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Large neutrino mixing and normal mass hierarchy: A discrete understanding
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We discuss the possibility of flavor symmetries to explain the pattern of charged lepton and neutrino
masses and mixing angles. We emphasize what are the obstacles for the generation of an almost
maximal atmospheric mixing and what are the minimal ingredients to obtain it. A model based on the
discrete symmetry S3 is constructed, which leads to the dominant ��-block in the neutrino mass
matrix, thus predicting normal hierarchy. This symmetry makes it possible to reproduce current data
and predicts 0:01 & �13 & 0:03 and strongly suppressed neutrinoless 2�-decay. Moreover, it implies a
relation between lepton and quark mixing angles: �q23 � 2��=4� �23�. The Cabibbo mixing can also be
reproduced and �q13 � �q12�

q
23. S3 is thus a candidate to describe all the basic features of standard model

fermion masses and mixing.
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I. INTRODUCTION

In the last few years our knowledge of the flavor
structure of leptons has been strongly improved, thanks
to neutrino oscillation experiments [1–6]. The hierarchy
between the solar and atmospheric mass squared differ-
ences is given by a factor �m2

sol=�m
2
atm � 0:035. This

translates into a very mild hierarchy between two mass
eigenstates, m2=m3 * 0:15. The mass m1 can be much
smaller or almost equal to the other two, depending on
the degree of degeneracy of the spectrum. The corre-
sponding hierarchy parameters for charged leptons are
m�=m� � 1=20 and me=m� � 1=200. The mixing be-
tween second and third generation is almost maximal
(sin22�23 * 0:9), that between the first and the second is
large but nonmaximal (sin22�12 � 0:8) and finally
sin22�13 & 0:15. Also in the quark sector the hierarchy
between first and second generation masses is stronger
than between second and third, but the mixing pattern is
reversed: �q23 is much smaller than the Cabibbo angle �q12.

In the search for the underlying flavor symmetry dic-
tating the relations among fermion masses and mixing,
one has to understand what features of the data are
directly connected with the symmetries of the mass ma-
trices and what are second order effects. In this paper we
take the point of view that the first step should be to
explain the almost maximal atmospheric mixing. This
angle is at present poorly constrained (37� & �23 & 53�

at 90% C.L.) and next generation experiments will not
improve this bound significantly [7]. However, there are
already many indications that such a large mixing re-
quires a specific mechanism for its generation, being �23
exactly maximal or not:
(i) P
resent data allow for several structures of the
Majorana neutrino mass matrixM�, depending on
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the mass spectrum and CP-violating phases. In
most cases, the large atmospheric mixing is im-
printed in the dominant structure of the matrix,
the unique exception being M� � mo1 [8,9].
(ii) I
n the case of normal mass hierarchy, which is the
one closer to other fermion mass spectra, the
neutrino mass matrix is dominated by the ��,
�� and �� entries [10], because the heaviest mass
eigenstate is almost equally shared between ��
and ��.
(iii) S
ince neutrinos and charged leptons belong to the
same SU�2�L representation, one should naively
expect a flavor alignment between them (that is a
cancellation between the left-handed mixing in
the two mass matrices). The alignment is ob-
served, in fact, between down and up quarks
(�q23 � 2�). Notice that this argument is roughly
independent from the Majorana nature of the neu-
trino mass matrix.
(iv) T
he mixing can be enhanced through
Renormalization Group running from high
energy to electroweak scale (see [11,12] and refer-
ences therein). This works only for quasidegener-
ate neutrino masses and in general the
enhancement is efficient only for the solar mix-
ing. The unique exception is, once again, the case
M� � m01, but the pattern of radiative corrections
has to be chosen ad hoc [13] or the initial con-
ditions at the high scale have to be fine-tuned
[14,15].
In the context of the seesaw mechanism for the gen-
eration of small neutrino masses, the possibility of a
dynamical origin of the large mixing has been investi-
gated. In the case of type I seesaw [16–19], conditions
have been found for a ’seesaw enhancement’ of lepton
mixing [20,21]. Specific correlations between the neu-
trino Dirac mass matrix and the associated right-handed
Majorana mass matrix are required. Recently it has been
pointed out [22] that, in unified models with dominant
 2004 The American Physical Society
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type II seesaw [23–26], maximal atmospheric mixing
can be related phenomenologically with b� � Yukawa
unification. In both cases, it seems to us that an underlying
symmetry is still required to enforce �23 to be almost
maximal. In particular, we will show that the resulting
value of the mixing at low energy depends crucially on
which heavy fields give the dominant contribution to M�
and what their flavor symmetries are.

