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As a result of the identification of the solution to the solar neutrino problem, a rather precise relation
�sun � �C � �=4 between the leptonic 1-2 mixing angle �sun and the Cabibbo angle has emerged. It
would mean that the lepton and the quark mixing angles add up to the maximal, suggesting a deep
structure by which quarks and leptons are interrelated. We refer to the relation as ‘‘quark-lepton
complementarity’’ (QLC) in this paper. We formulate general conditions under which the QLC relation
is realized. We then present several scenarios which lead to the relation and elaborate on phenomeno-
logical consequences which can be tested by the future experiments. We also discuss implications of the
QLC relation for the quark-lepton symmetry and the mechanism of neutrino mass generation.
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I. INTRODUCTION

The most distinct feature of the lepton flavor mixing is
the existence of two large mixing angles in the Maki-
Nakagawa-Sakata (MNS) matrix [1], which is in sharp
contrast to the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing [2]. One of the large angles comes from
the atmospheric neutrino experiments [3] which have
discovered the neutrino oscillation [1,4], whereas the
other one comes from the solar [5] and the reactor neu-
trino observations [6]. The atmospheric mixing is sus-
pected to be maximal or close to the maximal, though the
experiment gives only a mild constraint 36� � �23 � 54�

[7]. On the other hand, the solar angle �12 is known to be
away from the maximal mixing value [8,9].

It was realized a long time ago that the large mixing
angle required for a solution of the solar neutrino problem
may appear as a difference between the maximal mixing
angle �=4 and the Cabibbo angle �C, so that

�sun � �C �
�
4
; (1)

or tan2�sun � 1= tan2�C [10]. The equality holds with a
rather high accuracy as became clear by accumulating
data of the solar neutrino experiments [11]. Indeed, the
global fit of the solar neutrino and KamLAND results
gives [8,9,12,13]

�sun � 32:3� � 2:4� �1��: (2)

Taking the Cabibbo angle at the Z0 pole

�C � 12:8� � 0:15�; (3)

we obtain

�sun � �C � 45:1� � 2:4� �1��: (4)

In terms of the oscillation observable the relation can
be expressed as
04=70(7)=073009(12)$22.50 70 0730
sin2
�
�
4
� �C

�
� 0:284� 0:002;

sin2�sun � 0:286� 0:038;
(5)

so that

�sin2�12 	 sin2�sun � sin2
�
�
4
� �C

�
� 0:002� 0:040:

(6)

The deviation of the central value is well within the
present experimental errors at 1� confidence level (CL).
Notice that the best fit values of the solar angle from
analyses of different groups have a very small spread:
�sun � 32:0�–33:2�. This shows stability of the result and
may indicate that the true value of �sun is indeed in this
narrow interval, unless some systematic shift in the ex-
perimental data is found. With this interval we obtain for
the sum of the best fit angles

�sun � �C � 44:8�–46:0�: (7)

The equality (1) relates the 1-2 mixing angles in quark
and lepton sectors, and if not accidental, implies certain a
relation between quarks and leptons. It is very suggestive
of a bigger structure in which quarks and leptons are
complementary. The equality probably means a quark-
lepton symmetry or quark-lepton unification [14] in some
form. It may be considered as evidence of the grand
unification, and/or certain flavor symmetry [15]. If not
accidental, it can give clues to understand the fermion
masses in a general context. In what follows we will call
the equality (1) the quark-lepton complementarity (QLC)
relation.

In this paper, we try to answer the following questions:
Can the QLC relation not be accidental? What are the
general conditions for the QLC relation? What is the
underlying physical structure and the resultant scenarios
that satisfy the conditions? What are the experimental
predictions of these scenarios and how can they be tested?
09-1  2004 The American Physical Society
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As a whole, we explore experimental consequences and
theoretical implications of the QLC relation.

The paper is organized as follows. In Sec. II we for-
mulate general conditions for the QLC relation. In
Secs. III and IV we elaborate on various scenarios which
realize the relation (1). In Sec. III a possibility of ‘‘bi-
maximal minus CKM mixing’’ is studied. In Sec. IV we
consider single-maximal mixing scenarios. In Sec. V the
predictions of various scenarios are summarized. In
Sec. VI we give a summary with brief comment on how
to test them experimentally. Some theoretical implica-
tions of the QLC relation and heuristic remarks are also
presented.

In Secs. III and IV we give a detailed and comprehen-
sive description of possible phenomenological scenarios
providing for each case with comments on implications
for neutrino mass matrix and quark-lepton symmetry. For
those who want to avoid these details we recommend,
after reading Sec. II, to go directly to Sec. V in which an
overview of phenomenological aspects of our results are
summarized, in particular, in Table I. One can go back to
Secs. III and IV for details of particular scenarios.
II. GENERAL CONDITIONS FOR THE QUARK-
LEPTON COMPLEMENTARITY RELATION

The lepton mixing matrix UMNS is defined as

UMNS � Uy
eU�; (8)

where Ue and U� are the transformations of the left-
handed components which diagonalize the mass matrices
of the charged leptons and neutrinos, respectively. In the
standard parametrization [16] the MNS matrix reads1

UMNS � R23�l
R13R12; (9)

where Rij is the matrix of rotation in the ij plane. In this
form, the angle of 1-2 rotation is identified with the solar
angle, �12 � �sun, the angle of 2-3 rotation—with the
atmospheric angle, �23 � �atm, and �13 —with the angle
restricted by the CHOOZ experiment [18]. The matrix
with the CP-violating phase is parametrized as

� 	 diag�1; 1; eil�:

To identify the mixing angles with those measured in
experiments one should reduce a given mixing matrix to
the form (9).

Let us formulate general conditions which lead to the
QLC relation.
1While the form in (9) utilizes a slightly nonstandard way of
introducing a CP-violating phase into the MNS matrix [17], it
can be shown that the correspondence of the angles with the
experimental observable is the same as those of the standard
parametrization [16].

073009
A. Single maximal or bimaximal

In principle, it is enough to have a single-maximal
mixing, that is Rm

12 	 R12��=4�, to realize relation (1).
However, the existence of maximal or near maximal
2-3 leptonic mixing hints that the whole pattern of fer-
mion mixings may be generated as a combination of no
mixing, a maximal, and the CKM mixings. Namely, we
comment on the scenario characterized by

“ bimaximal minus CKM mixing:” (10)

Because it is very predictive and the easiest to test ex-
perimentally, it deserves a separate description from
more general cases. A possibility of the lepton mixing
as a small deviation from the bimaximal mixing [19] has
been extensively discussed recently [20] but without iden-
tification of a small deviation with the quark mixing. See,
however, the first reference in [20]. Relation (1) allows one
to restore the bimaximal mixing [19] as the element of
underlying theory [15].

