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Dynamical chiral symmetry breaking in unquenched QED3
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We investigate dynamical chiral symmetry breaking in unquenched QED3 using the coupled set of
Dyson-Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction
we employ an ansatz which satisfies its Ward-Green-Takahashi identity. We present self-consistent
analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we
find a phase transition at a critical number of flavors of Ncrit

f � 4. In the chirally symmetric phase the
infrared behavior of the propagators is described by power laws with interrelated exponents. For Nf � 1
and Nf � 2 we find small values for the chiral condensate in accordance with bounds from recent lattice
calculations. We investigate the Dyson-Schwinger equations in other linear covariant gauges as well. A
comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the
quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of
gauge covariance for the unquenched solutions.
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I. INTRODUCTION

Over the years, quantum electrodynamics in (2 � 1)
dimensions (QED3) has been studied for a variety of
reasons. On the one hand it served as a laboratory for
investigating nonperturbative phenomena such as dy-
namical mass generation or confinement in a compara-
tively simple framework devoid of the technical
complications of non-Abelian gauge theories (for reviews
see Refs. [1–3]). On the other hand QED3 has regained
recent interest due to possible applications in condensed
matter systems. High-Tc cuprate superconductors possess
an unconventional d-wave symmetry of the pairing con-
densate. Such a pairing gap has nodes at the electronic
Fermi surface at which the low energy dispersion be-
comes linear and thus can be described as massless fer-
mions. Since the electronic motion is mainly confined to
the two dimensional copper-oxygen planes in these sys-
tems an effective low energy description of the cuprates in
terms of a quantum electrodynamics in two spatial di-
mensions with two massless fermion flavors has been
suggested [4–6]. In this picture the antiferromagnetically
ordered insulating state of the cuprates would correspond
to a state of broken chiral symmetry. For this reason there
would be considerable interest in a study of the chiral
phase transition as well as the infrared spectral properties
of the fermion propagator in both the chirally symmetric
and in the ordered phase of QED3.

QED in (2 � 1) dimensions is a super-renormalizable
theory and has an intrinsic mass scale given by the
dimensionful coupling constant � � Nfe2=8. With
04=70(7)=073007(20)$22.50 70 0730
the help of the photon polarization �p� a dimen-
sionless running coupling �� � �=�p�1 � �p��� �
Nfe

2=�8p�1 � �p��� can be defined which separates
the nonperturbative infrared momentum regime from
the perturbative ultraviolet behavior [7]. A nonzero fer-
mion mass would provide a second mass scale. Various
studies of the Dyson-Schwinger equation (DSE) of the
fermion propagator suggest that, in the chiral limit, the
interactions generate a dynamical fermion mass M�p2�
(at least for a small number of fermion flavors), and that
this generated mass scale M�p2 � 0� is considerably
smaller than the scale defined by the coupling constant
� [7–15].

It is the smallness of this generated mass scale that
poses problems in lattice Monte-Carlo simulations of
QED3 [16–19]. Finite volume effects are large and the
relevant signal to determine the chiral phase transition,
the dimensionless chiral condensate, is very small.
Furthermore the presence of an infrared cutoff as such
has been shown to reduce the value of the critical number
of flavors, Ncrit

f [20]. Thus recent studies for the number of
flavors Nf � 2 [18] and Nf � 4 [18,19] determined
bounds on the chiral condensate, but no definite value
for Ncrit

f could be extracted. A definite signal for chiral
symmetry breaking was obtained only for Nf � 1 [19].
Given these problems it seems evident that a continuum
method is needed to shed light on the infrared properties
of QED3.

The DSEs of the propagators of QED3 have long been
investigated employing various levels of approximation.
07-1  2004 The American Physical Society
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Early investigations of the fermion DSE based on a large
Nf expansion indicated chiral symmetry to be broken
only if the number of flavors Nf is smaller than a critical
value of Ncrit

f � 32=�2 � 3:2 to leading order in Landau
gauge [8] and Ncrit

f � 4=3�32=�2� including next lo lead-
ing order corrections in a nonlinear gauge [21]. These
results have been questioned in Refs. [9–11], where it
was argued that the 1=Nf-expansion is not an appropriate
tool to address these nonperturbative phenomena. Using a
slightly different truncation of the fermion DSE, it was
found that chiral symmetry is broken for all values of Nf,
although the generated mass scale is exponentially de-
creasing for increasing Nf [11]. Subsequent work on the
coupled DSEs for the fermion and the photon propagator,
however, again found chiral symmetry restoration for
Nf > Ncrit

f , with a value of Ncrit
f between three and four

[13,15]. All investigations so far are either quenched or
employ a fermion-photon interaction which manifestly
violates gauge symmetry.

Certainly, gauge invariance is a key property of a local
quantum field theory and has to play a vital role in these
investigations. Reliable results from DSEs can only be
expected if the fermion-photon vertex respects local
gauge symmetry. A necessary (though not sufficient)
condition in this respect is given by the Ward-Green-
Takahashi identity (WGTI) [22], which determines the
‘‘longitudinal’’ part of the fermion-photon interaction
uniquely in terms of the propagator functions [23]. The
remaining transverse part of the vertex is unrestricted by
the WGTI and has to be determined either directly from
the vertex DSE or modeled by a suitable ansatz. As the
vertex DSE is considerably more complicated to solve
than the ones for the propagators all work up to now
concentrated on the latter strategy. Constraints on the
structure of the transverse part of the vertex have been
derived from gauge covariance [24,25] and multiplicative
renormalizability [26]. Also perturbative vertex correc-
tions put constraints on the transverse fermion-photon
vertex [27–32] and proposals for nonperturbative gener-
alizations of these structures have been made [28–31].

A further important nonperturbative tool to assess the
gauge transformation properties of a given vertex ansatz
are the Landau-Khalatnikov-Fradkin transformations
(LKFT) [33]. These transformation laws leave the DSEs
and the WGTI form invariant and in principle allow one
to test whether a given ansatz for a vertex is gauge
covariant. Such an investigation, however, is hampered
by the fact that the transformation law for the vertex is
quite complicated. Therefore an indirect strategy has been
applied: One calculates the propagator with a given vertex
ansatz in the fermion and photon DSE in various gauges
and compares with the corresponding results from the
LKFTof the propagator [24,31,34,35]. The success of this
strategy has been limited by the problem that the LKFT is
formulated in coordinate space and the necessary
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Fourier-transform can be carried out analytically only
for very special cases.

Our aim in this paper is to make progress in the
direction of a gauge covariant solution for the propagators
of QED3. We investigate the coupled set of DSEs for the
fermion and photon propagator employing a fermion-
photon interaction which respects the WGTI. In addition,
it contains a transverse part that has been shown to
respect the LKFT properties in the quenched massless
case and is thus a good starting point for unquenched
QED3. With the absence of the fermion mass scale in the
symmetric phase, the assumption of a power law behavior
of the dressing functions in the infrared seems natural.
For the same reasons similar power laws have been found
for the ghost and gluon propagators in quenched and
unquenched QCD4 [36–39]. We will see how far we can
get with this assumption here, given the limitations of the
chosen truncation scheme.

The paper is organized as follows: In Sec. II we discuss
the DSEs for the fermion and photon propagator and
define our truncation for the fermion-photon interaction.
Furthermore, we recall the ultraviolet behavior of the
propagators as known from methods such as the
1=Nf-expansion, the loop expansion, and the operator
product expansion. In Sec. III we present an analytical
determination of the infrared behavior of the coupled
system of fermion and photon equations in the symmetric
phase. We show that, within the limits of our truncation
scheme, the infrared behavior of the propagators in
Landau gauge is given by simple power laws, confirming
a long-standing conjecture from perturbative arguments
[10,11,40]. We also calculate the critical number of flavors
Ncrit
f for chiral symmetry breaking using these analytic

solutions in the infrared, and determine the behavior of
the fermion scalar self-energy close to Ncrit

f for a simpli-
fied version of our fermion-photon vertex. Furthermore
we investigate the gauge dependence of these power law
solutions.