Many flavor models for leptons have been developed
based on discrete or continuous symmetries, both Abelian
and non-Abelian. The most popular class of models is
based on U�1� flavor symmetries and the Froggatt-
Nielsen mechanism [27]. A review of U�1� flavor sym-
metries in the lepton sector and references can be found in
[28]. Other models make use of the Abelian discrete
symmetries Zn [29–33]. However, minimal realizations
of Abelian symmetries encounter some difficulties in
reproducing data. In section II we will comment on the
present status of U�1� and Zn flavor symmetries in con-
fronting neutrino oscillation data and, in particular, the
large atmospheric mixing (see also [34]). To overcome at
least some of the problems of Abelian symmetries and
obtain greater predictability, a variety of non-Abelian
symmetries have been used, both discrete [35–38] and
continuous [39–42].

In section III we will show that the basic features of
lepton masses and mixings (and also those of quarks) can
be traced back to a minimal realization of the smallest
non-Abelian group, S3, i.e., the permutations of three
objects. This group was first used for flavor physics in
[43] and it has been analyzed, for example, in few other
papers [44–48]. The less minimal possibility of S3L �
S3R symmetry was first considered in [49] and subse-
quently exploited in [50–54]. Motivations for the use of
S3 flavor symmetries in supersymmetric models can be
found in [55]: in particular, the SUSY flavor problem can
be relaxed.

In our approach, the choice of S3 is minimal since we
have to deal with three generations of fermions and we
need at least one 2-dimensional irreducible representation
(irrep), in order to connect the two generations which
maximally mix. The group S3 has, in fact, three irreps:
1; 10 and 2. It turns out that the existence of two inequi-
valent 1-dimensional representations is crucial to repro-
duce fermion masses and mixing.We will analyze first the
lepton 2� 3 sector (section IIIA), then we will extend
our model to include the first generation (section IIIB),
finally we will consider the quark sector (section IIIC). In
section IV we summarize our results and discuss merits
and limits of the model.
II. A CRITICAL VIEW OF ABELIAN FLAVOR
SYMMETRIES

Let us discuss first continuous Abelian symmetries.
The most often considered U�1� charge in the lepton
073008
sector is Le � L� � L�, introduced long ago in connec-
tion with pseudo-Dirac neutrinos [56]. In fact, this non-
standard lepton charge induces naturally large mixing.
However, the predicted phenomenology is no longer com-
patible with present data, at least in minimal realizations
of the flavor symmetry. Let us review the basic reasons
for the tension between Le � L� � L� and experiments.

Let us call qX the U�1�-charge of the field X. In leading
order, only the couplings with field charges adding up to
zero are allowed [27]. We denote with ���l��

T the iso-
doublet of left-handed Weyl spinors with charge 0 and
�1, respectively, and with lc� the isosinglet partners,
which are left-handed and have charge 	1. Since qe;�e 

1 and q�;��;�;�� 
 �1, the matrices of U�1�-charges rele-
vant for the neutrino and charged lepton mass matrices
M� and Ml are

Q�� 


0
BB@
2 0 0

0 �2 �2

0 �2 �2

1
CCA;

Qllc 


0
BB@

1	 qec 1	 q�c 1	 q�c

�1	 qec �1	 q�c �1	 q�c

�1	 qec �1	 q�c �1	 q�c

1
CCA;

(1)

where the charges of ec; �c; �c are not yet assigned.
The structure of the mass matrices depends on q�,

where � is the standard model Higgs isodoublet. Only
two viable neutrino mass matrices can be obtained via the
usual five-dimensional operator ����, for q� 
 0 and
q� 
 1 respectively:

MI
� 


0
B@ 0 a b
a 0 0
b 0 0

1
CA; MN

� 


0
B@ 0 0 0
0 c d
0 d e

1
CA; (2)

where a and b (c; d and e) are of the same order. It is easy
to check that MI

� corresponds to inverted mass hierarchy
with eigenvalues 0;�

�����������������
a2 	 b2

p
, with an order one

23-mixing ( tan� 
 a=b) and a maximal mixing between
the two mass degenerate states. The matrix MN

� corre-
sponds to normal mass hierarchy with one zero eigen-
value and order one mixing between the two massive
states.

As far as charged leptons are concerned, q�c should be
chosen to allow a nonzero 33-entry in Ml, in order to
generate the dominant � mass. Then, it is straightforward
to show that the structure of MlM

y
l is given by

MlM
y
l 


0
B@A 0 0
0 B C
0 C� D

1
CA: (3)

The parameters B;C;D are of the same order, while A can
be suppressed by the choice of qec and q�c . In any case,
-2
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the contribution of charged leptons to the mixing
amounts only to an order one 23-mixing.