It should be stressed [21] that the present data do not yet
give a strong bound on deviation of 2-3 mixing from the
maximal, which can be characterized by

D23 	 0:5� sin2�23: (11)

It is constrained by jD23j � 0:16 or jD23j=sin2�23 � 0:47
at 90% CL [7]. Furthermore, the latest analysis (without
renormalization of the original fluxes) shows some excess
of the e-like events at sub-GeVenergies and the absence of
excess in the multi-GeV sample, thus giving a hint to
nonzero D23 [22].

In the scenario (10), one expects the deviation to be
small: �=4� �23 & �CKM

23 , or

jD23j & sin�CKM
23 � Vcb ’ sin2�C ’ 0:04: (12)

For specific scenarios see Sec. III. The next generation
long-baseline experiments, in particular, the J-PARC-SK,
will be sensitive to jD23j � 0:05 [23–25]. Also it would be
a challenge for the future atmospheric neutrino experi-
ments to achieve the required sensitivity. Establishing the
deviation from the maximal mixing to be more signifi-
cant than the one in (12) will exclude the scenario (10).

If the bimaximal scenario is not realized and D23 is
large, an additional 1-3 rotation (apart from 1-3 CKM
rotation) should be considered. Indeed, generically, the
same symmetry (e.g., Z2) leads to the maximal 2-3 mix-
ing and simultaneously vanishing 1-3 mixing [26].
Therefore, the deviation from the maximal 2-3 angle,
D23, which implies violation of the symmetry, should
also be accompanied by a nonzero 1-3 mixing. In this
case, predictability will be lost unless one imposes the
condition that such an additional 1-3 rotation is very
small.
-2
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B. Order of rotations

To reproduce the equality (1) exactly one needs to have
the following order of rotations:

UMNS � � � �Rm
23 � � �R

CKMy
12 Rm

12 or

UMNS � � � �Rm
23 � � �R

m
12R

CKMy
12 :

(13)

That is, the maximal and the CKM rotations must be
attached to each other. Here, RCKM

ij 	 Rij��
CKM
ij � describes

the CKM rotation in the ij plane, and Rm
ij denotes the

maximal mixing rotations, Rm
ij 	 Rij��=4�. In (13) ‘‘� � �’’

denotes possible insertion of the CKM rotations, RCKM
23

and RCKM
13 . (A similar structure holds also in the case that

R23 is not maximal.) The complete CKM matrix is pa-
rametrized as

VCKM � RCKM
23 �q

RCKM
13 RCKM

12 : (14)

The reversed ordering of maximal mixing rotations in
(13), namely Rm

12 � � �R
m
23, would lead to an unacceptably

large 1-3 mixing: sin�13 � 0:5 and incorrect 1-2 mixing,
�sun � �=6� �C, after reducing the mixing matrix to the
form (9).

Two other CKM rotations, RCKM
23 and RCKM

13 , can be
located in any place indicated by dots. Their effect on
the relation (1) is negligible even if they are situated on
the right-hand side (RHS) of the combinations in (13) or
between two 1-2 rotations. The largest possible deviation
appears for the case Rm

12R
CKMy
12 RCKM

23 which, however,
reduces to a small unobservable correction:

sin 2�sun ! sin2�sun�1� V2
cb�; (15)

where sin�CKM
23 � Vcb � 0:04 (�CKM

23 � 2:3�). In what fol-
lows we will neglect these types of corrections to the 1-2
mixing. However, the position of small CKM rotations
can become important for other observables such as Ue3
or the deviation of the 2-3 mixing from the maximal one.

We will also consider the combination

UMNS � � � �RCKMy
12 Rm

23 � � �R
m
12 (16)

which is not excluded experimentally, though leading to
the QLC relation (1) only in an approximate way.

C. CKM matrix and the quark-lepton symmetry

The natural framework in which the CKM angles
appear in the lepton mixing is the quark-lepton symme-
try [14] according to which in a certain basis

V� � Vu � VCKMy or Vl � Vd � VCKM: (17)

Then according to the definition (8) in both cases the
CKM matrix will appear in the leptonic matrix as a
Hermitian conjugate,
073009
UMNS / � � �VCKMy � � � � � � �RCKMy
12 RCKMy

13 RCKMy
23 � � � :

(18)

Therefore, some permutations of RCKMy
12 and other matri-

ces are necessary which lead to a violation of the exact
relation (1). The smallest corrections are produced when
only Rm

12 appears right next to VCKMy on the RHS of the
mixing matrix (13). In this case �sin2�12 � sin�CV

2
cb.

It is possible that the quark-lepton connection is not
realized in a straightforward way as in (17). The Cabibbo
angle could be the universal parameter which controls the
whole structure of fermion masses and therefore appears
in many places such as mass ratios and mixing parame-
ters (see Sec. VI).

D. Naturalness

In underlying models one expects that some deviation
from the exact QLC relation always exists. It can be
parametrized as

�sun �
�
4
� �C � ��12�Xi�; (19)

where Xi denote parameters of a model. Note that
�sin2�12 � sin2�sun��12. Then, one should require that
��12�Xi� is very small in whole allowed ranges of the
parameters Xi. Otherwise, the QLC relation appears as a
result of fine-tuning of several parameters and in this
sense turns out to be unnatural or accidental.

This leads to immediate and nontrivial conditions:
��12�Xi� should not depend on the masses of quarks and
leptons or the dependence must be weak. Indeed, masses
of down quarks and charged leptons for the first and the
second generations (which are relevant here) are substan-
tially different. Therefore, one would not expect an ap-
pearance of the same mixing angle �C in the quark and
the lepton sector. The quark-lepton symmetry should be
realized in terms of mixings and not masses.