Numerical results in the broken and symmetric phases
are presented in Sec. IV. In passing we reanalyze the
quenched fermion and photon DSEs and demonstrate
that the Curtis-Pennington vertex resolves an inconsis-
tency in determining the chiral condensate from the
fermion propagator, noted in Ref. [12]. We then proceed
to solve the unquenched system of photon and fermion
DSEs employing various ansätze for the fermion-photon
vertex. No further approximations are made. Our results
in Landau gauge nicely reproduce the analytical results in
the ultraviolet as well as in the infrared momentum
regime. With our most elaborate vertex ansatz the critical
number of flavors is Ncrit

f � 4. The order parameter of the
phase transition, the dimensionless chiral condensate
��h ���i�=e4 is very small, of the order of 10�3 even in
the quenched limit, and decreases exponentially as one
approaches the phase transition. For Nf � 1 and Nf � 2
-2
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FIG. 1. The Dyson-Schwinger equations of the photon and
fermion propagators in diagrammatic notation.
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we find values of the condensate in agreement with the
lattice bounds [18,19]. We conclude with a discussion of
our results in Sec. V.

II. THE DYSON-SCHWINGER EQUATIONS IN
QED3

We consider QED3 with a four-component spinor rep-
resentation for the Dirac algebra and Nf fermions. This
allows a definition of chiral symmetry similar to the
cases of QED4 and QCD4. With massless fermions, the
Lagrangian has a U�2Nf� ‘‘chiral’’ symmetry, which is
broken to SU�Nf� � SU�Nf� � U�1� � U�1� if the fermi-
ons become massive.1 The order parameter for this sym-
metry breaking is the chiral condensate. The question is:
Is this chiral symmetry broken dynamically? We use the
set of DSEs to investigate this question.

A. The fermion and photon propagators

The DSEs for the photon and fermion propagators in
Euclidean space are given by

D�1
���p� � D�1

0;���p�

� Z1Nfe2
Z d3q

�2��3
Tr���S�q����q; k�S�k��;

(1)

S�1�p� � S�1
0 �p� � Z1e2

Z d3q

�2��3
��S�q����q; p�D���k�;

(2)

with the momentum routing k� � q� � p�. A diagram-
matic notation of these equations is given in Fig. 1.

The general form of the dressed fermion propagator
S�p; �� and the photon propagator D���p; �� is given by

S�p; �� �
ip6 A�p2; �� � B�p2; ��

p2A2�p2; �� � B2�p2; ��
; (3)

D���p; �� �
�
��� �

p�p�
p2

�
1

p2�1 � �p2��
� �

p�p�
p4 :

(4)

Here � is the gauge parameter in linear covariant gauges,
with � � 0 denoting Landau gauge. The fermion func-
tions A, B, andM � B=A depend on the gauge parameter
�. On the other hand, the vacuum polarization  is
independent of �. Physical quantities such as the fermion
pole mass and the chiral condensate are also independent
of the gauge parameter. In order to keep the notation as
1Note that in this formalism a fermion mass term is even
under parity. It is also possible to formulate QED3 with two-
component spinors; however, in such a formulation there is no
chiral symmetry, and a fermion mass terms breaks parity [41].
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clear as possible, we will treat all dependence of the
dressing functions on � implicitly from now on.

The vertex normalization constant Z1 is related to the
fermion wave function normalization Z2 by a WGTI,
Z1 � Z2. Since QED3 is free of ultraviolet divergences,
there is no need for any renormalization, though finite
renormalizations of the fermion and photon fields are
possible and leave the physical content of the theory
invariant. In our numerical procedure we set A��2� � 1
at a large normalization point �2 and determine Z2 self-
consistently.

B. The fermion-photon vertex

In general there are several possible strategies to
choose an appropriate approximation for the fermion-
photon vertex ���q; p� in Eqs. (1) and (2). The simplest
option would be to replace the dressed vertex by the bare
vertex ��. However, this violates, among other things,
gauge invariance and the renormalization properties of
the theory. If one wants to preserve these symmetries, one
has to use a suitably dressed vertex ���q; p�.

One way to dress the vertex would be to solve its
corresponding DSE. However, the vertex DSE contains
an unknown four-point function, the fermion-
antifermion scattering kernel; one has to truncate the
infinite set of DSEs somewhere in order to obtain a
tractable set of equations, and this would only shift the
problem up the hierarchy. Furthermore, one faces the
technical difficulties involved in solving an integral
equation in two independent momenta, i.e., in three in-
dependent variables.

A different strategy, which we adopt in this paper, is to
employ an ansatz for the vertex, which has to satisfy at
least two requirements:
(a) i
-3
t must approach the perturbative form of the ver-
tex for large momenta;
(b) i
t must satisfy the WGTI

i�q� p�����p; q� � S�1�p� � S�1�q�: (5)
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Condition (a) reflects the fact that QED3 is an asymptoti-
cally free theory as explained in the introduction. This
condition furthermore implicitly specifies the symmetry
properties of the vertex, i.e., its behavior under charge
conjugation and Lorenz transformations. Condition (b) is
dictated by gauge invariance and determines the longitu-
dinal part of the vertex. Furthermore, it uniquely fixes the
vertex when the two fermion momenta are equal

���p; p� � i
@S�1�p�
@p�

: (6)

The two conditions (a) and (b) are necessary but not
sufficient to ensure gauge covariance of the propagators.
We will come back to this point frequently later on.

Any vertex satisfying condition (b) leads to the follow-
ing interesting property of the fermion equation: With the
explicit form, see Eq. (4), of the photon propagator in the
fermion DSE, the integral on the right-hand side can be
split into two pieces,

S�1�p� � S�1
0 �p� � Z1e2

Z d3q

�2��3
��S�q�

1

k2�1 � �k2��

�

�
��� �

k�k�
k2

�
���q; p�

�Z1e
2�

Z d3q

�2��3
��S�q�

k�k�
k4 ���q; p�; (7)

with the momentum convention k� � q� � p� for the
photon momentum. Because of the appearance of the
longitudinal projection k����q; p� in the second line of
073007
this equation, each vertex truncation satisfying theWGTI
treats this piece exactly. This will be important later on in
our infrared analysis.

A suitable basis to construct a vertex ansatz satisfying
the requirements (a) and (b) has been given in Ref. [23]. It
consists of 12 tensor structures, which can be split up in a
set of four components, �BC

� , completely determined by
the WGTI and eight transverse components, �T�

���p; q� � �BC
� �p; q� � �T��p; q�: (8)

The WGTI is solved by the Ball-Chiu (BC) construction

�BC
� �p;q� �

A�p2��A�q2�

2
��� i

B�p2��B�q2�

p2 �q2 �p� q��

�
A�p2��A�q2�

2�p2 � q2�
�p6 �q6 ��p�q��: (9)

The WGTI furthermore constrains the ����p� �

q��-component of the vertex to be zero. The eight trans-
verse components satisfy

k��
T
��p; q� � 0; �T��p; p� � 0; (10)

and are otherwise constrained by condition (a). Much
work has been invested to determine �T��q; p� in the
perturbative region [26–32,42] to constrain possible non-
perturbative ansätze, but so far without conclusive results.