Therefore, in both normal and inverted hierarchy
cases, the 23-mixing can be large but it is not naturally
maximal. Moreover, if all order one parameters are taken
to be really close to 1 (thus leading tom2

� � m2
� inMlM

y
l

and to �m2
sol � �m2

atm in MN
� ), the 2� 3 mixings are

almost maximal in the two sectors, but they cancel each
other almost completely! The 12-mixing is maximal in
the case of inverted hierarchy and zero in the normal
hierarchy case, both in disagreement with experiment.
Symmetry breaking corrections to these predictions are
usually small and do not reproduce data easily.

The problem to generate maximal atmospheric mixing
is common to all minimal models with U�1� flavor sym-
metry. The assignment of the same charge to � and �
isodoublets leads to a cancellation between large mixing
in neutrino and charged lepton mass matrices. Models
with inverted hierarchy can hardly explain the deviation
of solar mixing from maximal. Models embedded in
Grand Unification theories usually favor normal hier-
archy, but the smallness of first generation masses tend
to prevent a large mixing in the 12-sector.

Let us discuss now the Abelian discrete symmetries Zn.
In this type of models the fields transform under Zn via
discrete rotations, given by 1; !;!2; . . . ; !n�1, where
! � e2�i=n is the n-th root of unity. A coupling among
a given set of fields is allowed by the symmetry only if
the product of the corresponding rotation phases is equal
to one.

In the case of Z2, one can assign muon and tau leptons
to the representation with phase ! � �1 and assume that
the electron leptons are Z2 invariant. It is easy to check
that the same problems are found as in the case of Le �
L� � L� symmetry: order one 2� 3 mixings are gener-
ated in both neutrino and charged lepton sector and they
tend to cancel each other; moreover the other two mix-
ings are zero in the limit of exact Z2 symmetry.

The situation is better in the case of Z3. One can
assume e;�; � isodoublets to transform as 1; !;!2 re-
spectively, where! � e2�i=3.Then the analog of Eq. (1) is

�����

0
BB@

1 ! !2

! !2 1

!2 1 !

1
CCAa2�;

llc��

0
BB@

aec a�c a�c

!aec !a�c !a�c

!2aec !2a�c !2a�c

1
CCAa�;

(4)

where aec;�c;�c;� are 1; ! or !2 depending on the Z3

assignment of ec; �c; �c and �. Whatever the assignment
of these fields, it is clear that only one element in each
column of the charged lepton mass matrix is allowed.
This means that this matrix is diagonal up to an unob-
073008
servable permutation of the fields ec;�c; �c. Therefore all
the mixing comes from the neutrino sector and the only
viable dominant structure is

M� 


0
B@a 0 0
0 0 b
0 b 0

1
CA; (5)

where a and b are of the same order. A maximal mixing
in the atmospheric sector is generated and a large solar
mixing can appear easily from subleading corrections.
However, the neutrino spectrum has a very unpleasant
feature: in leading order the atmospheric mass difference
is zero while the solar one is not.

This drawback is generic to all models where the large
atmospheric mixing is obtained via dominant off-
diagonal entries in the 2� 3 sector of the neutrino mass
matrix. In fact, phenomenology tells us that the two
maximally mixed states are associated with the largest
mass splitting. There are two ways to go around this
difficulty. The first is to consider models predicting at
leading order three degenerate neutrinos. In this case both
mass splittings are considered small perturbations while
the maximal 2� 3 mixing is an outcome of the symme-
try. A good example is the A4 model [37], which predicts
the matrix (5) with a 
 b. The second way is to construct
the maximal mixing without dominant off-diagonal en-
tries in the 2� 3 sector of M�. The advantage is that both
mass differences are naturally nonzero. In the following,
we will pursue this second way.
III. THE S3 MODEL

The S3 group has six elements divided in three conju-
gacy classes: the identity (e), the cyclic and anticyclic
permutations of three objects (gc and ga), the three
interchanges of two objects leaving the third fixed
(g1; g2; g3). Two independent 1-dimensional irreps are
possible, depending if the action of all six elements is
trivial (1) or if gi�i 
 1; 2; 3� act with a change of sign
(10). We will call ‘‘odd’’ S3 singlets the fields transforming
in the 10 representation. The third and last irrep is 2-
dimensional (2). Since we deal only with complex fields,
we have the freedom to choose a complex realization of
the 2 [57], which leads to very convenient tensor product
rules:

R2�e� 


 
1 0

0 1

!
; R2�gc� 


 
! 0

0 !2

!
;

R2�ga� 


 
!2 0

0 !

!
; R2�g1� 


 
0 !2

! 0

!
;

R2�g2� 


 
0 !