E. Effect of CP violation

Diagonalization of the neutrino and charge lepton mass
matrices can lead to the CP-violating phases in Ul and U�
(which eventually will be reduced to the unique phase l
in UMNS). This can be described by the phase matrices

�0 � diag�ei
0
; 1; ei�

which appear in various places of the products (13). To
keep the equality (1), the matrices �;0 should not be
between RCKM

12 and Rm
12, or the corresponding phases

should be small enough. Indeed, the structure
Rm

12�00R
CKM
12 leads to

�sin2�12 �
1
2 sin2�C�1� cos0�: (20)

We find that the QLC relation (1) is satisfied within 1�,
provided that 0 < 34�.
-3
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With the additional phase 0, the QLC relation (1)
appears as a result of fine-tuning of the parameters and
therefore is not natural. Hence, we restrict ourselves into
the choice � 	 diag�1; 1; ei� in the rest of the paper.
Then, the place where we can insert the phase matrix is
unique: it can be easily checked that all other possible
insertions either can be reduced to this possibility or lead
to zero CP violation.

Furthermore, the  dependence comes into expressions
of the various mixing matrix elements and the Jarlskog
invariant only together with jVcbj ’ 0:04. Indeed, in the
limit of zero rotation RCKM

23 � 1 (and RCKM
13 � 1) the

mixing matrices UMNS (13) and (16) are reduced to

Rm
23R

m
12R

CKMy
12 or RCKMy

12 Rm
23R

m
12: (21)

In both cases any insertions of the phase matrices � will
not lead to the physical CP violation phase. Therefore, in
the limit Vub � 0 the CP-violation effects (Jarlskog in-
variant) are proportional to Vcb:

Jlep 	 Im�U�iU�
�iU

�
�jU�j� / Vcb: (22)

We note in passing that if VCKM is the only origin of the
CP violation, namely, if  � 0, we obtain generically

sinl �
Vub

Ue3
sinq; (23)

where q is the phase in the CKM matrix. Since Ue3 can
be larger than Vub due to the contribution induced by
‘‘permutations,’’ the leptonic CP violation phase is
strongly suppressed in this case. Induced CP violation
associated with  can be much larger.

F. Renormalization group effect

The QLC relation (1) holds at low energies. However,
the quark-lepton symmetry (unification) which leads to
(1) is realized most probably at some high-energy scales,
e.g., the grand unification scale. To guarantee the QLC
relation at high energies one should require that the
renormalization group effects on the equality from this
high scale to the low energy scale are small. In the
standard model (SM) or minimal supersymmetric stan-
dard model (MSSM) the renormalization of the Cabibbo
angle is indeed small. For instance, in MSSM with
tan� � 50 the parameter sin�C decreases from 0.2225 at
the mZ down to 0.2224 at the 1016 GeV [27].

The renormalization effect on the leptonic �12 depends
on the type of mass spectrum of light neutrinos. For the
spectrum with normal mass hierarchy, m1 <m2 � m3,
the effect is negligible. In contrast, in the case of the
quasidegenerate spectrum, m1 � m2 � m3 � m0, or the
spectrum with inverted mass hierarchy the effects can be
large [28].

In the limit of small 1-3 mixing �13 � 10�, the run-
ning is determined by [29]
073009
d�12

dt
� �

Cy2!
32�2 sin2�12sin

2�23
jm1e

i"1 �m2e
i"2 j2

�m2
sun

;

(24)

where t 	 ln�$=$0�, $ is the renormalization scale, C �
1 in the MSSM, and C � �3=2 in the SM; y! is the
Yukawa coupling of the tau lepton:

Cy2!
32�2

�

�
0:3� 10�6; SM;

0:3� 10�6�1� tan2��; MSSM;
(25)

and tan� is the usual ratio of the vacuum expectation
value (VEV)’s. In Eq. (24) "1 and "2 are the Majorana
phases of the eigenstates �1 and �2. According to (24),
the running effect is proportional to the absolute mass
scale squared and the relative phase difference: _�12 �
m2

0 cos�"2 �"1�=2. In SM and in MSSM with tan�<
10 the corrections are small even for the quasidegenerate
mass spectrum. In MSSM with large tan� ( tan� � 50)
one finds that ��12 � �12 even for the common scale
m0 � 0:1 eV [29] as a result of running from the scale
of the RH neutrinos (1010–1012 GeV) or the grand unified
theory (GUT) scale. Clearly, such a large correction
destroys the QLC relation, which leads us to the following
conclusions:

(1) The QLC relation is not violated by the renormal-
ization effect in the SM and in the MSSM with small tan�
even for the quasidegenerate mass spectrum of neutrinos.

(2) In the MSSM with large tan� and the quasidegen-
erate mass spectrum the corrections are in general large.
Furthermore, the corrections depend on other continuous
(and presently unknown) parameters: "i, m0 (and also
�13), so that the QLC relation would require fine-tuning of
several parameters. Therefore, the QLC relation, once it is
established with a good accuracy, testifies against such
models, unless the required tuning is a natural outcome of
an additional symmetry. Notice that according to (24),
the corrections can be strongly suppressed if the quasi-
degenerate mass eigenstates �1 and �2 have opposite CP
parities: "2 �"1 � � [28].

(3) In some cases the renormalization effect can help to
reproduce the QLC relation (see Sec. III A).

G. Basis dependence

The form of the mass matrices and diagonalizing ro-
tations depend on the basis of the quark and lepton states.
Let us introduce a basis called the symmetry basis by
which a symmetry that determines the structure of mass
matrices is defined. (In some publications this basis is
named as the Lagrangian basis.)

In the symmetry basis, both the neutrino and the
charged fermion mass matrices, in general, are not di-
agonal and therefore both produce rotations which make
up the MNS matrix. In what follows we will consider
several realizations of the structure of lepton mixing
matrix, (13) and (16). They differ by the origin of the
-4
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large (maximal) angle rotations: the neutrino or the
charge lepton sectors. These different realizations have
different theoretical and experimental implications.
III. BIMAXIMAL MINUS CKM MIXING

In this section we will consider different realizations of
the possibility (10) in which only maximal mixings and
the CKM rotations are involved in the formation of the
fermion mixing matrices.

A. Bimaximal mixing from neutrinos

Let us assume that in the symmetry basis the bimax-
imal mixing originates from the neutrino mass matrix,
whereas the charged lepton mixing matrix coincides with
the CKM matrix:

U� � Rm
23R

m
12; Ul � VCKM: (26)

Then the lepton mixing matrix equals

UMNS � VCKMy�R
m
23R

m
12

� RCKMy
12 RCKMy

13 RCKMy
23 �Rm

23R
m
12; (27)

where we have introduced the phase matrix � following
our general prescription described in Sec. II.

