos" 0 � sin"

0 1 0

ei sin" 0 ei cos"

0
BB@

1
CCA;

(28)

where " and  are angles undefined by the symmetry.
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Charged-lepton diagonalization matrices with more
than one mixing angle cannot produce mixing matrices
with zero and maximal mixing angles, so the only com-
binations of diagonalization matrices that have both
�13 � 0 and a maximal mixing angle are

UMNS1 � Uy
‘1U�1 �
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CA; (29)

UMNS2 � Uy
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p
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0
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1
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UMNS3 � Uy
‘1U�4 � Uy

‘3U�4 � Uy
‘3U�1

�

� 1��
2

p 1��
2

p 0
sin���
2

p sin���
2

p cos�
cos���

2
p cos���

2
p � sin�

0
BB@

1
CCA; (31)

where the U�i’s are given in Eqs: (21)–(26)
TABLE I. Mass matrices for Majorana neutrinos that give �13 �

M� M‘ Smallest Symme

1
A B 0
B D 0
0 0 F

0
@

1
A a 0 0

0 d e
0 f g

0
@

1
A Dimension-5: three Higgs

Seesaw: Z4

2
A B 0
B 0 0
0 0 F

0
@

1
A a 0 0

0 d e
0 f g

0
@

1
A Dimension-5: Z5

Seesaw: Z4

3
0 A 0
A B 0
0 0 C

0
@

1
A a 0 0

0 d e
0 f g

0
@

1
A Dimension-5: three Higgs

Cannot be generated with s

4
A B C
B 0 0
C 0 0

0
@

1
A a 0 0

0 d e
0 f g

0
@

1
A Dimension-5: Z5

Seesaw: Z5

5
A B 0
B D 0
0 0 F

0
@

1
A 0 0 0

a b c
d e f

0
@

1
A Dimension-5: three Higgs d

Seesaw: Z4 or Z3 if m3 � 0

6
A B 0
B 0 0
0 0 C

0
@

1
A 0 0 0

a b c
d e f

0
@

1
A Dimension-5: Z5

Seesaw: Z5

7
0 A 0
A B 0
0 0 C

0
@

1
A 0 0 0

a b c
d e f

0
@

1
A Dimension-5: three Higgs d

Cannot be generated with s

8
A B C
B 0 0
C 0 0

0
@

1
A 0 0 0

a b c
d e f

0
@

1
A Dimension-5: Z5

Seesaw: Z5

9
A B 0
B D 0
0 0 F

0
@

1
A 0 0 a

0 0 b
c d e

0
@

1
A Dimension-5: Z4

Seesaw: Z4

10
A B 0
B D 0
0 0 F

0
@

1
A 0 a 0

0 b 0
0 c d

0
@

1
A Dimension-5: Z4

Seesaw: Z4
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The only mixing matrix that has maximal atmospheric
mixing is UMNS2, which also has a very unsatisfactory
solar mixing angle of zero. UMNS3 has maximal solar
mixing, but the atmospheric angle is not dictated by the
symmetry.

The program that was written (see Sec. III A) also
searched for fixed mixing angles without the �13 � 0
constraint and found that �23 is still unfixed by the
symmetry, therefore the only aspect of the mixing matrix
form of Eq. (1) that can be generated by a symmetry is
�13 � 0. It is not possible to demonstrate this result in a
concise way in this paper: it is instead the result of a
systematic computer-aided search. We have seen that the
mixing angles can be zero, maximal or unfixed by the
symmetry. The unfixed mixing angles can be either re-
lated to fermion masses or completely free variables. The
possible ways in which mixing angles can be related to
masses was not analyzed by the program, however, for
the cases where �13 � 0 mass-mixing angle relationships
were worked out by hand (Sec. IV B) .

Note that the fact that solar mixing can be forced to be
maximal and atmospheric mixing angle cannot be forced
0. Two Higgs doublets are required unless otherwise stated.

try Mass Restrictions

doublets, Z7
No mass restrictions

�12 is related to neutrino
masses giving neutrino mass hierarchy.

doublets Z9

eesaw neutrinos

�12 is related to neutrino masses
giving neutrino mass hierarchy.

�12 related to neutrino masses giving
nearly maximal solar mixing therefore

ruled out by experiment.

oublets required Z7 me � 0

me � 0�12 related to neutrino
masses giving a hierarchical

neutrino mass pattern.

oublets Z9

eesaw neutrinos

me � 0�12 related to neutrino
masses giving a hierarchical

neutrino mass pattern.