!2 0

!
; R2�g3� 


 
0 1

1 0

!
;

(6)

where ! � e2i�=3. Notice that, in this realization,
-3
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 1

 2

!
2 2 )

 
 y
2

 y
1

!
2 2: (7)

It is trivial to show that 1� 10 
 10, 10 � 10 
 1, 2� 1 

2 and 2� 10 
 2. Finally and most importantly, one has
2� 2 
 1	 10 	 2, where, if � 1 2�

T and �’1’2�
T are S3

doublets, then 
 2’2

 1’1

!
;

 
 y
1’2

 y
2’2

!
2 2;

 1’2 	  2’1;  y
1’1 	  y

2’2 2 1;

 1’2 �  2’1;  y
1’1 �  y

2’2 2 10:

(8)

With these few ingredients one can construct easily S3

invariants, once the assignment of standard model fields
to S3 irreps is given.

A. The �� Sector

Let the following fields transform under the 2 irrep of
S3: 


L�
L�

�
;



�1

�2

�
;



,1
,2

�
; (9)

where L� 
 ���l��T , �i 
 ��0
i �

�
i �

T and ,i 

�,		
i ,	i ,

0
i �
T are scalar isotriplets. Let us assign also

�c 2 1; �c 2 10: (10)

The invariants relevant for lepton masses are

���0
1 	��0

2��
c; ���0

1 ���0
2��

c;

����,
0
1 	 ����,

0
2:

(11)

After electroweak symmetry breaking, the neutral scalar
fields take VEVs <�0

i > 
 vi and <,0i > 
 ui, so that

Ml 


 
f1v2 �f2v2
f1v1 f2v1

!



1

2

 
1 �1

1 1

! 
f1�v2 	 v1� f2�v1 � v2�

f1�v1 � v2� f2�v2 	 v1�

!
;

Mv 


 
f3u1 0

0 f3u2

!
;

(12)

where fi are dimensionless coupling constants.
It is apparent that, if v1 
 v2 
 v (and u1 � u2),

maximal mixing is generated. Indeed the condition v1 

v2 minimizes the S3 invariant scalar potential (see
section IIIA). The lepton masses are given by m� 
���
2

p
f1v, m� 


���
2

p
f2v, �m2

atm 
 f23�u
2
2 � ju1j2� (notice

that all complex phases can be rotated away, except a
Majorana phase in the neutrino sector, which we can
think as associated to u1). The deviation from maximal
073008
mixing can be easily computed as

�23 �
�
4
�
v1 � v2
v1 	 v2

: (13)

A comment is in order about different contributions to
the neutrino mass matrix. Since theVEVs of ,i have to be
seesaw suppressed (see section IIIA), in general a com-
parable contribution to neutrino masses can come from
the nonrenormalizable operator L�L� ��i

��j=MR, where
MR is the seesaw scale and ��i � i32�

�
i 
 ��	

i �

�0�
i �T . Taking into account that � ��2

��1�
T 2 2, one finds

the following S3 invariants:

������
0�
2 �2 	 ������

0�
1 �2;

����� 	 �������
0
1�

0
2 	�0

2�
0
1�

�:
(14)

The first invariant can be mediated, at the seesaw scale,
by the triplets ,i and its contribution to neutrino masses
modifies the values of ui but does not affect maximal
mixing. The second invariant, on the contrary, generates
a nonzero off-diagonal entry in the neutrino sector which
modifies the resulting value of �23, potentially preventing
an almost maximal mixing. However, this invariant can-
not be mediated by ,i, so in our minimal model it does
not contribute. One can check that it is mediated by scalar
isotriplets , 2 1; 10 and/or by heavy neutrino states �c 2
2; 1; 10. Maximal mixing indicates that all these fields are
absent or their contribution to M� is suppressed.

1. Remarks On the Scalar VEVs (I)

The most general S3 invariant scalar potential for �1;2

is given by

V� 
 m2��y
1�1 	�y

2�2� 	
51
2 ��

y
1�1 	�y

2�2�
2

	 52
2 ��

y
1�1 ��y

2�2�
2 	 53�

y
1�2�

y
2�1:

(15)

Replacing ��y�
1;2 with v���1;2, one can check that V��v1; v2� is

bounded from below if and only if 51 	 52 > 0 and
�251 < 53 < 252. In this region of parameters, the ab-
solute minimum, in the case m2 < 0, is given by v21 

v22 
 �m2=�251 	 53�. This justifies the assumption
v1 
 v2 made in the previous section.