In the quark sector we have

Vu � I; Vd � VCKM; (28)

so that the second equality in (26) implies the quark-
lepton symmetry relation, Vl � Vd. We also assume that
the neutrino Dirac matrix is diagonal due to the equality

mD
� � mu: (29)

Then, the bimaximal rotation of neutrinos follows from
the seesaw mechanism [30] and the specific structure of
the mass matrix of RH neutrinos. Notice that the bimax-
imal mixing can be related to the quasidegenerate type
mass spectrum of neutrinos. Such a possibility for the
bimaximal neutrino mixing and general matrix Ul, not
necessarily related to VCKM, has been discussed recently
in [20].

The problem in this scenario is that in spite of the
equality Vd � Vl the mass eigenvalues are different:
mdiag

d � mdiag
l , where mdiag

l 	 diag�me;m$;m!�. There-
fore, the mass matrices are also different. Some special
conditions have to be met for the matrices such that they
produce the same mixing despite the different eigenval-
ues. A possibility is the singular mass matrices for which
different (strong) mass hierarchies can be reconciled with
approximate equality of the mixing matrices [31].

Let us discuss the phenomenological consequences of
this scenario.

(1) The mixing matrix (27) does not satisfy the con-
ditions (13) and therefore the relation (1) receives correc-
tions
073009
sin�sun � sin
�
�
4
� �C

�
�

sin�C
2

�
���
2

p
� 1� Vcb cos�:

(30)

Numerically, we obtain for �sun

�sun � 35:4� � 0:3�; sin2�sun � 0:335� 0:005;

(31)

and for the deviation parameter

�sin2�12 � sin�sun sin�C�
���
2

p
� 1� jVcbj cos�

� 0:046� 0:056; (32)

where the intervals indicate uncertainty due to the un-
known phase . The deviation in (32) is 15%–20%. It
corresponds to �sun � �C � �

4 ’ 2:9�–3:6�. Therefore, one
needs to measure sin2�sun with better than 10% accuracy
to establish this difference. According to the estimations
given in [32], the future solar neutrino and the
KamLAND experiments may have a sensitivity of
’4% to sin2�sun, provided that �13 is measured, or se-
verely restricted. The sensitivity of a dedicated reactor �12

experiment can reach ’ 2% [33]. The errors quoted are at
the confidence level of 1�. So with such an accuracy the
equality (30) can be established at about �4–5��.

(2) For 1-3 mixing we obtain

sin�13 � �
1���
2

p sin�C�1� jVcbj cos� � Vub; (33)

where the first dominant term is induced by permutation
of the Cabibbo rotation RCKM

12 with the nearly maximal
2-3 rotation.

The two elements of UMNS, jUe3j and jU$3j, are con-
nected by a simple relation

jUe3j
2 � tan2�CjU$3j

2 (34)

which does not depend on  and ��23 (the latter is taken to
be �=4 in this section), and represents the characteristic
feature of the scenario of bilarge mixing from neutrinos
(see Sec. IV). Using the Super-Kamiokande bound [7]
0:34 � jU$3j

2 � 0:66, we obtain the prediction for
jUe3j

2:

sin 2�13 � 0:026� 0:008 (35)

which is just below the CHOOZ bound and falls into the
region of sensitivity of the next generation accelerator
[23,34–37] and the reactor experiments [38,39].

(3) The deviation of 2-3 mixing from the maximal can
be written as

D23 �
1
2sin

2�C � cos2�CjVcbj cos; (36)

where the two terms are of the same order. Numerically it
gives

D23 � 0:025� 0:039; (37)
-5
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and the interval is due to the unknown CP-violating
phase. The maximal possible value of D23 is at the level
of sensitivity of the J-PARC experiment [23].

(4) For the leptonic Jarlskog invariant we obtain

Jlep �
1

8
���
2

p sin2�CjVcbj sin ’ 1:5� 10�3 sin: (38)

It is a factor of ’ 30 smaller than the maximal value of
Jlep allowed by the CHOOZ constraint:

Jmax
lep ’ 0:04 sin: (39)

We note that Jlep vanishes in the two-flavor limit �13 ! 0,
as it should, because the limit implies �C ! 0 (ignoring
Vub), as one can see from (33).

The smallness of Jlep in (38) despite the relatively large
sin�13 means that the way of introducing the CP-violating
phase  in (27) is not quite general. As we have shown in
Sec. II D the induced part is proportional to Vcb and if the
CKM matrix is the only source of CP violation the
resultant leptonic CP violation is extremely small.

Let us consider a possibility that the value of �12 given
in (31) is realized at high-energy scale, and it diminishes
when running from high- to low- energy scales. So the
better agreement with the QLC relation is achieved at the
electroweak (EW) scale. As we have discussed in
Sec. II E, a substantial effect due to renormalization can
be obtained in the MSSM with large tan� and quaside-
generate neutrino mass spectrum. In this case, however,
running toward low energies leads to an increase of �12,
as follows from (24) for negligible sin�13. Therefore, to
diminish �12, one needs (i) to suppress the main term
given in (24), and (ii) to take into account the effect due
to nonzero 1-3 mixing. The former can be reached in the
case of opposite CP parities of �1 and �2. As far as the
latter is concerned, it was shown in [29] that if "2 �
"1 � � the decrease of �12 by 3�–5� can be easily
achieved by running down from �1010–1013� GeV for
�13 � 5�–10�.

B. Bimaximal mixing from charged leptons

Let us assume that the bimaximal mixing appears from
diagonalization of the charged lepton mass matrix,
whereas the CKM rotation originates from the neutrino
sector:

V� � VCKMy; Vl � Rmy
12 R

my
23 : (40)

This possibility has been suggested in [15]. Our predic-
tions, however, differ from those obtained in [15].