�12 related to neutrino masses giving
nearly maximal solar mixing therefore

ruled out by experiment.
me � 0

me � 0
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TABLE II. Mass matrices for Dirac neutrinos that give �13 � 0. Transpositions of the
columns of the mass matrices do not alter the masses, the mixing matrix, or the symmetry.
Two Higgs doublets are required unless otherwise stated.

M� M‘ Smallest Symmetry Mass Restrictions

1
A B 0
C D 0
0 0 E

0
@

1
A a 0 0

0 b c
0 d e

0
@

1
A Z4 No mass restrictions

2
A B C
D E F
0 0 0

0
@

1
A a 0 0

0 b c
0 d e

0
@

1
A Z4 m3 � 0

3
A B 0
C D 0
0 0 E

0
@

1
A 0 0 0

a b c
d e f

0
@

1
A Z4 me � 0

4
A B C
D E F
0 0 0

0
@

1
A 0 0 0

a b c
d e f

0
@

1
A Z3 me � 0 and m3 � 0

5
A B 0
C D 0
0 0 E

0
@

1
A 0 0 a

0 0 b
c d e

0
@

1
A Z4 me � 0

6
A B C
D E F
0 0 0

0
@

1
A 0 0 a

0 0 b
c d e

0
@

1
A Z4 me � 0 and m3 � 0

7
A B 0
C D 0
0 0 E

0
@

1
A 0 a 0

0 b 0
0 c d

0
@

1
A Z4 me � 0

8
A B C
D E F
0 0 0

0
@

1
A 0 a 0

0 b 0
0 c d

0
@

1
A Z4 me � 0 and m3 � 0
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to be maximal does not indicate any fundamental differ-
ence between the flavors. If one mixing matrix can be
predicted by an Abelian group, so can the mixing matrix
with rows permuted. Permuting the rows corresponds to
interchanging e, � or �, so the whole set of possible
neutrino mixing matrices are flavor symmetric.

The mixing angles, defined as Euler angles, however,
are not flavor symmetric. The probability that a neutrino
of flavor ‘ is detected as flavor ‘0 after a distance x is
given by

P‘!‘0 	x
 �
X
m

U2
‘mU

2
‘0m

�
X
m0�m

U‘mU‘m0U‘0m0U‘0m cos	2�
x

Lmm0


;

(32)

where Lmm0 � 2� 2pnu
 m2

mm0
. When �13 � 0, the probability of

an electron neutrino being detected as an electron neu-
trino after a distance x is

Pe!e	x
 � 1� sin22�12sin2	
�x
L12


; (33)

and is only dependent on �12. The probability of a muon
neutrino being detected as a muon neutrino after a dis-
tance x,
073013
P�!�	x
 � sin4�12cos
4�23 � cos4�12 cos�

4
23 � sin4�23

� 2sin2�12cos2�12cos4�23 cos	2�
x
L12


;

(34)

�2sin2�12cos2�23sin2�23 cos
�
2�

x
L13

	

� 2cos2�12cos2�23sin2�23 cos
�
2�

x
L23

	
; (35)

is dependent on both nonzero mixing angles. So when
�13 � 0 a maximal solar mixing angle corresponds to a
maximum amplitude of oscillation—an electron neu-
trino will oscillate into a state with no electron neutrino
component. Maximal atmospheric mixing means that
there is a mass eigenstate that is an equal superposition
of �� and �� and does not imply a maximum amplitude of
oscillation in the three flavor case.
IV. MASS MATRICES AND SYMMETRIES THAT
PRODUCE �13 � 0

There are several sets of charged-lepton and neutrino
mass matrices that can produce �13 � 0, some of which
can be created from a symmetry. The ones that can be
related to a symmetry, and do not force the muon or tau
-7
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leptons to be massless, are listed in Tables I and II, along
with the smallest symmetry group that can produce the
mass matrices. All cases that can be generated by a
symmetry require two Higgs doublets, unless otherwise
stated in the table. Cancellation within the mass matrix
was not considered, nor was the possibility of VEVs
equalling zero (i.e. if Mij

‘ � 0, then it was assumed that
�ij1;2;:::;n � 0). With these assumptions, diagonal Higgs
transformations give the same mixing matrices as equiva-
lent nondiagonal representations (see Appendix B), so to
find the smallest symmetry group only diagonal trans-
formations were investigated. It is possible that a smaller
group than that listed could produce the mixing matrices
if there are cancellations or zero VEVs.