Notice that V� is invariant under two independentU�1�
transformations: �1;2 ! ei�1;2�1;2. As a consequence,
electroweak symmetry breaking leaves us with an unde-
sired real massless scalar, the residual Goldstone boson.
However, since the S3 symmetry is broken at electroweak
scale, one can allow in V� soft breaking terms with size
comparable to the quadratic term in Eq. (15). This S3
explicit breaking can originate from the VEVs of extra
fields belonging to a hidden sector of the theory, similarly
to the soft breaking terms in supersymmetric models. Let
us consider the extra term
-4
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�V� 
 62��y
1�2 	�y

2�1�: (16)

It breaks a U�1� symmetry since it enforces the relation
�1 
 �2. In fact, the term in Eq. (16) respects the discrete
symmetry �1 $ �2, which is also a symmetry of the S3
invariant potential V�. Therefore the potential obtained
adding Eq. (15) and Eq. (16) can be still minimized by
v1 
 v2 
 v, where now v2 
 ��m2 	 62�=�251 	 53�.
We assume that this ‘‘custodial’’ symmetry is preserved
till scales much smaller than electroweak. Computing the
quadratic part of V� 	 �V� after electroweak symmetry
breaking, one can check that all physical scalar fields take
a mass of the order of the electroweak scale.

The VEVs of ,i are induced by the �i VEVs via the
following scalar potential:

V, 

1

2
�M2

,�
ij,yi ,j 	 �M,���

ijk,i�j�k 	 h:c:: (17)

The S3 invariant mass term, M2
,�,

y
1,1 	 ,y2,2�, is sup-

posed to be very heavy,M2
, � v2, in order to suppress the

triplet VEVs ui via the usual type II seesaw mechanism
[23–26]. The actual values of u1 and u2 depend on the
scale of different trilinear couplings. The S3 invariant
trilinear term is given by

M,���,1�1�1 	 ,2�2�2� 	 h:c:: (18)

IfM,�� is the dominant trilinear coupling, then integrat-
ing out the heavy fields ,i one obtains u�i 

�v2i M,��=M

2
,, so that v1 
 v2 implies u1 
 u2.

However, if we assume that all the soft breaking term
couplings are smaller than or equal to the electroweak
scale, where S3 is spontaneously broken, than there is no
reason to expect that the S3 invariant trilinear coupling is
dominating over the others. For example, if the dominant
trilinear term is

X
i
1;2

Mi
,���,i�1�2� 	 h:c:; (19)

than one obtains u�i 
 �v1v2M
i
,��=M

2
,, so that u1 � u2

is naturally induced. Notice that Eq. (19) preserves the
discrete symmetry �1 $ �2. If this custodial symmetry
is broken only at scales much smaller than v, than it is
natural to take Mi

,�� � v� M,��.
Notice that the most general V, breaks S3 only softly,

thus not affecting the mass matrices found in the previous
section and allowing, at the same time, u1 � u2. The
symmetry �1 $ �2, that preserves v1 
 v2, is somewhat
analogue to the strong isospin, which is a good approxi-
mate symmetry at the scale �QCD (mp � mn), not be-
cause mu � md, but because mu;md � �QCD.

LARGE NEUTRINO MIXING AND NORMAL MASS. . .
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B. The Electron Sector

Let us introduce the fields

Le; e
c;�3 2 1: (20)

The S3 singlet scalar isodoublet �3 is necessary to pro-
vide a nonzero mass to the electron. The new invariants
relevant for lepton masses are

���0
1 	��0

2�e
c; eec�0

3; e�c�0
3; ���,01 	 ��,02��e:

(21)

Comparing the first invariant in Eq. (11) with the first in
Eq. (21), one realizes that only one linear combination of
�c and ec is coupled to ���0

1 	��0
2�, while the orthogo-

nal is not. Since a rotation of �c and ec is unobservable
(right-handed), we have the freedom to redefine ec as the
decoupled state. Then the charged lepton mass matrix
takes the form

Ml 


0
BB@
f4v3 f5v3 0

0 f1v2 �f2v2
0 f1v1 f2v1

1
CCA




0
BB@
1 0 0

0 1��
2

p � 1��
2

p

0 1��
2

p 1��
2

p

1
CCA�

0
BB@
f4v3 f5v3 0

0
���
2

p
f1v 0

0 0
���
2

p
f2v

1
CCA;

(22)

where v3 
 <�0
3> and in the last equality we have used

v1 
 v2 
 v. Assuming jvj � jv3j (see section IIIB1),
one gets

me

m�
�

jf4v3j���
2

p
jf1vj

; �l12 �
jf5v3j���
2

p
jf1vj

: (23)

If the coefficients fi are of order one, then �l12 �me=m�.
The neutrino mass matrix has the following form:

M� 


0
@ 0 f6u2 f6u1
f6u2 f3u1 0

f6u1 0 f3u2

1
A


 f3u2

0
@ 0 9f 9f9u

9f 9u 0

9f9u 0 1

1
A; (24)

where 9f � f6=f3 and 9u � u1=u2. Neglecting for the
moment the small angle �l12, the symmetry basis is given
by ��e; ��� � ���=