Notice that in Ul the 1-2 and 2-3 rotations need to be
permuted in comparison with the standard definition of
the bimaximal matrix to produce the correct order of
rotations in UMNS. The lepton mixing matrix with the
CP phase  is given by
073009
UMNS � Rm
23�Rm

12V
CKMy

� Rm
23��R12��=4� �CKM

12 �RCKMy
13 RCKMy

23 : (41)

In the quark sector we assume the left rotations

Vu � VCKMy; Vd � I: (42)

The former relations in (40) and (42) imply the quark-
lepton symmetry, V� � Vu. This in turn can originate
from the equality of the up quark and the neutrino
Dirac mass matrices, mu � mD

� as in (29), under the
assumption (in the seesaw context) that the Majorana
mass matrix of the RH neutrinos does not produce any
additional rotations [15]. However, the latter equalities in
(40) and (42) require a departure from the simple quark-
lepton symmetry. They can be easily accommodated in
the ‘‘lopsided’’ schemes [40] of the SU(5) GUT. However,
the relation (29) is not explained in SU(5). In SO(10)
models which naturally lead to (29), on the other hand,
the lopsided scenario requires further complications. The
scenario does not appear to follow naturally from the
grand unified models. Notice that the problem of equal
mixings but different masses outlined in Sec. III A exists
here also: In the basis where md and ml are diagonal, that
is Vd � Vl � I, the eigenvalues of the mass matrices are
different. In other words the question is why md and ml
are diagonal in the same basis.

Let us spell out the consequences of the lepton bimax-
imal scenario.

(1) The matrix (41) reproduces the relation (1) almost
exactly,

sin�sun � sin
�
�
4
� �C

�
�

1

2
sin�sunjVcbj

2

� cos�sunjVcbjjVubj: (43)

Numerically we obtain

�sin2�12 � �sin2�sunjVcbj
2 ’ �6� 10�4 (44)

and ��12 � 0:04�.
(2) For 1-3 mixing we have

sin�13 � � sin�sunjVcbj � cos�sunjVubj � � sin�sunjVcbj;

(45)

where the induced (by the permutation of matrices) first
term dominates. Equation (45) leads to a very small value,
jUe3j

2 ’ 5� 10�4, or sin22�13 � 1:9� 10�3 (�13 �
1:2�). It is beyond reach of the proposed superbeam
experiments and may be reached only by the neutrino
factory [41]. We note that Ue3 being of the order &2 in the
Wolfenstein parametrization [42], our result (45) differs
from the estimation made in [15].

(3) The 2-3 mixing angle is determined, ignoring the
terms of the order jVcbj

2, by
-6
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sin�23 � sin
�
�
4
� �CKM

23

�
�

1���
2

p �1� cos�sun cos�jVcbj:

(46)

The second term on the RHS of (46) is small, and the
relation �23 � �=2� �CKM

23 is satisfied with a good accu-
racy though it is not as precise as claimed in [15]. We find
0:995 � sin22�23 � 1:0. The deviation from maximal
mixing,

D23 � cos�sunjVcbj cos � 0:035 cos; (47)

is relatively large at  ’ 0.
(4) The Jarlskog invariant equals

Jlep � �1
2 cos�sunsin

2�sunjVcbj sin��5� 10�3 sin:

(48)

Its absolute value is larger than that in the neutrino
scenario of Sec. III A, but is an order of magnitude
smaller than Jmax

lep (39).

C. Hybrid scenario

The maximal 1-2 and 2-3 mixings may come from
different mass matrices. To keep the correct order of these
rotations in the MNS matrix (13), we have to assume that
in the symmetry basis the maximal 1-2 mixing originates
from the neutrino mass matrix, whereas the maximal 2-3
mixing is generated by the charged lepton mass matrix.

The CKM rotation can come from neutrinos or charged
leptons and also a mixed version is possible. We discuss
only the former two cases. In the first case, we have the
CKM mixing from the neutrino mass matrix:

U� � VCKMyRm
12; Ul � Rmy

23 : (49)

For quarks we take equalities (42) as in the ‘‘charged
lepton’’ scenario.

This possibility looks more appealing than the second
one. A realization can be as follows. In the symmetry
basis due to the quark-lepton symmetry we have (29),
mu � mD

� . This leads to the rotation which diagonalizes
the neutrino Dirac mass matrix:

VD
� � Vu � VCKMy: (50)

The maximal 1-2 rotation, Rm
12, is the outcome of the

seesaw mechanism. It can be generated by the pseudo-
Dirac (off-diagonal) 1-2 structure of the Majorana mass
matrix of the RH neutrinos [10]. As a result, the rotation
matrix (49) is reproduced. For the charged leptons and
down quarks one should assume the lopsided scenario
with a single-maximal mixing. Here, the quark-lepton
symmetry is broken.

In the second case, the CKM mixing comes from the
charged leptons:

U� � Rm
12; Ul � VCKMRmy

23 : (51)
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Both of the scenarios lead to the identical MNS matrix

UMNS � Rm
23V

CKMyRm
12 � Rm

23�R
CKMy
12 RCKMy

23 Rm
12; (52)

where we have ignored the RCKM
13 rotation.

Below we summarize the predictions of the hybrid
scenario. The QLC relation (1) is satisfied to a good
accuracy:

sin�sun � sin
�
�
4
� �C

�
�

1

2
���
2

p sin�CjVcbj
2; (53)

�sin2�12 �
1���
2

p sin�sun sin�CjVcbj
2 ’ 1:4� 10�4: (54)

The 1-3 mixing angle is very small:

sin�13 � sin�CjVcbj ’ 9:1� 10�3 (55)

which corresponds to sin22�13 � 3:3� 10�4. The predic-
tion for D23 reads

D23 � cos�CjVcbj cos ’ 0:04 cos: (56)

It is almost identical to the one in the lepton bimaximal
scenario (47) but with replacing cos�sun by cos�C. For the
Jarlskog invariant we obtain

Jlep �
1
4 sin�C cos2�CjVcbj sin ’ 2:1� 10�3 sin: (57)
IV. SINGLE-MAXIMAL MIXING

To reproduce the QLC relation (1), it is sufficient to
have a single-maximal mixing in 1-2 rotation (Sec. II).
We discuss in this section the three scenarios which differ
by the origin of large but not maximal atmospheric
mixing.