The smallest group that can give �13 � 0 is Z3, the
group of addition modulo 3. Z2 gives the same mixing
matrices that can be generated in the single Higgs doublet
case, as analyzed in Ref. [18] and are either unrestricted
or experimentally ruled out. This is shown in
Appendix C.

A. Examples of symmetry transformations

For seesaw neutrinos the mass matrices in the first row
of Table I can be generated by the Z4 transformation

A� �
i 0

0 �1

 !
; XL �

i 0 0

0 1 0

0 0 �i

0
BB@

1
CCA;

X‘R � X�R �

1 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA:

(36)
The first row of mass matrices in Table II can be
generated by the Z4 transformation

A� �
1 0

0 i

 !
; XL �

i 0 0

0 1 0

0 0 �i

0
BB@

1
CCA;

X‘R �

i 0 0

0 �i 0

0 0 �i

0
BB@

1
CCA; X�R �

i 0 0

0 i 0

0 0 �i

0
BB@

1
CCA:

(37)
For many cases the dimension-5 mass matrices require
larger symmetries or additional Higgs doublets. This is
because the seesaw and Dirac cases have extra freedom
due to the transformation of the right-handed neutrino.

The first row of matrices in Table I can be generated by
a Z7 transformation involving three Higgs doublets:
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A� �

1 0 0

0 /2 0

0 0 /

0
BB@

1
CCA; XL �

/6 0 0

0 1 0

0 0 /2

0
BB@

1
CCA;

X‘R �

/6 0 0

0 1 0

0 0 1

0
BB@

1
CCA;

(38)

where / � e2�i=7.

B. Mass and mixing angle relationships

Section III B established that none of the mass matrices
that give �13 � 0 can give a fixed atmospheric mixing
angle. In fact, it can be shown by diagonalizing the mass
matrices of Tables I and II, that the atmospheric mixing
angle is also unrelated to masses—it is a free variable for
all �13 � 0 cases.

In cases where a Majorana mass matrix is the source for
the solar mixing angle, the mixing angle can relate to the
masses. These cases are the Majorana neutrino matrices
from Rows 2– 4 and 5–8 of Table I.

The neutrino mass matrix of Rows 2 and 6 of Table I

A B 0
B 0 0
0 0 D

0
@

1
A; (39)

relate the masses and mixing angle by

tan2�sol �
2
�����������������
�m1m2

p

m1 �m2
: (40)

Using the approximate values for  m2
12 � 7:5� 10�5eV2

and �sol � 33�, the neutrino masses must be approxi-
mately hierarchical, with jm1j � 9� 10�3 eV, jm2j �
4� 10�3 eV, and jm3j � 0:04 eV. Rows 4 and 7 give
the same mass pattern except m1 andm2 are interchanged.

The mass matrices of Rows 5 and 8 are even more
constrained. There are only three free variables in these
neutrino mass matrices, and these free variables describe
two masses, the solar mixing angle and a contribution to
the atmospheric mixing angle. As a result the mixing
angles and masses must be related:

m1 �
1

2



jAj �

��������������������������������������������
jAj2 � 4	jBj2 � jCj2


q �
; (41)

m2 �
1

2



jAj �

��������������������������������������������
jAj2 � 4	jBj2 � jCj2


q �
; (42)

m3 � 0; (43)

tan	2�12
 �
2
������������������������
jBj2 � jCj2

p
A

; (44)
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tan�23� �
jCj
jBj

; (45)

where �23�, along with the diagonalization angle from the
charged-lepton mixing matrix form the atmospheric

mixing angle. To achieve  m2
12 �  m2

23, jAj �������������������������
jBj2 � jCj2

p
is required, and the neutrino mass matrix

becomes close to the partially form-diagonalizable ma-
trix of Eq. (24), giving very nearly maximal solar mix-
ing. This has been ruled out by experiment.