A minimal ansatz for �T��q; p� ensuring multiplicative
renormalizability in four dimensional quenched QED has
been given by Curtis and Pennington [26]
�T;CP
� �p; q� �

A�p2� � A�q2�

2

��p2 � q2��� � �p6 � q6 ��p� q����p2 � q2�

�p2 � q2�2 � �M2�p2� �M2�q2��2
: (11)
Burden and Roberts [24] discovered another favorable
property of the Curtis-Pennington (CP) vertex
�CP
� �q; p� � �BC

� �q; p� � �T;CP
� �q; p�, which holds in

quenched massless QED in both three and four dimen-
sions: With the help of the LKFT [33] for the propagators
they showed that the CP-vertex indeed preserves gauge
covariance in these special cases. More sophisticated
ansätze for the transverse parts of the vertex have been
given in Refs. [25,28–31]. Contrary to early expectations,
it has been noted [30] that �T��p; q� does not vanish in
Landau gauge and contains terms that have to be explic-
itly dependent on the gauge parameter �.

C. The truncated Dyson-Schwinger equations

A numerical investigation of all these ansätze, though
highly desirable, is a formidable task. Up to now the
quenched fermion DSE and the photon DSE of QED3

have been studied employing a bare fermion-photon ver-
tex as well as the BC construction [12,24] and the CP-
vertex [43]. Partly unquenched calculations can be found
in Refs. [7–11,44] where the photon propagator has been
approximated by its 1=Nf-expression. Fully unquenched
dynamical solutions employing the bare as well as the
first part of the BC-vertex have been reported in
Refs. [13,15]. In our work we will extend these investiga-
tions and solve the unquenched equations employing the
CP-construction in the fermion DSE and the BC-vertex
in the photon equation. The reason for this hybrid choice
is the following: The transverse term in the CP-vertex has
been constructed for quenched QED, i.e., its structure is
adapted to the kinematical situation in the fermion DSE
and it is believed to approximate some parts of the real
fermion-photon vertex that are important in the fermion
DSE. In the photon DSE, however, a different kinematical
region of the vertex is probed. The �T;CP-term leads to
divergences here [45] and is thus not a good approxima-
tion to the important parts of the real vertex in the photon
DSE.
-4
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Substituting the CP-vertex into the fermion DSE and taking appropriate traces we arrive at

B�p2� � Z2e
2
Z d3q

�2��3
1

k2�q2A2�q2� � B2�q2��

�

1

1 � �k2�

�
A�p2� � A�q2�

2
2B�q2� � �A�p2� � A�q2��B�q2���p2; q2�

���AB�q2� � �BA�q2��

�
�
k2

2
� �p2 � q2� �

�p2 � q2�2

2k2

��
� �

�
A�p2� � A�q2�

2
B�q2� � �AB�q2�

�p2 � q2�2

2k2

��BA�q2�

�
�p2 � q2�2

2k2 �
q2 � p2

2

���
(12)
A�p2� � Z2 � Z2e2
Z d3q

�2��3
A�q2�

p2k2�q2A2�q2� � B2�q2��

�

1

1 � �k2�

�
A�p2� � A�q2�

2

�
�
k2

2
�

�p2 � q2�2

2k2

�
� �A�p2�

�A�q2����p2; q2�

�
p2 � q2 � k2

2

�
�

�
�A

p2 � q2

2
� �BM�q2�

��
�
k2

2
� �p2 � q2� �

�p2 � q2�2

2k2

��
��

�
A�p2� � A�q2�

2

�
p2 � q2

2
�

�p2 � q2�2

2k2

�
� �A

�p2 � q2�

2

�
p2 � q2

2
�
q4 � p4

2k2

�
� �BM�q2�

�
�p2 � q2�

2

�
�q2 � p2�2

2k2

���
(13)
Here we used the abbreviations

�A �
A�p2� � A�q2�

p2 � q2 ; �B �
B�p2� � B�q2�

p2 � q2 ;

��p2; q2� �
p4 � q4

�p2 � q2�2 � �M2�p2� �M2�q2��2
:

Furthermore we have used the WGTI Z1 � Z2 for the
vertex and wave function renormalization constants.
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In the photon equation we contract the Lorenz indices
with the general tensor [46,47]

P ���
���p� � ��� � �

p�p�
p2 : (14)

Inserting the BC-vertex in the general expression for the
vacuum polarization, we obtain
�p2� � �Z2e2Nf
Z d3q

�2��3
1

q2A2�q2� � B2�q2�

1

k2A2�k2� � B2�k2�

�
A�q2� � A�k2�

2
�W1�p2; q2; k2�A�q2�A�k2�

�W2�p
2; q2; k2�B�q2�B�k2�� �

A�q2� � A�k2�

2�q2 � k2�
�W3�p

2; q2; k2�A�q2�A�k2� �W4�p
2; q2; k2�B�q2�B�k2��

�
B�q2� � B�k2�

q2 � k2 �W5�p
2; q2; k2�A�q2�B�k2� �W6�p

2; q2; k2�B�q2�A�k2��

�
: (15)
The general form of the kernelsWi as well as a discussion
of the (weak) dependence of the photon equation on the
parameter � of the projector (14) can be found in
Appendix A. Here we give the kernels for the special
value � � 3, suggested in Ref. [46] to avoid spurious
divergences

W1�p
2; q2; k2� �

3k4

p4 � k2

�
2

p2 �
6q2

p4

�
� 1 �

2q2

p2 �
3q4

p4 ;

(16)

W2�p2; q2; k2� � 0; (17)
W3�p2; q2; k2� �
3k6

p4 � k4

�
4

p2 �
3q2

p4

�
� k2

�
1 �

3q4

p4

�
�q2 �

4q4

p2 �
3q6

p4 ; (18)

W4�p
2; q2; k2� �

�6k4

p4 � k2

�
4

p2 �
12q2

p4

�
� 2 �

4q2

p2

�
6q4

p4 ; (19)
-5
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W5�p
2; q2; k2� �

3k4

p4 � k2

�
4

p2 �
6q2

p4

�
� 1 �

3q4

p4 ; (20)

W6�p
2; q2; k2� �

3k4

p4 � k2

�
6q2

p4

�
� 1 �

4q2

p2 �
3q4

p4 : (21)
D. 1=Nf -expansion and asymptotic behavior

Several previous studies of QED3 have used the
1=Nf-expansion2 to justify truncations or to calculate
the asymptotic behavior of the dressing functions. Our
approach does not rely on this expansion, but it is inter-
esting to compare our results with the ones obtained in
this way. We therefore shortly summarize the anticipated
behavior of the dressing functions based on the
1=Nf-expansion.

For the vacuum polarization, one finds for Nf massless
fermion flavors to leading order in a 1=Nf-expansion [7]

�p2� �
Nfe2

8p
�
�
p
; (22)

independently of the value for the gauge parameter �. In
the full theory, this expression remains valid in the ultra-
violet asymptotic limit, as has been demonstrated in
quenched approximation employing a BC-vertex in the
fermion loop [48]. Our numerical results show that this is
also the case in the unquenched case. In the infrared we
will find a modified power law for the photon.

The asymptotic behavior of the vector self-energy to
two-loop order in quenched approximation is given by
[29]

A�p2 ! 1�

� 1 �
�e2

16p
�

e4�2

64�2p2 �
3e4

64�2p2

�
�2

4
�

7

3

�
�O��3� (23)

Note that to this order the vector dressing function A
receives positive corrections in all gauges, i.e., A�p2� # 1
for p2 ! 1. Furthermore, these corrections to its asymp-
totic value A � 1 behave like inverse powers of the
momentum.