���
2

p
; ��� 	 ���=

���
2

p
�. In flavor basis, one

can write
-5
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Mfl
� 
 f3u2

2

2
664
0
BB@
0 0 0

0 1 1

0 1 1

1
CCA	

0
BB@

0
���
2

p
9f�1	 9u� �

���
2

p
9f�1� 9u����

2
p
9f�1	 9u� 9u �9u

�
���
2

p
9f�1� 9u� �9u 9u

1
CCA
3
775: (25)
FIG. 1 (color online). Predictions of the S3 model for the
mixing angle �13. The gray area represents the Large Mixing
Angle MSW allowed region for the parameters tan2�12 and
�m2

sol, stretched to include also the experimental uncertainty
in �m2

atm. The best fit point is denoted with a star. The values of
�13 are determined by �12 and �m2

sol=�m
2
atm as described

approximately by Eq. (27). Possibly large corrections to these
values of �13 can come from charged lepton sector (see
Eq. (29)).
The 11-entry in Mfl
� is zero, thus implying a strong

suppression of neutrinoless 2�-decay. It is well known
that this can happen only in the case of normal hierarch-
ical neutrino spectrum. Therefore the parameters 9f;u
have to be taken small and the first term in Eq. (25) is
the dominant ��-block [10]. This dominant structure of
Mfl
� is the unique one allowed by data in the case of

normal mass hierarchy [8]. We have shown that an S3
symmetry is suitable to generate simply the ��-block.

Diagonalizing Eq. (24), one finds

m3 � jf3u2j �
��������������
�m2

atm

p
; j�23 �

�
4 j � j92f9uj;

�13 � j9f9uj; : � arg9u; tan2�12 � 2j
9f
9u
j;

�m2
sol

�m2
atm

�
����������������������������������
j9uj

4 	 4j9u9fj
2

q
;

(26)

where : is the Dirac-type CP-violating phase in the
standard parametrization of the lepton mixing matrix
[58]. The correlations among different observables are
in agreement with present data and can be tested in future
precision measurements. Using the best fit values
tan2�12 
 2:1 and �m2

sol=�m
2
atm 
 0:035 [1–5], we find

j9uj � 0:12 and j9fj � 0:13, which imply j�23 � �=4j �
0:002 and �13 � 0:016.

The allowed values of �13 can be better evaluated
noticing that Eq. (26) implies

�13 �
1

2
sin2�12

�m2
sol

�m2
atm

: (27)

Using 90% C.L. allowed ranges, we obtain the prediction

0:008 & �13 & 0:032: (28)

Correspondingly, the parameters j9fj and j9uj are con-
strained in the range 0:1� 0:2. A numerical diagonaliza-
tion of the matrix (24) has been performed and the
resulting predictions for �13 are shown in Fig. 1, in
good agreement with the approximations given in
Eqs. (27) and (28).

We have neglected until now the contribution of the
12-mixing in the charged lepton sector (see Eq. (23)).
Performing a careful commutation of rotation matrices,
we find that �l12 affects all three observable mixing angles
as follows:

�l�23 �
��l12�

2

4
; �l�13 �

�l12���
2

p ; �l�12 �
�l12���
2

p :

(29)
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In the case of 13-mixing, this correction can be important
even for �l12 as small as me=m� � 0:005. The rotation �l12
generates also

mee � j�Mfl
� �11j �

�����������������
2�m2

atm

q
j9fj�l12 & 10�2 eV � �l12;

(30)

which induces a nonzero (but still quite suppressed) neu-
trinoless 2�-decay.

It is worthwhile to give a look to the contribution of �3

to the five-dimensional operator L�L� ��i
��j=MR, which

can perturb the neutrino mass matrix (24). The possible
S3 invariants are

�e�e��
0�
3 �2; ����� 	 �������

0�
3 �2;

�e����
0�
1 � ���

0�
2 ��0�

3 ; ������
0�
2 	 �����

0�
1 ��0�

3 :

(31)

The first two invariants are not mediated by ,1;2 and
therefore are absent in the minimal model. The last two
invariants can be mediated, but their contribution can be
absorbed into a redefinition of u1;2 and f3;6 in Eq. (24).
-6
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1. Remarks On the Scalar VEVs (II)

Of course the introduction of the S3 singlet �3 in our
model modifies the scalar potential discussed in
section IIIA. The most general S3 invariant potential is