C. Flavor changing neutral currents

Models involving a number of Higgs doublets and
Abelian symmetries naturally predict flavor changing
neutral currents (FCNCs) for charged leptons and neu-
trinos [30], and the models presented in this paper are
likely to be no exception. However, it is possible that the
flavor symmetry somehow suppresses the FCNCs. Many
of the charged-lepton mass matrices listed in Tables I and
II only mix � and �, and do not mix electrons, meaning
that the most experimentally constrained FCNC pro-
cesses (such as � ! eee) are not allowed. However the
decay � ! ��� is allowed, and as large off-diagonal
elements in the Yukawa coupling matrices are required to
give large mixing angles, this transition is not likely
suppressed. However, it is possible that some action of
the flavor symmetry on the Higgs fields can prevent the
FCNCs from becoming too large.
V. CONCLUSION

The best fit neutrino mixing matrix Eq. (1) has a few
peculiar aspects; it is very different from the Cabibbo-
Kobayashi-Maskawa quark-mixing matrix, and it has
one maximal mixing angle and one minimal mixing
angle. It would be pleasing to find that this pattern can
be generated by a symmetry.

Earlier work [18] showed that unbroken lepton family
symmetries alone can only produce mixing matrices
which are not allowed experimentally. This paper contin-
ues the search for a symmetry explanation to the form of
the mixing matrix. The models considered are extensions
of the SM that include a number of Higgs doublets and
discrete Abelian symmetries that transform the Higgs
and lepton families.

Symmetries of this type can only fix mixing angles to
be zero or maximal, otherwise the angle can be any value
as it depends on the free parameters of the model. This is
due to the fact that all Abelian representations are equiva-
lent to diagonal representations. In the diagonal basis
Abelian symmetries can only dictate whether an element
in a mass matrix is zero or unrestricted; no relationships
between mass matrix elements can be generated, so only a
few form-diagonalizable mass matrices can be generated,
and most mixing angles are not fixed by the symmetry. A
073013
small number of Majorana mass matrices can generate
maximal mixing; however, this mixing cannot corre-
spond to the atmospheric mixing angle. The characteristic
of Eq. (1) that can be produced by Abelian family sym-
metries is �13 � 0. This requires at least two Higgs dou-
blets and a Z3 or larger family symmetry.

Although Abelian symmetries have limited ability in
predicting fixed mixing angles, symmetries can relate
lepton masses and mixing angles. For the cases where
�13 is forced to be zero, the solar mixing angle can be
related to neutrino masses. This relationship fixes the
neutrino mass pattern to be hierarchical.

Non-Abelian family symmetries may produce better
results, as they can relate different elements in the mass
matrices together, possibly creating form-diagonalizable
matrices that cannot be generated with Abelian groups.
Extending the Higgs sector by including triplet Higgs
fields to generate neutrino mass is also likely to increase
the possible types of mixing matrices.

The approach taken here, to find the minimal model
that explains the neutrino mixing matrix, has succeeded
in explaining one of the interesting aspects of the mixing.
However, the models that can explain �13 � 0 are not
particularly simple. Fixing this one variable requires
the introduction of extra Higgs doublets, which addition-
ally can lead to flavor changing neutral currents. These
results suggest that the minimal model route may not
readily yield a satisfactory explanation for the mixing
parameters. This could be a consequence of considering
neutrino mixing independently of other unresolved issues
in particle physics, such as mass hierarchy and quark
mixing. Perhaps the answer can only be found by finding
a model that simultaneously addresses several of these
problems.
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APPENDIX A: EQUIVALENT
REPRESENTATIONS OF THE LEPTON

TRANSFORMATIONS YIELD IDENTICAL
PREDICTIONS

Two equivalent representations for the fermion trans-
formations, AL; A‘R; A�R and BL; B‘R; B�R, are related by

BL � SyLALSL; (A1)

B‘R � Sy‘RA‘RS‘R; (A2)

B�R � Sy�RA�RS�R; (A3)

where SL; S‘R and S�R can be any 3� 3 unitary matrices.
-9
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1. Charged leptons

The Yukawa matrices arising from the B transforma-
tions are denoted by a B subscript. The restrictions from
the B transformations on the charged-lepton Yukawas
(from Eq. (10)) are

�B � By
LA

T
��BB‘R; (A4)

� SyLA
y
LSLA

T
��BS

y
‘RA‘RS‘R: (A5)

Rearranging gives

SL�BS
y
‘R � Ay

LSLA
T
��BS

y
‘RA‘R; (A6)

� AT�A
y
L	SL�BS

y
‘R
A‘R: (A7)

(XT
� commutes with Uy

LSL, as they operate in different
spaces).