On the other hand, from an unquenched
1=Nf-expansion in Landau gauge, employing a bare ver-
tex and the 1=Nf photon propagator given in Eq. (22), one
obtains for p < �

A�p2� � 1 �
8

3Nf�
2 ln�p=��; (24)
2This is equivalent to a perturbative expansion for small e2

while keeping � � Nfe
2=8 fixed. As QED3 is an asymptoti-

cally free theory this expansion will provide correct answers in
the ultraviolet.
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up to terms that are regular for p! 0. Certainly this
expression cannot be valid in the ultraviolet region [as
A�p2� ! 1 for large momenta], nor in the (far) infrared
region, reflecting the inconsistency of ignoring vertex
corrections. Nevertheless, it has been argued [10,11,40]
that it could be the first term in the build up of an
anomalous dimension

A�p2� �

�
p2

�2

�
"
; (25)

with

" �
4

3�2Nf
�

0:135

Nf
; (26)

in the infrared region. We will come back to this possi-
bility in our infrared analysis in the next section.

Finally, the analysis of the asymptotic behavior of the
scalar dressing function B�p2� in the chirally broken
phase of massless QED3 is outlined in [12]. Since we
are interested in dynamical chiral symmetry breaking,
which is a purely nonperturbative phenomenon, we can-
not rely on the 1=Nf-expansion to obtain an expression for
B. Using the operator product expansion however, one
finds that asymptotically

B�p2 ! 1� �
2 � �

4

h ���i

p2 ; (27)

with A�p2 ! 1� ! 1. Thus the chiral condensate h ���i
can be obtained from the fermion propagator in two ways:
On the one hand it can be read off from the asymptotic
behavior of the B-function and on the other hand it is
given by the trace of the propagator in coordinate space.
In Ref. [12] slight deviations between these two methods
have been found. We will demonstrate that these devia-
tions do not occur in our truncation. The asymptotic
form, Eq. (27), is reproduced to very good accuracy for
a range of values of the gauge parameter � in our nu-
merical analysis.
III. INFRARED ASYMPTOTIC BEHAVIOR

Unlike the situation in a perturbative analysis, where
one has a definite starting point to work out results order
by order, an analysis of the nonperturbative momentum
regime of QED3 is based solely on self-consistency and
relies therefore on a physically motivated ansatz to start
with. Inspired by the conjecture of the previous subsec-
tion and guided by our numerical analysis, our working
hypothesis will be that at least in Landau gauge the
infrared behavior of QED3 in the symmetric phase is
given by power laws. We will investigate this assumption
employing different vertex truncations and see how far
we can get. Finally we will investigate whether our results
are gauge covariant.
-6
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A. Infrared analysis in Landau gauge

1. The symmetric phase

For the following analysis we will not use the full CP-
or BC-vertex constructions but only the term propor-
tional to ��, denoted 1BC,

�1BC
� �p; q; k� �

A�p2� � A�q2�

2
��: (28)

This choice has the advantage that the equations are
simplified significantly and it already contains all quali-
tative features of the solution employing the full
CP=BC-vertex in the infrared region, as will be demon-
strated by our numerical calculations given in Sec. IV.
Furthermore, it has the merit that we can solve the DSEs
in the infrared analytically. This vertex has been consid-
ered before in Ref. [15], though no attempt was made
there to solve the DSEs analytically.

The starting point of our investigation is a power law
ansatz for the vector dressing function

A�p2� � cp2#; (29)

with the constant c and the power # to be determined
self-consistently. We expect this ansatz to be valid in the
infrared, i.e., in the momentum region p� �; for p > �
the function A�p2� rapidly approaches its free form,
A�p2� � 1. The integrals on the right-hand side of the
DSEs are dominated by the infrared contributions, com-
ing from the region p < �. Thus one can safely substitute
the power law for A�p2� and cut off the integrals at p � �.
Alternatively, one can substitute the power law over the
entire momentum range in the integrals, provided one
keeps track of possible ultraviolet divergences. After in-
tegration, the resulting power behavior on the right-hand
side of the equations then has to match the power law on
the left-hand side.

Given the ansatz, Eq. (29), we first have to derive the
corresponding power law of the photon polarization.
After substituting the ansatz (29) into the right-hand
side of the photon equation, Eq. (15), the integral can
be carried out with the help of Eq. (B6). We arrive at

1BC�p
2� � Z2

�
c

4

�
��3=2 � #���1=2 � #�

��3 � #���1 � #�
p�1�2#;

1BC�p2� � :Z2
�
c
w1BCp�1�2#;

(30)

where we have introduced the dimensionless function
w1BC�#�

w1BC�#� � :
4

�
��3=2 � #���1=2 � #�

��3 � #���1 � #�
: (31)

For the analysis of the fermion DSE, Eq. (13), we
assume that # >�1=2, as # � �1=2 only admits the
trivial solution A � 1 cf. Sec. III B below. With p� �
the photon dressing is given by
073007
1

1 � 1BC�p2�
�

c
�w1BC

p1�2#: (32)

Together with the power law Eq. (29) we then obtain

cp2# � Z2 �
c

w1BCNf�3

Z
d3q

�
k�1�2#

p2q2�2#

p2# � q2#

2

�

�
�
k2

2
�

�p2 � q2�2

2k2

��
: (33)

The treatment of this type of equation has been discussed
in detail in Refs. [49,50] for the system of ghost and gluon
DSEs in QCD4. To proceed one has to distinguish two
cases, # < 0 and # > 0. In the first case the left-hand side
of the equation becomes singular for p2 ! 0 and has to be
matched by a corresponding singularity in the integral on
the right-hand side. In this case the constant term, Z2,
stemming from the bare propagator is suppressed and can
simply be discarded. (This case is analogous to the gluon
equation in QCD4). On the other hand, if # > 0 the left-
hand side goes to zero. The renormalization constant Z2

thus has to be canceled by a constant term generated by
the integral. A straightforward way to deal with this
situation is to discard the constant term Z2 and at the
same time to eliminate the constant term hiding in the
integral by employing dimensional regularization.
Furthermore we have to eliminate a spurious divergence
introduced by employing the power law ansatz over the
whole momentum range. We are then left with

p2# �
p2#

w1BCNf�2

�
1

2#�1 � 2#�
�

�
�3 � 2#�

�
��#���1 � #�

��3=2 � #���1=2 � #�

�
: (34)

Note that the normalization factor Z2 as well as the
coefficient c of the power law has been dropped out of
the equation as expected. The powers of momentum
match on both sides of the equation thus confirming that
the power law is indeed a self-consistent solution of the
DSEs in the chirally symmetric phase. Eqs. (31) and (34)
together determine the exponent # and therefore com-
pletely describe the behavior of the photon and fermion
propagators in the infrared in the given truncation
scheme.

From our analysis we find a possible explanation, why
the authors of Refs. [10,11,44] did not find a phase tran-
sition in their truncation scheme: As the feedback from
the function A onto the vacuum polarization is not taken
into account in their approach, i.e., �p2� � 1=p, the
right-hand side of the DSE for A is proportional to p0,
which only matches the left-hand side if the A-function
becomes a (trivial) constant in the infrared. Thus there is
no self-consistent power law solution in this truncation
scheme. This feedback was first considered in Refs. [13–
15].
-7
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An explicit numerical solution of the Eqs. (31) and (34)
is shown in Fig. 2. For the sake of comparison we also
display the solution for the case of a bare fermion-photon
vertex, which can be obtained from a similar analysis.
Both results are very well fitted by a series of powers of
1=Nf:

#bare �
0:135

Nf
�

0:090

N2
f

�O�1=N3
f�; (35)

#1BC �
0:115

Nf
�

0:044

N2
f

�O�1=N3
f�; (36)

which suggests a connection to the 1=Nf-expansion.
Comparing the first term of our result for the bare vertex
with Eq. (25) we find that the 1=Nf-result is indeed the
first term in the build up of an anomalous dimension. The
additional 1=N2

f-term in our fit indicates that also loop
corrections to the next order in a 1=Nf-expansion sum up
and contribute to the anomalous dimension. However, one
should keep in mind that our calculation is not a 1=Nf
expansion of the DSEs. It is therefore not surprising that
our result for the order 1=N2

f contribution to the anoma-
lous dimension deviates from that obtained in a 1=Nf
expansion [51]