V3� 
 V� 	m2
3�

y
3�3 	

54
2 ��

y
3�3�

2 	 55��
y
3�3�

���y
1�1 	�y

2�2� 	 56�
y
3 ��1�

y
1

	�2�
y
2 ��3 	 �57�

y
3�1�

y
3�2

	 58�
y
3 ��1�

y
2�1 	�2�

y
1�2� 	 h:c:�

(32)
where V� is given in Eq. (15).
We do not discuss, here, the general minimization

problem (see, for instance, [59]). For our purposes, it is
enough to verify that a solution exists with jv1j 
 jv2j �
jvj � jv3j. Assuming that all the couplings 5i are of the
same order and barring special cancellations among
them, we find a minimum for

jvj2 � �
m2

251 	 53
;

v3 � �
2~58jvj

3

m2
3 	 2jvj2�55 	 56 	 ~57�

;

(33)
where ~57;8 are appropriate rephasings of 57;8, determined
by the vi complex phases. To satisfy the initial assumption
jv3j � jvj is enough to choose m2

3 � jvj2, so that
jv3j � 2j ~58vj�jvj

2=m2
3�.

The large parameter m2
3 determines, in first approxi-

mation, the mass of the four real scalars contained in �3.
Since the effect of v3 can be safely treated as a small
perturbation, all further considerations made in
section IIIA1 about �1;2 and ,1;2 masses and VEVs are
still valid.

C. The Quark Sector

Let us assign quark fields to S3 representations in exact
analogy with leptons:



Q2

Q3

�
2 2; Q1; uc; cc; dc; sc 2 1; bc; tc 2 10;

(34)
where Qi 
 �uidi�
T . As for leptons, the third generation

isosinglets are odd S3 singlets while second generation
ones are S3 invariant. This turns out to be the origin of a
sizable 1� 2 mixing and a suppressed 1� 3 mixing. It is
straightforward to construct independent invariants con-
tributing to quark mass matrices. The result is
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Mu 


0
BB@
gu3v

�
3 gu4v

�
3 0

0 gu1v
�
1 �gu2v

�
1

0 gu1v
�
2 gu2v

�
2

1
CCA;

Md 


0
BB@
gd3v3 gd4v3 0

0 gd1v2 �gd2v2
0 gd1v1 gd2v1

1
CCA:

(35)

The S3 assignment of the quarks parallels that of the
leptons, as shown by the analogous structure of their
mass matrices (22) and (35). This makes our model suit-
able for a possible embedding in a Grand Unification
Theory. It is interesting that, in a class of SO�10� inspired
models known as ‘‘lopsided’’ [60,61], the almost maximal
leptonic 2� 3 mixing originates in the charged lepton
mass matrix as in the present case. However, the pattern is
different in the quark sector: in our model the left-handed
2� 3 mixing cancels between down and up quark sec-
tors; in lopsided models the large charged lepton mixing
appears also in the down quark mass matrix, but on the
right-handed side, therefore it does not show up in the
CKM matrix.

In the limit jv1j 
 jv2j 
 jvj, the maximal 2� 3 mix-
ing cancels exactly between up and down matrices and we
get mc=mt � jgu1=g

u
2j, ms=mb � jgd1=g

d
2j. The experimen-

tal value, �q23 � 0:04, can be explained by small correc-
tions to jv1j 
 jv2j, due to soft breaking and/or �3

contributions to the scalar potential in Eq. (32). In fact,
one finds the interesting sum rule

�q23 � 2


�
4
� �23

�
� 2

jv2j � jv1j
jv2j 	 jv1j

: (36)

Larger deviations from maximal atmospheric mixing can
be explained only by a nonzero contribution to the mixing
coming from the neutrino sector (see discussion at the end
of section IIIA).

In analogy to the charged lepton sector, after the
maximal 2� 3 rotation the structure of the 1� 2 blocks
in Md and in Mu implies

md
ms

�
jgd3v3j��
2

p
jgd1vj

� 1
20 ;

mu
mc

�
jgu3v3j��
2

p
jgu1vj

� 1
400 ;

�d;u12 �
jgd;u4 v3j��
2

p
jgd;u1 vj

:
(37)

The CKM mixing matrix is given by

UCKM � U23U13U12 
 �Uu
23U

u
12�

y�Ud
23U

d
12�

� Uuy
12U

q
23U

d
12; (38)

where Uu;d
23 are almost maximal 23-rotations that cancel

up to the small angle given in Eq. (36), while Uu;d
12 are the

12-rotations quantified in Eq. (37). From the commutation
of Uuy

12 and Uq
23, a 13-mixing is generated: �q13 � �u12�

q
23.