The charged-lepton Yukawa restrictions for A trans-
formations are �A � AT�A

y
L�AA‘R. SL�BS

y
‘R has the same

restrictions from the symmetry as �A. As the mass ma-
trices are completely unconstrained apart from the gen-
eration symmetry constraints, we can set SL�BS

y
‘R � �A.

This means that the charged-lepton mass matrix from the
A representation can be given by

M‘A � �Ah�iT � SL�BS
y
‘Rh�iT � SLM‘BS

y
‘R: (A8)

If M‘A is diagonalized by UA
‘L, and UA

‘R, then M‘B will be
diagonalized by UB

‘L
� SyLU

A
‘L and UB

‘R � Sy‘RU
A
‘R.

2. Dimension-5 neutrino masses

Similarly, the conditions on the dimension-5 neutrino
coupling matrices mean we can identify

�A � SL�BS
T
L; (A9)

and the two mass matrices can be related by

M�A � h�iy�Ah�ii
� � h�iySL�BSTLh�ii

�

� SLh�iy�Bh�ii
�STL � SLM�BSTL: (A10)

M�A is diagonalized by UA
� , andM�B is diagonalized by

UB
� � SyLU

A
� , giving identical mixing matrices for the two

transformations,

UMNSB � UBy
‘L
UB
� � UAy

‘L
SLS

y
LU

A
� � UMNSA (A11)
3. Dirac neutrinos

The neutrino Yukawa restrictions for the two trans-
formations are related by SL�Dirac BS

y
�R � �Dirac A, and

the two mass matrices can be related by SLM�BS
y
�R �

M�A . This gives diagonalization matrices related by
UB
�L � SyLU

A
�L. The mixing matrix is, therefore, the
073013
same for both transformations:

UMNSB � UBy
‘L U

B
�L � UAy

‘L SLS
y
LU

A
�L � UMNSA (A12)
4. Seesaw neutrinos

The right-handed Majorana mass matrix is restricted
by Eq. (16), giving

MRB � BT�RMRBB�R � ST�RA
T
�RS

�
�RMRBS

y
�RA�RS�R;

(A13)

while MRA is constrained by MRA � AT�RMRAA�R. MRA

can be equated to S��RMRBS
y
�R, as they have the same

constraints from the symmetry.
The Dirac neutrino mass is as above: SLMDirac BS

y
�R �

MDirac A. The resultant neutrino mass matrix is

M�A � MDiracAM�1
RAM

T
DiracA � SLMDiracBM�1

RBM
T
DiracBS

T
L

� SLM�BSTL: (A14)

The seesaw mass matrices are related to each other in the
same way as the dimension-5 mass matrices. Using the
result from Sec. II A, the mixing matrices from the two
representations are equal.
APPENDIX B: EQUIVALENT
REPRESENTATIONS FOR THE HIGGS

TRANSFORMATION GIVE THE SAME MIXING
PREDICTIONS IN MOST CASES

Two equivalent representations for the Higgs transfor-
mations A� and B�, are related by

B� � SyA�S: (B1)

The Yukawa matrices arising from the A and B trans-
formation are denoted by an A or B subscript.

The charged-lepton Yukawa restrictions for the B
transformation are

�B � Xy
LB

T
��BX‘R; (B2)

� Xy
LS

TAT�S
��BX‘R: (B3)

Rearranging gives

S��B � Xy
LA

T
�S

��BX‘R: (B4)

The restriction from the A transformation is

�A � Xy
LA

T
��AX‘R: (B5)

�A has the same restrictions as S��B, so they can be
equal: �A � S��B. The mass matrix M‘A is a linear
combination of �1;2;::;n

A , therefore, it is also a linear com-
bination of �1;2;:::;n

B . If the symmetries do not dictate the
ratios between the Higgs VEVs (e.g., for two Higgs fields
h�0

1iB
h�0

2iB
and

h�0
1iA

h�0
2iA

are unfixed) then M‘B can be any linear
-10
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combination of �B, and M‘B can be any linear combina-
tion of �A. Therefore M‘B has the same restrictions from
the symmetry as M‘A, and the different equivalent repre-
sentations make the same predictions.

If there is a relationship between the VEVs, it is pos-
sible to get extra zeros in the mass matrices. This occurs
when the ijth elements of the � matrices are nonzero, but
Mij

‘ � h�0iT�ij � 0, due to a special relationship be-
tween the VEVs and elements in the � matrices. Also if
one of the VEVs from a particular representation is equal
to zero, then it is also possible for more zeros to be created
in the mass matrix.