#1=Nf �
4

3�2Nf
�

8�32 � 3�2�

9�4N2
f

�O�1=N3
f� (37)

�
0:135

Nf
�

0:022

N2
f

�O�1=N3
f�: (38)

Furthermore, the vertex dressing of the 1BC-vertex modi-
fies #�Nf� to quite some extent.
0 1 2 3 4 5 6 7 8 9 10
Nf

0

0.05

0.1

0.15

0.2

0.25

κ

κ(Nf) (1BC)
κ(Nf) (bare vertex)
η(Nf) (PT)

FIG. 2. Here we display the anomalous dimension of the
fermion vector dressing function obtained from our infrared
analysis, #�Nf�, compared with the conjecture from perturba-
tion theory, "�Nf�.
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The infrared powers presented in Fig. 2 are not the
only solutions of the Eqs. (31) and (34). In the range
�1=2< #< 1 we found a second solution which is ex-
cellently fitted by

#1BC � 0:5 �
0:050

Nf
�

0:006

N2
f

�
0:028

N3
f

: (39)

However, contrary to the solution (36), this solution does
depend very heavily on the projection method in the
photon equation, i.e., it depends on the parameter �
introduced in Eq. (14). Furthermore, it does not connect
to the ultraviolet behavior of the dressing functions, i.e.,
we do not find numerical solutions of the DSEs interpo-
lating between the infrared behavior, Eq. (39), and the
ultraviolet asymptotic behavior given in subsection II D.
We therefore discard the solution (39) in the following.

We have shown so far that in the symmetric phase the
power law (29) leads to a self-consistent solution of the
fermion and photon DSEs, assuming that the vertex is
dominated by its ��-part. The crucial question is, of
course, whether the power law survives when additional
structure of the vertex is taken into account. That this is
indeed the case for our choice of the fermion-photon
vertex can be shown by a simple dimensional analysis.
Plugging the power law into the CP-vertex, Eqs. (9) and
(11), we find that with a vanishing B-function all terms in
the vertex depend on combinations of momenta which are
of the same order p2# as the leading term. Thus after
integration the CP-vertex will only change the coeffi-
cients of the right-hand sides of the fermion and photon
DSEs, Eqs. (30) and (34), but not the general power law
behavior. We thus expect a modified function #CP�Nf� as
compared to #1BC�Nf� and #bare�Nf�. That these modifi-
cations are small will be confirmed by our numerical
analysis in Sec. IV below. Further modifications have to
be expected from including other transverse parts of the
fermion-photon vertex and it is by no means excluded that
# finally becomes negative. We will further discuss this
possibility later on in Sec. III B 2.

2. The chirally broken phase close to Ncrit
f

Next we investigate the chirally broken phase close to
the critical value Ncrit

f of the phase transition (assuming
for now that there is a chirally broken phase, and a critical
value of Nf). In this region the dynamically generated
fermion mass will be extremely small compared to�. The
momentum range B�0� � p� � will dominate the in-
tegral on the right-hand side of the DSE for the B-
function, Eq. (12), and therefore the chirally symmetric
solutions for the photon polarization and the dressing
function A

A�p2� � cp2# (40)
-8
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�p2� � Z2
�
c
w�#�p�1�2#; (41)

determined in the last subsection, can be substituted in
the integral on the right-hand side for all momenta.
Choosing again the case of the 1BC-vertex for simplicity
we obtain

B�p2� � Z2
�

Nf�
3

Z
d3q

1

k2 � Z2
�w1BC�#�

c k1�2#

�
2B�q�

c2q2�4# � B�q�2
c�p2# � q2#�

2
: (42)

The angular integrals are easily performed, and we ob-
tain

B�p2� �
2Z2c�

pNf�2

1

1 � 2#

Z 1

0
dqq

B�q��p2# � q2#�

c2q2�4# � B2�q�

� ln
�Z2

�w1BC�#�
c � �p� q�1�2#

Z2
�w1BC�#�

c � jp� qj1�2#

�
: (43)

As we are interested in the momenta p; q� � the scale �
cuts off the integral and the logarithm can safely be
expanded. Furthermore close to the phase transition the
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interesting region is the one with B2�q� � c2q2�4#, there-
fore the equation can be linearized. Thus we arrive at

B�p� �
4

w1BC�#�Nf�
2

Z �

0
dq
B�q��p2# � q2#�

q4#

� �max�p; q��2#�1: (44)

The analysis of this type of equation is well-known
[8,52]. The integral equation can be solved directly by
substituting the power law B�p� � pb and comparing
coefficients on both sides. On the other hand, by convert-
ing the (nonlinear) integral equation into a differential
equation one obtains the boundary condition�

p
dB�p�
dp

� B�p�
�
p��

� 0; (45)

which has to be satisfied by the power law solution.
Therefore a nontrivial exponent b has to be either com-
plex or b � �1.

From the integral equation, Eq. (44), we obtain both
the chirally symmetric solution B�p� � 0 and the non-
trivial solution
b � �
1

2
� 2#�

1

2

���������������������������������������������������������������������������������������������������������������������������������������������������������������������
�1 � 4#� 8#2� �

16�1 � 2#�
!�#�

� 4

�������������������������������������������������������������������������������������������
#2�1 � 2#�2 �

16#2�1 � 2#�
!�#�

�
16�1 � 2#�2

�!�#��2

svuut
; (46)
where we have used the abbreviation !�#�: �
w1BC�#��

2Nf. Above a critical value Ncrit
f both solutions

of the exponent b are in the interval �1< b< 0 and not
compatible with the boundary condition Eq. (45): The
system is in the symmetric phase. Setting the discrimi-
nant of the outer root in Eq. (46) equal to zero and using
Eq. (30) we find a critical number of flavors of

Ncrit;1BC
f � 3:56; (47)

for the case of the 1BC-vertex. For the sake of compari-
son we also give the result in the bare vertex truncation

Ncrit;bare
f � 3:96: (48)

Note that for # � 0 we have A � 1, �p2� � �=p and
w1BC � 1, and consequently recover the well-known re-
sult from the 1=Nf-expansion [8]

b � �
1

2
�

1

2

���������������������
1 �

32

�2Nf

s
; (49)

which gives

N
crit;1=Nf
f � 32=�2 � 3:24: (50)

[This limit also serves to determine the correct sign in
front of the inner root of Eq. (46).]
Although the critical number of flavors is not too far
away from the old 1=Nf result there is a clear qualitative
difference between solutions from the full (coupled) set of
DSEs and the one from a 1=Nf-expansion: The nonper-
turbative nature of the DSEs manifests itself in the power
law solution of the vector dressing function A�p2�, i.e., in
# � 0. Such a behavior can never be obtained in a per-
turbative expansion and is in marked contrast to the
assumption A � 1 employed in the leading order
1=Nf-expansion. Similar criticism has been raised in
Refs. [9–11,44], and is at the origin of a long-standing
controversy.