A. Large 2-3 mixing from neutrinos

Here we relax the assumption of maximal 2-3 mixing
in the neutrino scenario considered in Sec. III A. The
lepton mixing matrix is given by (27) with the replace-
ment Rm

23 ! R23��
�
23�,

UMNS � VCKMy�R23��
�
23�R

m
12: (58)

Such a possibility can be realized in the following way.
Suppose in the symmetry basis, (i) the up-quark mass
matrix and the neutrino Dirac matrix are diagonal,
(ii) the down-quark matrix generates the CKM mixing:

mu � mD
� � diag; Vd � Vl � VCKM; (59)

and (iii) the Majorana mass matrix of the right-handed
neutrinos has the following form:

MR �

0
B@ 0 M12 0
M12 0 0
0 0 M33

1
CA; (60)

with M12=M33 � m2
c=m2

t . Then, the seesaw mechanism
-7
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leads to the maximal 1-2 mixing and enhancement of the
2-3 mixing [43] when also nonzero but small 2-3 entries
are introduced in (60). Typically the 1-3 mixing turns out
to be very small, and an additional 1-3 rotation in the
neutrino mixing matrix (58) can be neglected.

We first discuss constraints on ��23 from the CHOOZ
and atmospheric neutrino data. Using jU$3j

2 �

cos2�C�sin
2��23 � sin2��23jVcbj cos� and the Super-

Kamiokande allowed range [7] gives a mild constraint
0:36 � sin2��23 � 0:69, or 37� � ��23 � 56�. The CHOOZ
constraint is satisfied due to the relation (34).

Because of the nonmaximal 2-3 mixing, the QLC
relation is satisfied with slightly better accuracy as in
the case of the bimaximal neutrino scenario of
Sec. III A. The correction to this relation reads

�sin2�12 � sin2�Csin2
�
��23
2

�
�

1

2
sin2�Csin2��23

� sin�C sin��23�cos�C
� sin�C cos��23�jVcbj cos: (61)

Neglecting the small -dependent term in (61) and using
the bound on ��23, we obtain

0:034 � �sin2�12 � 0:079 (62)

which corresponds to 2:2� � �sun � �C � �
4 � 5:0�.

Since the scenario can accommodate the whole region
of jU$3j

2 allowed by the present data, the deviation from
maximal �23,

D23 �
1
2 cos2�

�
23 � sin2�Csin

2��23 � cos2�CjVcbj cos;

(63)

can be large, jD23j � 0:16, which gives the opportunity
for verification in the next generation experiments. The
Jarlskog invariant is enhanced by a factor of ’ 4:6 in
comparison with the bimaximal case,

Jlep �
1
4 sin2�Csin

3��23jVcbj sin � 6:8� 10�3 sin (64)

thanks to the mild constraint on ��23.
One can introduce small ��13 rotation into the bilarge

matrix (58) of the order of the CHOOZ limit. This gives
an additional contribution to �sin2�12,

sin��13 sin�C sin��23�cos�C � sin�C cos��23�

’ 0:1 sin��13 ��0:016 (65)

which can further reduce (for sin��13 < 0) the deviation
from the exact QLC relation. Within the same approxi-
mation, jUe3j

2 obtains an additional term of the order
sin��13:

�1
2 sin2�C sin��23 sin2�

�
13 ��0:05 (66)

which mildly relaxes (tightens) the constraint on sin��23
for positive (negative) sin��13.
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B. Large 2-3 mixing from charged leptons

One can relax the assumption of bimaximal mixing
also in the case of the lepton scenario by introducing
large but nonmaximal �l23, so that the lepton mixing
matrix takes the form

UMNS � Rl
23�Rm

12V
CKMy: (67)

The QLC relation is satisfied almost exactly and the
correction (43) remains unchanged.

Similar to the jUe3j-jU$3j relation in the neutrino-
origin bilarge mixing scenario, there exists a relation

jUe3j
2 � tan2�CKM

23 jUe2j
2 ’ jVcbj

2sin2�sun (68)

independent of �l23 and . It immediately tells that jUe3j
2

is small, ’ 5� 10�4.
Ignoring the small -dependent term, one can show

that �l23 has a similar bound 36� � �l23 � 54� as ��23 from
atmospheric neutrino data (see Sec. IVA). So apparently
the deviation from maximal 2-3 mixing

D23 �
1
2 cos2�

l
23 � cos�sun sin2�l23jVcbj cos (69)

can cover the whole region allowed by the Super-
Kamiokande data, jD23j � 0:16. The Jarlskog invariant

Jlep � �1
2 cos�sunsin

2�sun sin2�l23jVcbj sin (70)

being proportional to sin2�l23 is bounded by Jlep (48)
found for �l23 � �=4.

One can introduce also small �13 into the bilarge
matrix (67), so that jUe3j saturates the CHOOZ limit.
But, its effect to the QLC relation is �1%, and it produces
an even smaller effect in jU$3j.

A nonmaximal 2-3 mixing can also be introduced into
the hybrid scenario described in Sec. III C by replacing
Rm

23 by Rl
23 	 R23��l23� in the MNS matrix in (52). In this

case, the correction to the QLC relation, (54), and the
result for Ue3 in Eq. (55) are unchanged. The deviation
parameter D23 is given by that in the lepton-origin single-
maximal case (69), but with replacement �sun ! �C. The
upper bound on the deviation, jD23j � 0:16, remains un-
changed. The Jarlskog invariant gets an additional factor
sin2�l23 in comparison with (57).

C. Large 2-3 mixing from neutrinos and charged
leptons

The large 2-3 mixing can appear as a sum of contribu-
tions from the neutrinos and charged leptons. Let us
assume that as a result of the seesaw mechanism, the
neutrinos produce maximal 1-2 rotation and large but
nonmaximal 2-3 rotation in a way described in
Sec. IVA. (Note that it is easier to get a single-maximal
mixing from the seesaw mechanism.) The charged lep-
tons generate the CKM rotation and also relatively large
(Cabibbo angle size) 2-3 rotation. So,
-8
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U� � R�
23R

m
12; Ul � VCKMyRly

23; (71)

and consequently,

UMNS � Rl
23�V

CKMyR�
23R

m
12: (72)

The difference from the neutrino scenario (Sec. IVA) is
that now the 2-3 rotation R�

23 between RCKM
12 and Rm

12 has
the angle ��23 which is smaller than �atm. Therefore, the
correction to the QLC relation (1) is smaller. Instead of
(30) we find, ignoring order jVubj terms,

sin�sun � sin
�
�
4
� �C

�
�

sin�C���
2

p �1� cos���23 � �CKM
23 ��:

(73)

For the purpose of estimations of numbers we take,
throughout this subsection, �l23 � �C � 13� and ��23 ’
2�C � 27�. The spirit behind the choice of these numbers
is that we pursue the possibility that inherently there is no
large mixing angle in building blocks of the MNS matrix.
The latter choice is also motivated as the smallest choice
consistent with the large atmospheric angle. Then, from
(73) we obtain �sun � 33�, and sin2�sun � 0:30 which is
substantially closer to the central experimental value than
the oscillation parameter in the neutrino scenario.