The neutrino mass matrices are also unchanged by a
change of representation. Both M�A and M�B are linear
combinations of the same � matrices. The dimension-5
Higgs-neutrino coupling has

�B � Xy
LB

y
��BB

�
�X

�
L; (B6)

� Xy
LS

yA�S�BSTA�
�S

�X�
L; (B7)

	S�BST
 � Xy
LA�	S�BST
A�

�X
�
L; (B8)

so S�BST can be equated to �A, andM�A andM�B are both
linear combinations of �B matrices.

For Dirac neutrinos

�B � Xy
LB

y
��BX�R; (B9)

� Xy
LS

yAy
�S�BX�R; (B10)

	S�B
 � Xy
LA

y
�	S�B
X�R; (B11)

so S�B and �A can be equated, and M�A and M�B are
linear combinations of the same � matrices. Again, if the
ratios between the mass matrices are not defined by the
symmetry, any linear combination is a valid mass matrix,
therefore both mass matrices are constrained by the sym-
metry in the same way.

When there are cancellations or zero VEVs, the only
change to the mass matrix is some extra zero elements.
APPENDIX C: Z2 SYMMETRIES GENERATE
MIXING MATRICES THAT ARE EITHER RULED

OUT OR UNCONSTRAINED

Applying a Z2 Higgs transformation twice leaves the
Higgs fields unchanged, so for the mixing matrix to be
allowed by the no-go theorem of [18], X2

L � X2
‘R �

X2
�R � �I. For diagonal Higgs transformations, the com-

ponents of A� will also be 1 or �1. This appendix shows
that mass matrices generated by a Z2 transformation have
equivalent restrictions to mass matrices generated by
family symmetries when the Higgs field is not transform-
ing. These restrictions are M‘ � Xy

LM‘X‘R for charged
leptons, MDirac � Xy

LMDiracX�R for Dirac neutrinos, M� �
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Xy
LM�X�

L for dimension-5 neutrinos, and MR �
XT
�RMRX�R for right-handed Majorana neutrinos. These

situations have been ruled out by the theorem in [18].

1. Assuming no cancellations and no zero VEVs

Because of the result of Appendix B diagonal Higgs
transformations can be used, and A� can have 1 or �1 as
diagonal elements. For A� � I the Higgs fields do
not transform—this is equivalent to the single Higgs
field case. For A� � �I, the restrictions on the
charged-lepton Yukawas reduce from � � Xy

LA
T
��X‘R to

� � �Xy
L�X‘R—which is equivalent to a single Higgs

doublet scenario where the right-handed Higgs fields
transform with �X‘R. The dimension-5 neutrino restric-
tions do not change and the Dirac neutrino Yukawa re-
strictions are the same as the single Higgs case when the
right-handed neutrinos transform under �X�R.

When A� is made up of both 1’s and �1’s, the restric-
tions on the charged-lepton mass matrix are [from
Eq. (18)] Mij

‘ � 0 unless 	Xy
L


iiXjj
‘R � 1 or �1.

This condition holds for all i and j, so the charged-
lepton mass matrix is unrestricted by the symmetry. The
restrictions on a dimension-5 neutrino mass matrix are
similar [from Eq. (20)]; Mij

� � 0 unless 	Xy
L


iiX�jj
L � 1 or

�1, which also will hold for all i and j, meaning that the
neutrino mass matrix is also unrestricted by the
symmetry.

Dirac neutrinos will also be unrestricted, and as a
result, the seesaw neutrinos will be unrestricted by the
symmetry.

2. Including the possibility of cancellations

a. Charged leptons

Cancellations in the charged-lepton mass matrix
means that for some i, j, M‘ij � �1

ijh�1i � �2
ijh�2i �

::: � 0, while the �ij are nonzero. This will only occur
for particular ij’s where there is a certain relation-
ship between the �’s, and the VEVs. For Z2 Higgs trans-
formations there can be only two possible relationships:
(i) �
-11
ij � AT��ij, which occurs when 	Xy
L


iiXjj
‘R � 1. If

there is a cancellation for thisYukawa relationship,
the cancellations add zeros into the mass matrix
in exactly the same way as the condition
M‘ � �Xy

LM‘X‘R.