Having determined the location of the phase transition
we now investigate the behavior of the B-function for
Nf ! Ncrit

f from below. Abbreviating

b � �
1

2
� 2#�

1

2
f1BC�Nf; #�; (51)

the oscillatory solution of the linearized equation,
Eq. (44), can be written in the form

B�p� � p�1=2�2# sin
�
1

2
f1BC�Nf; #��ln�p=B�0�� � ��

�
(52)

with a phase � and the relevant scale for mass generation,
-9
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B�0�, in the logarithm. Plugging this solution into the
boundary condition Eq. (45) we take the limit Nf ! Ncrit

f

and arrive at the condition

1

2
f1BC�Nf; #��ln�p=B�0�� � ��

� n��
1

1 � 4#
f1BC�Nf; #�: (53)

It can be shown [7,8] that the value n � 1 gives the lowest
vacuum energy. Therefore

B�0� � �e�2=�1�4#���� exp
�

�2�
f1BC�Nf; #�

�
: (54)

We find an exponentially decreasing mass M�0� �
B�0�=A�0� at zero momentum close to the chiral phase
transition. This is in agreement with the numerical find-
ings of Ref. [15], where the same 1BC-vertex was used in
both the fermion and the photonDSE. A similar expres-
sion describes the B-function in the bare vertex truncation
and in the 1=Nf-expansion [7,8,21]. Our numerical study
in Sec. IV will demonstrate that an exponential decrease
of B�0� with a modified function f�Nf; #� will also
emerge when the CP-vertex is employed. This type of
exponential behavior near Ncrit

f , which is different from
the usual first or second order phase transition, is remi-
niscent of a conformal phase transition [53]. Strictly
speaking however, it is not a conformal phase transition,
because QED3 is a super-renormalizable theory with a
dimensionful coupling constant, and the conformal sym-
metry is broken in both the chirally symmetric and the
broken phase.

B. Infrared analysis in general linear covariant gauges

Having determined the infrared behavior of the photon
polarization and the fermion dressing functions in
Landau gauge we now turn to general linear covariant
gauges. In the following we will investigate whether our
ansatz for the fermion-photon interaction is sophisticated
enough to generate gauge covariance of the photon po-
larization and the fermion propagator in the symmetric
phase. To this end we will follow the strategy to first
reanalyze the DSEs in general linear covariant gauges
and then compare our findings with the corresponding
ones from performing a LKFT of our Landau gauge
solutions. We will investigate whether our truncation al-
lows for power law solutions in general linear covariant
gauges and whether the LKFT is consistent with such a
scenario.

1. The photon and fermion DSEs

In QED the photon polarization is a gauge invariant
object. This is evident from its LKFT, given below in
Eq. (63). Thus in general a subtle interplay of the fermion
propagators and the fermion-photon interaction has to
073007
guarantee the invariance of the photon polarization in
its DSE. On the perturbative one-loop level, it has been
shown recently [30], that at least in the symmetric phase
there have to be terms in the transverse part of the vertex
that are explicitly dependent on the gauge parameter �.
These terms are not constrained by the WGTI, and are
missing in the vertex truncation investigated in this work.
For general gauges these terms will be important in the
photon DSE and we therefore cannot expect the photon
polarization to be gauge invariant at our level of
truncation.

Assuming a �-dependent power law for the vector
dressing function of the fermions

A�p2� � c���p2#���; (55)

and employing the BC-vertex in the photon DSE we end
up with the same expression for �p2� as in Landau
gauge,

�p2� � :Z2
�
c���

�w1BC�#���� � w2BC�#�����p
�1�2#���:

(56)

where w1BC has been given in Eq. (31) and w2BC abbre-
viates contributions from the remaining term of the BC-
vertex. The detailed form of w2BC can be calculated
analytically, but will not be given here as it is not im-
portant in the following. We note that on this level of
truncation gauge invariance of the photon polarization in
the infrared requires the exponent # to be independent of
the gauge parameter �. It is somewhat surprising that as a
result, also the infrared behavior of the vector fermion
dressing function A is gauge independent, since it is
governed by the same exponent #. This may or may not
be an inconsistency in our truncation as this function A is
in general a gauge dependent object. At this stage of the
investigation one may hope that the dependence of # on �
is weak, leading to qualitatively similar results at least in
the vicinity of Landau gauge.

Next we analyze the fermion DSE, Eq. (7), with the
CP-vertex. In the �-part of the equation the vertex is
replaced by the inverse fermion propagator according to
the WGTI. We then obtain

A�p2� � Z2 �
Z2�

Nf�3

Z
d3q

�
1

1 � �k2�

1

p2k2q2A�q2�

�

�
�
k2

2
�

�p2 � q2�2

2k2

��
A�p2� � A�q2�

2

�
A�p2� � A�q2�

p2 � q2

p2 � q2

2

�
�

�

p2k2q2

�
A�p2�

A�q2�

�

�
p2q2

2k2 �
p4

2k2 �
p2

2

�
�

�
p2q2

2k2 �
q4

2k2 �
q2

2

���
:

(57)

As has been noted in Ref. [24] the CP-vertex leads to
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gauge covariant DSEs in the quenched massless case.
Indeed in this limit, �k2� � 0, and we have the gauge
covariant solution

1

A�p2�
� 1 �

e2�
8�p

arctan
�
8�p

e2�

�
; (58)

of Eq. (57). In Landau gauge, this solution reduces to the
trivial solution A�p2� � 1. The question is: Is there a self-
consistent power law solution for the unquenched case?

Substituting the power laws, Eqs. (55) and (56), in
Eq. (57), we have to distinguish several cases:
(a) #
3Bas
conjec
>�1=2:
In this case the photon propagator contributes as

1

1 � 1BC�k2�
�

c
Z2�w1BC

k1�2#; (59)

and with substituted power laws the integration of
the right-hand side of Eq. (57) leads to

cp2# � Z2
1

Nf�2

�
cp2#

Z2�w1BC � w2BC�
h�#�

�
1

p
�

��3=2 � #���1=2 � #�
��1 � #���1 � #�

�
; (60)

where h�#� abbreviates a combination of
�-functions and hypergeometric functions, which
need not be specified here. The longitudinal
1=p-term dominates the right-hand side for all
gauges except Landau gauge and again we do not
find a self-consistent power law to this level of
truncation. The only way to obtain such a solution
with # >�1=2 is the presence of a �-dependent
transverse term in the vertex canceling the
�-dependent longitudinal piece.3 Then the precise
value of # is again determined by the coefficients
of the remaining terms.
(b) #
 � �1=2, # � �1:
In this case the vacuum polarization vanishes for
k! 0 and the photon propagator is proportional to
1=k2 in the infrared region. Integrating the right-
hand side of Eq. (57), the �-independent part van-
ishes, and we obtain

cp2# �
1

p
�
Z2�
Nf�

��3=2 � #���1=2 � #�
��1 � #���1 � #�

: (61)

Note that this remaining �-dependent expression is
exact [cf. the comments below Eq. (7)]. Matching
the coefficients (naively) gives # � �1=2, but due
to the divergence of the coefficient on the right-
hand side this is not a solution. There might exist a
ed on a less rigorous analysis of the infrared a similar
ture has already been made in [44].
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potential solution with # � �1, which we will
consider separately below. Here we conclude that
there is no nontrivial self-consistent power law
solution with �1< # � �1=2 within our trunca-
tion. Any possible nontrivial solutions in this range
have to be generated by other transverse parts of
the vertex. For example, a term proportional to p2#

after integration with appropriate coefficients
would be more singular in the infrared than the
�-piece and lead to a self-consistent nontrivial
solution.
(c) #
 � �1:
As in case (b), the vacuum polarization vanishes
for k! 0 and thus Eq. (57) becomes effectively
quenched. In this case there is at least one solution,
namely, Eq. (58). Certainly, this trivial solution
will not survive when further parts of the trans-
verse vertex will be taken into account, but it
serves well in the following to illustrate an impor-
tant point: Interestingly, the infrared behavior of
this solution is

A�p2� � 3
�
e2�
8�

�
2 1

p2 �O�p
4�; (62)

for p� e2�=�8�� and thus # � �1. Nevertheless
the corresponding pure power law is not a self-
consistent solution, as can be seen from Eq. (61):
The right-hand side vanishes for # � �1. The
reason for this behavior is to be found in the
appearance of the new scale e2�=�8�� introduced
by the gauge transformation from Landau gauge to
general linear covariant gauges. For small values of
the gauge parameter this new scale divides the
momentum range 0< p<� into two regions and
in general we cannot expect the pure power law to
describe the physics in this whole region.
In all cases considered so far we do not find a self-
consistent power law solution in non-Landau gauges.
Two possible reasons for this behavior have been identi-
fied. Missing transverse parts of the fermion-photon ver-
tex could play an important role in these gauges.
Furthermore the appearance of the new scale e2�=�8��
may invalidate a simple power law ansatz in the infrared
region. In the next subsection we will investigate, whether
one can derive additional information from the LKFT.