One has to fit �q13 � 0:004 and the Cabibbo angle �q12 �
-7



SHAO-LONG CHEN, MICHELE FRIGERIO, AND ERNEST MA PHYSICAL REVIEW D 70 073008
0:22, which results from the combination of Uuy
12 and Ud

12.
Looking at Eq. (37), one realizes that the fit is successful
for jv3=vj � 0:1 and the coefficients gu;di of order one.
However, a significant suppression of gu3 is required
to match the smallness of the up quark mass. We will
suggest an explanation for this suppression in the next
section.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed the problem of constructing a maxi-
mal 2� 3 mixing in the lepton sector. As shown
in section II, minimal models with Abelian flavor
symmetries give a defective description of neutrino
oscillation data. We have then constructed a model based
on S3 flavor symmetry which generates naturally maxi-
mal 2� 3 mixing. It contains only standard model par-
ticles plus an enlarged scalar sector, formed by three
isodoublets at electroweak scale and two much heavier
isotriplets.

Let us summarize the ingredients of the model:

(i) S
econd and third generation fermion isodoublets

transform as an S3 doublet.

(ii) S
econd generation fermion isosinglets are S3 in-

variants while the third ones transform as odd S3
singlets.
(iii) T
he two scalar isodoublets which generate the
2� 3 block of charged fermion mass matrices
have the same VEV, while the one giving mass to
first generation fermions takes a much smaller
VEV.
(iv) T
he neutrino mass matrix is generated by an S3
doublet of heavy scalar isotriplets, which have
tiny and different VEVs.
As a consequence, maximal 2� 3 mixing is induced in
the charged fermion mass matrices, while the 2� 3 block
is diagonal in the Majorana mass matrix of neutrinos.
Therefore, a maximal mixing results in the lepton sector,
whereas complete cancellation takes place between up
and down quark mixing. Small corrections in both sectors
are allowed and they are correlated as in Eq. (36). Extra
deviation from maximal atmospheric mixing can appear
if heavy fields other than the two isotriplets give a sub-
dominant contribution to the neutrino mass matrix. The
ratio between second and third generation masses is not
determined by the S3 symmetry. However S3 distin-
guishes the two corresponding sets of couplings, which
are of the type 2� 2� 1 and 2� 2� 10 for second and
third generation, respectively. This suggests that the hier-
archy between the two types can be induced by extra
flavor structure to be added to our minimal model.

The spectrum of neutrinos is with normal hierarchy. In
flavor basis the neutrino mass matrix has a dominant
��-block. The 1� 2 mixing can be naturally of order
one, thus explaining the Large Mixing Angle MSW
solution of the solar neutrino problem. The 1� 3 mixing
073008
is correlated with solar parameters by Eq. (27) and turns
out to be about 0:02.

The neutrinoless 2�-decay is strongly suppressed. If
the recent claim [62] of neutrinoless 2�-decay were con-
firmed, then j�M��11j * 0:1 eV and our model would be
ruled out, unless the dominant mechanism of the decay is
not the exchange of the light Majorana neutrinos [63].
Notice that in our model the suppression of �M��11 is
induced by the requirement to obtain an atmospheric
mixing close to maximal. In fact, one can check that,
adding , 2 1; 10 and/or �c 2 2; 1; 10 to the model, a
nonzero contribution to �M��11 is accompanied by a con-
tribution of the same order to �M��23, which tends to
cancel the maximal 2� 3 mixing coming from charged
leptons.

In the quark sector, a small 1� 2 mixing is generated
naturally because u and cc (d and sc) are both S3 invar-
iants, thus allowing a sizable 12-entry in the mass matri-
ces. One can easily reproduce the Cabibbo angle. The
different S3 assignment of tc and bc (odd S3 singlets)
suppresses the 1� 3 mixing in Md and Mu; the resulting
CKM matrix contains �q13 � �q12�

q
23, in agreement with

data.
First generation masses are suppressed by the small

ratio of scalar VEVs jv3=vj. This ratio cannot be too small
since the Cabibbo angle is correspondingly suppressed. In
particular the smallness of the u quark (electron) mass
indicates an extra source of suppression. This can be
easily obtained, for example, introducing a Z2 parity
leaving all fields invariant but uc (ec), which is Z2 odd.
It is easy to check that, in the limit of exact Z2 symmetry,
mu (me) is forbidden.

The model can be tested in the near future by

(i) p
-8
recision measurements of neutrino oscillation
parameters;
(ii) u
pper bounds on neutrino masses from cos-
mology, tritium �-decay and neutrinoless
2�-decay;
(iii) d
irect investigation of the scalar isodoublet sector
at LHC;
(iv) fl
avor violating decays mediated by the scalars. A
detailed study of the phenomenological implica-
tions of the model is left for future work.
In conclusion, S3 is the smallest flavor symmetry group
which can explain in a minimal way the maximal atmos-
pheric mixing. The required structure in the lepton 2� 3
sector enforces in a straightforward way the whole struc-
ture of three generation lepton and quark mass matri-
ces. These matrices are suitable to explain all current
data.
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