The 1-3 mixing parameter determined now as

sin�13 � sin�C sin���23 � �CKM
23 � (74)

has the mildly suppressed value in comparison with the
neutrino-origin single-maximal case (Sec. IVA):
sin�13 � 0:093, or sin22�13 � 0:034.

The 2-3 mixing matrix element is determined as

U$3 � sin��l23 � ��23 � �CKM
23 � � 2sin2

�
�C
2

�
cos�l23 sin��

�
23

� �CKM
23 � � sin�l23 cos��

�
23 � �CKM

23 ��ei � 1�:

(75)

A notable feature of (75) is that the argument of the sine
function (the first term on the RHS) is the addition of
modest size angles, which makes our ‘‘no inherent large
angle’’ assumption in lepton mixing tenable. In fact,
under the assumption �l23 � �C, the 2-3 mixing angle
can be written as

sin2�23 � sin2���23 � �CKM
23 � � sin2�C�1� 3sin2���23

��CKM
23 �� � sin�Ccos2�C sin2���23 � �CKM

23 �

� cos; (76)

ignoring sin4�C terms. Numerically, for ��23 � 27�, it
gives sin2�23 ’ 0:28� 0:16 cos. Therefore, the Super-
Kamiokande bound is satisfied for 112� �  � 248�.

The Jarlskog invariant can be written as

Jlep �
1
4 sin�C sin2�l23 sin��

�
23 � �CKM

23 ��cos2�C
� sin2�Csin

2���23 � �CKM
23 �� sin: (77)
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Numerically, keeping the same numbers as above, we
obtain Jlep � 9:1� 10�3, which is the largest among
predictions from all the scenarios in this paper. It is
because of this feature that some of the small angles in
elements of the MNS matrix (72) are ‘‘absorbed’’ into the
large angles, as in (74) and (75).
V. SUMMARY OF THE PREDICTIONS BY
VARIOUS SCENARIOS

We compare predictions of different scenarios and dis-
cuss perspectives to disentangle them. In Table I we
summarize predictions for observables obtained in the
last two sections. One can see some typical features of the
predictions from various scenarios. The lepton and the
hybrid scenarios can be characterized by extremely small
deviation from the QLC relation, which may be unob-
servable experimentally. They also have common features
which predict small �13 which probably requires facilities
beyond the superbeam experiments. These statements
apply not only to bimaximal scenarios but also to their
variations with single-maximal mixing angle.

On the other hand, the predictions of the ‘‘neutrino’’
scenarios are markedly different. Both the bimaximal
and the single-maximal cases predict a relatively large
deviation from the exact QLC relation of �sin2�12=
sin2�12 � 17%. They lead to relatively large �13 just below
the CHOOZ limit which will be detected by the next
generation long-baseline and reactor experiments.

The neutrino (lepton and the hybrid) bimaximal sce-
narios predict deviation from the maximal 2-3 mixing by
5%–7%. The prediction is lost when we modify the
scenario by allowing the (2-3) mixing to be nonmaximal.

There exists a relation characteristic to the neutrino
scenario, jUe3j � tan�CjU$3j, which holds independently
of  and of whether the neutrino-origin 2-3 angle is
maximal or not. Similarly, in the lepton scenario there
exists an analogous relation jUe3j � tan�CjUe2j, which is
again independent of whether the lepton-origin 2-3 angle
is maximal or not. They represent general consequences
of the neutrino- and lepton-origin bilarge mixing scenar-
ios and can be tested by future measurement of �13 as well
as a more precise determination of �23 and �12.

Throughout all scenarios, leptonic CP violation is
small: the Jarlskog invariant is smaller than the presently
allowed value by a factor of �10.

There exist simple relations between predictions of the
lepton and the hybrid scenarios. For the deviation from
the exact QLC equality we find

��sin2�12�l
��sin2�12�h

�

���
2

p
sin�sun

sin�C
’ 3:4: (78)
sin�13 and D23 are related by
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TABLE I. Predictions to the deviation from the QLC relation �sin2�12, sin22�13, the deviation parameter from the maximal 2-3
mixing D23, and the leptonic Jarlskog factor Jlep for different scenarios. The numbers in parentheses in the first column indicate the
equation numbers where the scenario is defined. The uncertainties indicated with � come from the experimental uncertainty of the
atmospheric mixing angle �23. Whenever there exists uncertainty due to the CP-violating phase  we assume that cos � 0 to
obtain an ‘‘average value.’’ For the quantities which vanish at cos � 0 (indicated by �) the numbers are calculated by assuming
cos � 1. ‘‘SK bound’’ implies the whole region allowed by the Super-Kamiokande: jD23j � 0:16. The numbers for the last row
(single-maximal case) are computed with the assumed values of �l23 � �C and ��23 � 27�.

Scenarios �sin2�12 sin22�13 D23 	
1
2 � s223 Jlep= sin

Neutrino bimaximal (27) 0.051 0:10� 0:032 0.025 1:5� 10�3

Lepton bimaximal (41) �6� 10�4 2� 10�3 0:035� 5� 10�3

Hybrid bimaximal (52) 1:4� 10�4 3:3� 10�4 0:04� 2:1� 10�3

Neutrino max � large (58) 0:057� 0:023 0:10� 0:032 SK bound � 6:8� 10�3

Lepton max � large (67) �6� 10�4 2� 10�3 SK bound � 5� 10�3

Hybrid max � large 1:4� 10�4 3:3� 10�4 SK bound � 2:1� 10�3

Single maximal (72) 0.015 0.034 0:06–0:16 9:1� 10�3

HISAKAZU MINAKATA AND A.YU. SMIRNOV PHYSICAL REVIEW D 70 073009
�sin�13�l
�sin�13�h

�
sin�sun

sin�C
’ 2:4;

�D23�l
�D23�h

�
cos�sun

cos�C
’ 0:87:

(79)
However, it will be extremely difficult to measure the
small values of �13 and D23, and consequently to check
these relations. Therefore, distinguishing between these
scenarios is an open question.
VI. DISCUSSION AND CONCLUSIONS

To summarize, the current solar neutrino data show a
precise relation between the leptonic and the quark 1-2
mixing angles. The measured values of these angles sum
up to �=4 in an accurate way such that the deviation of the
central value is smaller than the experimental error at 1�
CL. The relation, which was referred as the QLC (quark-
lepton complementarity) relation in this paper, seems
indicative of a deeper connection between quarks and
leptons, the most fundamental matter to date.