2. Landau-Khalatnikov-Fradkin transformation of the
Landau gauge solution

Assuming for the moment that the power law for the
vector dressing function is qualitatively correct in
Landau gauge, we will now use the LKFT to determine
the corresponding solutions in other gauges. The trans-
formation laws for the photon and fermion propagators
are most easily specified in coordinate space and we give
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the transformation rules for the propagators in Euclidean
space. The photon propagatorD���x;�� in general gauges
can be obtained from its transverse Landau gauge form
D���x; 0� by the transformation law

D���x;�� � D���x; 0� � @�@���x�; (63)

with the arbitrary function �. The corresponding trans-
formation law for the fermion propagator is

S�x;�� � S�x; 0�e���x����0��e2
: (64)

These transformation laws leave the DSE and the WGTI
form invariant. In linear covariant gauges and in general
dimension d the function ��x� is given by

��x� � ��
Z ddq

�2��d
e�iq�x

q4 ; (65)

which leads to the familiar form of the photon propagator
in linear covariant gauges

D���p; �� �
�
��� �

p�p�
p2

�
1

p2�1 � �p2��
� �

p�p�
p4 ;

(66)

in momentum space with the gauge invariant photon
polarization �p2�. Furthermore for QED3 one obtains
the transformation law

S�x; �� � S�x; 0�e�x�e
2=�8��; (67)

for the fermion propagator in coordinate space.
In the symmetric phase of Landau gauge QED3 we

found the power law solution

S�p; 0� �
ip6

p2

1

cp2# ; (68)

which leads to the corresponding expression

S�x; 0� �
Z d3p

�2��3
e�ip�x

ip6

p2

1

cp2# ;

S�x; 0� �
��1 � 2#� sin�#��

c4�2

1 � 2#
#

�ixi
x3�2# ;

(69)

in coordinate space (all integration formulas used in this
subsection are given in Appendix B). Applying the trans-
formation (67) we transform the propagator to general
gauges and perform the inverse Fourier-transform

S�p; �� �
��1 � 2#� sin�#��

c4�2

1 � 2#
#

�
Z
d3xeip�x

�ixi
x3�2# e

�x�e2=�8�� (70)
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S�p; �� �
ip6

p2

1

c cos�#��
2#� 1

2#

�

�
cosf2# arctan�p8�=��e2��g

fp2 � ��e2=�8���2g#

�
sinf�2#� 1� arctan�p8�=��e2��g

fp2 � ��e2=�8���2g#�1=2p�2#� 1�

�
: (71)

Note that in performing the LKFT with the infrared
power law alone we have implicitly assumed that contri-
butions from p > � � Nfe

2=8 have no significant influ-
ence on the behavior of the transformed propagator for
p� �. Furthermore note that the LKFT has introduced
a new scale, �e2=�8��. In order to be consistent with the
previous assumption we have to restrict the gauge pa-
rameter to small values, i.e., 0 � �e2=�8�� � �. We
then obtain two momentum regions of interest where
we can expand our solution:

A�p;�� �

8><>:c�p
2��1 cos�#�� 3

1�4#2

�
�e2

8�

�
2#�2

for p� �e2

8�

c�p2�# for p� �e2

8�

(72)

As expected this expression smoothly connects to the
Landau gauge power law when �! 0. In all other linear
covariant gauges we obtain the Landau gauge power law
for momenta p� �e2

8� . Below this scale we find surprising
agreement with the LKFTof the trivial solution, Eq. (61),
i.e., a power # � �1.

3. Self-consistent power law solutions in covariant
gauges

If we take the LKFT result based on the power law
solution in Landau gauge, Eq. (72), at face value and
combine it with the information we extracted from the
infrared analysis of the coupled fermion and photon
DSEs, Eqs. (56) (which implicitly defines wINC and
w2BC), (60), and (61), two consistent scenarios of massless
QED3 with power law behavior in the infrared are pos-
sible:
(I) L
-12
andau gauge behaves differently in the extreme
infrared than any other linear covariant gauge. In
Landau gauge we have a power law with small
positive or negative values of the exponent # (de-
pendent on the details of the vertex truncation). In
other gauges we essentially obtain the free solution
with # � �1 for p� �e2

8 and the same power law
as in the Landau gauge for momenta �e2

8� � p�
�. As the region p� �e2

8� can always be gauged
away, all interesting infrared physics is already
contained in the Landau gauge power law. In the
DSE this scenario could be realized by a trans-
verse term in the vertex which is proportional to
the gauge parameter � and leads to a term of the
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FIG. 3. Shown are the variation of the mass function, the
wave function renormalization and the polarization with the
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side we employed the first term of the BC-vertex (1BC) in both
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order 1=p2 in the infrared after integration of the
fermion DSE. A subtle cancellation of terms in the
photon equation has to guarantee a gauge invari-
ant photon polarization.
(II) L
andau gauge behaves similar to other linear co-
variant gauges. This entails that the solutions with
small positive values for # found in Sec. III A are
artifacts of the truncation scheme, and the true
solution is a power law in the infrared with an
exponent # � �1 for all values of the gauge pa-
rameter � including Landau gauge. Then the gauge
dependent scale �e2

8� does not distinguish two mo-
mentum regions with different behavior of the
propagator. In the DSE this scenario requires a
I. The chiral condensate [calculated via Eq. (73)] obtained in the
DSE and the BC-vertex in the photon DSE.

�h ���i=e4

1.0 2.0 2.8 3.0

rtex 7 � 10�4 3:5 � 10�5 2:5 � 10�8 3:9 � 10�10

ex 1:2 � 10�3 1:3 � 10�4 1:7 � 10�6 2:6 � 10�7
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transverse term in the vertex which does not ex-
plicitly contain the gauge parameter � and leads to
a term of the order 1=p2 in the infrared after
integration. Then the dressing function A and sub-
sequently the photon polarization would be gauge
invariant in the infrared. The fermion and photon
DSEs would effectively decouple for momenta
p� �.
Both possibilities are consistent with our findings from
the LKFT and only a detailed analysis of the transverse
parts of the fermion-photon vertex can decide which one
is realized in QED3.

IV. NUMERICAL RESULTS

In the previous section we performed in some detail an
analytical determination of the infrared behavior of
QED3 close to and above the phase transition assuming
a power law behavior of the fermion vector dressing
function. Here we present our numerical solutions of the
unquenched system of DSEs in both the massive and the
massless phase, deferring the presentation of our results
in quenched QED3 to Appendix C.
1BC-vertex model and employing the CP-vertex in the

3.1 3.3 3.4 3.5

1:5 � 10�11

8:9 � 10�8 5:0 � 10�9 7:4 � 10�10 6:6 � 10�11
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FIG. 5. Shown are our results for the dressing functions for
three different values of the gauge parameter � and Nf � 1.
The scale is set by choosing e2 � 1.
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A. Unquenched results and phase transition in Landau
gauge

Our results for the fermion mass function M�p2�, the
wave function renormalization Zf�p2� and the photon
polarization �p2� in unquenched Landau gauge are
shown in Fig. 3. On the left panel we display results
obtained with the first term of the BC-vertex (1BC)
only. On the right panel we give the results obtained
with the CP-vertex in the fermion DSE and the
BC construction in the photon DSE. All results in this
section are obtained with the Brown-Pennington projec-
tion � � 3 in the photon equation, other choices lead only
to minor modifications. As expected, in the ultraviolet all
curves follow their respective asymptotic limits, given in
Eqs. (27) and (22). In the infrared we find finite, nonzero
dressing functions throughout the dynamically broken
phase. Furthermore, we can clearly see two distinct
mass scales: The fermion dressing functions have a
kink near p � e2 and a second kink at p�M�0�. Close
to the phase transition, these scales are several orders of
magnitude apart, which makes lattice simulations ex-
tremely difficult.