(ii) �
ij � �AT��ij, which occurs when 	Xy

L

iiXjj

‘R �
�1. If this relationship led to a cancellation, the
restrictions on the mass matrix would be identical
to the conditions from M‘ � Xy

LM‘X‘R.
b. Dimension-5 neutrinos

If there is cancellation in the neutrino mass matrix, the
cancellation will occur for one of two relationships be-
tween the coupling matrices.
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(i) C
ancellation when �ij � Ay
��

ijA�
� is equivalent to

the restriction M� � �Xy
LM�X

�
L.
(ii) C
ancellation when �ij � �Ay
��

ijA�
� is equivalent

to the restriction M� � Xy
LM�X�

L.

All combinations of charged-lepton mass matrix re-

strictions and neutrino mass matrix restrictions are the
same as restrictions for single Higgs field cases.

c. Dirac neutrinos

The two relationships between the Yukawa coupling
terms are �ij � �A��ij.
(i) C
ancellation when �ij � �A��ij is equivalent to
M� � �Xy

LM�X�R.

(ii) C
ancellation when �ij � �A��

ij is equivalent to
the restriction M� � Xy

LM�X�R.

All combinations of neutrino and charged-lepton mass

matrix restrictions are equivalent to single Higgs cases, in
the same way as the dimension-5 neutrinos.

d. Seesaw neutrinos

The cancellation in the Dirac neutrino mass matrix is
just the same as above, the heavy Majorana mass matrix
is restricted by the symmetry by MM � Xy

�RMMX�
�R . The

constraints from all cancellation possibilities are identi-
cal to restrictions from single Higgs doublet cases .

3. Zero VEVs

If the Higgs transformation is diagonal, and h�0
1i � 0,

then the mass matrix is a linear combination of �2;3;:::n,
which obey A"�X

y
L�

"X‘R � �", where " is the Higgs
family index ranging from 2 to n. These restrictions are
identical to a case with one fewer Higgs field.

For a nondiagonal Higgs transformation, the different
� matrices are related by � � Xy

LA
T
��X‘R. For Z2 trans-

formations this reduces to �ij � AT��ij if 	Xy
L
iiX

jj
‘R �

�1, and �ij � �AT��ij if 	Xy
L
iiX

jj
‘R � �1—these are

just two sets of simultaneous equations. If the equations
allow one or more of �2;3;::;n to be nonzero, the M‘ij is
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nonzero, otherwise the element of the mass matrix will be
zero.

There are four possibilities:

(i) M
-12
‘ij � 0 if 	Xy
L
iiX‘Rjj � 1 otherwise M‘ij is un-

restricted. This is the same restriction as
M‘ � �Xy

LM‘X‘R.

(ii) M
‘ij � 0 if 	Xy

L
iiX‘Rjj � �1 otherwise M‘ij is
unrestricted. This is the same restriction as
M‘ � �Xy

LM‘X‘R.

(iii) M
‘ij � 0 for all 	Xy

L
iiX‘Rjj.

(iv) M
‘ij is unrestricted for all 	Xy

L
iiX‘Rjj.

For Dirac neutrinos the situation is similar. The �Dirac

matrices are related by �Dirac � Xy
LA

y
��X�R. The same

four possible restrictions arise: MDirac � �Xy
LMDiracX�R,

MDirac � �Xy
LMDiracX�R, MDirac is unrestricted, and

MDirac � 0.
For neutrinos with masses due to a dimension-5 opera-

tor, the � matrices are related by � � Xy
LA

y
��A

�
�X

�
L. The

possible restrictions on the neutrino mass matrix are
M� � �Xy

LM�X
�
L, M� � �Xy

LM�X
�
L, M� is unrestricted,

and M� � 0.
A right-handed Majorana mass matrix is unaffected

by the VEVs, so the usual restriction applies:
MR � XT

�RMRX�R.
The combinations of neutrino and charged-lepton mass

matrix restrictions give four possibilities: The restric-
tions are identical to single Higgs field cases, the neutri-
nos are massless, the charged leptons are massless, or the
mixing matrix is unconstrained by the symmetry.
Therefore a Z2 transformation predicts mixing matrices
that are either ruled out or unconstrained by the
symmetry.

Note that this does not mean that groups which have Z2

as a subgroup can be ruled out. If the Z2 subgroup gives
mixing matrices that are not allowed, then the group is
ruled out. However, if the Z2 subgroup leaves the masses
and mixing angles unrestricted, then the group is still
allowed.
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