We have formulated general conditions under which the
QLC relation is satisfied. They include (1) correct order of
large rotations, which impose certain restrictions on the
neutrino and charge lepton mass matrices, (2) certain
restrictions of CP-violating phases in the mass matrices,
and (3) the absence of large renormalization group ef-
fects. We require that no other free parameter enters the
relation between these angles, otherwise the relation im-
plies the tuning of parameters.

We explored, first, a possibility that lepton mixings
appear as the combination of maximal mixing and the
CKM rotations. This led to the bimaximal minus CKM
mixing scenario which has several different realizations.
These realizations differ by ways of how maximal mix-
ings are generated. The generic prediction of all these
realizations is a very small deviation of 2-3 mixing
from maximal. So that if a large deviation is observed
the scenario will be excluded.
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A natural possibility would be the neutrino origin of
the bimaximal structure. It leads to the QLC relation only
at an approximate level, which is consistent with the
current experimental data. This scenario can be identified
by relatively large 1-3 mixing which is close to the present
upper bound. In the (charged) lepton-origin and hybrid
bimaximal scenarios deviation from the QLC relation,
the 1-3 mixing angle, and deviation of the 2-3 mixing
angle from the maximal one are predicted to all be very
small. The former two features are shared by their bilarge
extension, but the last one is not.

Let us make several theoretical and heuristic remarks:
(1) We have considered the origin of lepton mixing as

the ‘‘maximal mixing minus Cabibbo mixing.’’ There are
two problems in this context:

� t
-10
he origin of maximal (or bimaximal) mixing,

� p
ropagation of the Cabibbo (or CKM) mixing to the

leptonic sector.

The latter is rather nontrivial especially for the first

and the second generation fermions in view of a large
difference in mass hierarchies: me=m$ � 0:0047 and
md=ms � 0:04–0:06 as well as a difference in masses of
the s quark and muon. The precise quark-lepton symme-
try should show up in mixing and not in mass eigenval-
ues. This can be done rather easily in the two generation
context but difficult to implement for the first and second
families in the three generation case [44].

So, the main problem is propagation of the Cabibbo (or
CKM) mixing from the quark sector to the lepton sector.
Since the quark-lepton symmetry is broken by masses of
quarks and lepton, one does not expect that the quark
mixing is ‘‘transmitted’’ to the lepton sector exactly. On
general ground one would get corrections to the mixing
angle of the order

��12 � �C
md

ms
� 0:5�–1� (80)

which, however, is below the present 1� accuracy.
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For illustration let us outline one possible scenario of
such a propagation of mixing in the case of neutrino
origin of maximal 1-2 mixing.

(i) The first and the second generations of fermions
form the doublet of the flavor group and acquire masses
independently of the third generation (singlet of the
group). This is required to reconcile the propagation of
the Cabibbo mixing with the b� ! unification.

(ii) The quark-lepton symmetry leads to the approxi-
mate equality of matrices of the Yukawa couplings for the
first and the second generations. To explain the difference
of masses of muon and s quark at GUT scale one needs to
introduce two different Higgs doublets with different
VEV’s for quarks and for leptons. Notice that ms � m$

at the EW scale, so that if the flavor symmetry is realized
at the EWscale one Higgs doublet is sufficient. In this case
however the problem of flavor changing neutral currents
both in the lepton and quark sectors becomes very severe.

(iii) In the basis where the Dirac mass matrices of up
quarks and neutrinos are diagonal the matrices of the
Yukawa couplings of the down quarks and charged lep-
tons should be nearly equal and singular to reconcile
equal mixings and different mass hierarchies of the
quarks and leptons. The singularity and quark-lepton
symmetry are broken by terms of the order md=ms and
this leads to the correction given in (80).

We emphasize that what is really needed for the QLC
relation to hold is the single-maximal mixing in the 1-2
rotation either from neutrino or from lepton sectors.
Theoretically, the single-maximal mixing can be realized
much more easily. The mass matrix of the RH neutrinos
can be the origin of the maximal mixing for the first and
the second generations and it can lead to enhancement of
the 2-3 mixing.

(2) It is not excluded that the quark-lepton connection,
which leads to the relation between the angles, is not so
direct. It may work for the Cabibbo angle only, since
sin�C may turn out to be a generic parameter of the whole
theory of the fermion masses. Therefore, it may appear in
various places as the mass ratios and the mixing angles.
An empirical relation

sin�C �

�������
m$

m!

s
(81)

is in favor of this point of view.
(3) One can consider some variations of the QLC equal-

ity (1). Noting that the 2-3 leptonic mixing angle mea-
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sured with the atmospheric neutrinos is nearly maximal,
�atm 	 �23 ’ �=4, we may write instead of (1)

�sun � �C � �atm; (82)

allowing possible extension to the case of nonmaximal
�atm.

(4) Still the QLC relation can be accidental. There is
also another nontrivial coincidence:

�sun � �$! �
�
4
; (83)

where the angle �$! is determined by the equality

tan�$! �

�������
m$

m!

s
: (84)

Apparently, the equalities (82) and (83) have different
interpretations from the QLC relation. In particular, (83)
is a pure leptonic relation.

(5) The most important future measurements turn out
to be

(i) Precise measurements of the 1-2 leptonic mixing
and further checks of the QLC relation. The accuracy in
sin2�sun determination must be better than 10% to dis-
criminate the neutrino version of this scenario.

(ii) Searches for deviation of the 2-3 mixing from the
maximal one which can discriminate whole bimaximal
minus CKM approach.

(iii) Measurements of the 1-3 mixing angle.
In conclusion, it is possible that the equality (1) is not

accidental, thus testifying for a certain quark-lepton re-
lation. Implementation of the equality naturally involves
the idea that the lepton mixing appears as maximal mix-
ing minus the Cabibbo mixing. In this sense, the quark
and lepton mixings are complementary. The approach
leads to a number of interesting relations between the
lepton and quark mixing parameters which can be tested
in future precision measurements.
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