Above Ncrit
f the functions turn into power laws thus

justifying the basic assumption in our IR-analysis of
Sec. III. The values of the exponents # determined in
the analytical calculation are reproduced on the 10% level
by the numerical results. In the CP=BC-vertex case we
find # � 0:0315 at Nf � 4:5, which is much closer to the
value obtained with a bare vertex, #bare � 0:0343, than to
the corresponding value #1BC � 0:0278 obtained with the
1BC-vertex piece. Furthermore, notice that for these un-
quenched calculations, Zf�p2� � 1, at least for Nf � 2, in
contrast to our findings in the quenched case (cf.
Appendix C).

The dynamical mass generation close to the phase
transition is studied in Fig. 4. Shown are results in four
different truncation schemes: The leading order
1=Nf-expansion of Ref. [8] employs the perturbative ex-
pression, Eq. (22), for the photon polarization and choo-
ses A�p2� � 1 together with a bare fermion-photon
vertex. This is compared to our results from the fully
unquenched system of DSEs with three different trunca-
tions for the vertex: bare, 1BC and the
CP=BC-combination. As can be seen from the figure,
the numerical results follow nicely the corresponding
analytical results from Sec. III A, and are in qualitative
agreement with the findings of Ref. [15]. Our most so-
phisticated vertex truncation, the CP=BC-combination,
tends toward a critical value of the number of flavors of
Ncrit
f � 4.
Finally we list our results for the chiral condensate in

two different truncation schemes for a range of values of
Nf in Table I. For the CP-vertex, there is no discrepancy
between the condensate as obtained from the trace of the
073007-14
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fermion propagator

h ���i � �Tr�S�0�� � �4
Z d3q

�2��3
B�q2�

q2A2�q2� � B2�q2�
;

(73)

and that extracted from the asymptotic behavior, Eq. (27);
for the 1BC-vertex there is about 5% to 10% difference
between the two methods. Listed are the condensates
calculated from the trace of the fermion propagator. In
accordance with the simple estimate given in Ref. [54], we
find small condensates well below the phase transition.
For Nf � 1 and Nf � 2 recent lattice simulations provide
upper bounds of the O�10�3�e4 and O�10�4�e4, respec-
tively [18,19]. These bounds are certainly consistent with
our values. Thus the combined evidence of the DSEs and
the lattice Monte-Carlo simulations indicate the presence
of dynamical chiral symmetry breaking at Nf � 1 and
Nf � 2.

B. Unquenched results in general linear covariant
gauges

Here we present numerical solutions for unquenched
QED3 in linear covariant gauges in the CP=BC-vertex
truncation scheme. According to our previous discussion
in Sec. III B and the numerical results in the quenched
approximation in Appendix C, we expect artifacts from
violating gauge invariance. The results presented in Fig. 5
for the case of Nf � 1 flavors indicate that this is indeed
the case. The photon polarization functions clearly de-
pend on the gauge parameter �. On a quantitative level
this can also be seen from the values of the chiral con-
densate displayed in Table II. Induced by the feedback of
the photon propagator on the fermion, the variation of the
condensate with the gauge parameter is much larger for
the unquenched than for the quenched theory. Only the
Landau gauge results are consistent with the bounds from
lattice simulations.

As expected from the infrared analysis of Sec. III B
there is no chirally symmetric self-consistent power law
solution for � � 0. In fact we did not find any self-
consistent solution in the symmetric phase for � � 0,
and consequently the system stays in the chirally broken
phase at least for values of Nf as large as 7, which is the
largest Nf we have investigated. For larger values of Nf
TABLE II. The chiral condensate [calculated
truncation in different gauges.

�

gauge parameter Nf � 0 Nf � 1 Nf �

� � 0 333 121 13
� � 0:5 340 165 79
� � 1 351 202 108
� � 2 356 259 189
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the numerical analysis becomes increasingly tedious. The
corresponding dressing functions in Feynman gauge are
presented in Fig. 6. An interesting difference with the
Landau gauge solutions is that now 0< Zf�p2� � 1 on the
entire momentum range, in contrast to the unquenched
Landau gauge solutions, for which Zf�p2� � 1 on part
(Nf � 1) or all (Nf � 2) of the momentum range. Also
note that now there appears to be only one scale at which
the generated fermion mass function M�p2� has a kink.
V. SUMMARY AND CONCLUSIONS

In this work we have investigated the chiral phase
transition of QED3 in the Green’s functions approach.
Employing different ansätze for the fermion-photon ver-
tex we have solved the coupled set of Dyson-Schwinger
equations for the fermion and photon propagators. No
other approximations have been made in our numerical
calculations. In addition, the infrared behavior of the
propagators close to the phase transition and in the sym-
metric phase has been investigated employing methods
that have been successfully used previously in four di-
mensional QCD [36–39,49] and QED [52]. Special care
has been taken to preserve gauge invariance as much as
possible. The chosen vertex ansatz satisfies the Ward-
Green-Takahashi identity. Furthermore it has the correct
properties under Landau-Khalatnikov-Fradkin transfor-
mations in the special case of massless quenched QED.
Nevertheless, our results indicate that this is not enough:
The resulting vacuum polarization is not gauge invariant,
nor is the chiral condensate. Clearly, further structure in
the transverse part of the vertex is needed to properly
ensure gauge covariance.

In Landau gauge we find a self-consistent power law
solution for the photon polarization and the vector fer-
mion dressing function in the infrared region in the
symmetric phase. With a bare fermion-photon vertex the
anomalous dimension # is directly related to the coeffi-
cients of a well-known result from the 1=Nf-expansion.
We thus confirmed a long-standing conjecture from the
renormalization group [10,11,40]. We would like to em-
phasize, however, that such a power law solution is genu-
inely nonperturbative in nature and cannot be obtained to
any finite order in perturbation theory or the
1=Nf-expansion. The dependence of # on the number of
via Eq. (73)] obtained in the CP=BC-vertex

h ���i=�10�5e4�

2 Nf � 3 Nf � 4 Nf � 5 Nf � 6

0.026 ? 0 0
39 23 15 11
74 55 37 29

143 107 92 77
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FIG. 6. Shown are the variation of the mass function, the
wave function renormalization and the polarization with the
number of flavors in Feynman gauge, � � 1. The scale is set by
choosing e2 � 1.
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flavors is modified by nonperturbative contributions in
the vertex dressing. We find small positive values of # for
all vertex dressings considered so far, indicating a van-
ishing propagator function A�p2� for p2 ! 0. This is not
073007
what one would expect on physical grounds [4]. It remains
to be seen whether further contributions from the trans-
verse part of the fermion-photon vertex are capable to
drive # to negative values.

In the chirally broken phase, the power law behavior
gets modified by the (dynamically generated) fermion
mass, which effectively acts as an infrared cutoff. We
have determined the dependence of the chiral condensate
and of the scalar fermion dressing function B�p2 � 0� on
the number of flavors and found an exponential decrease
close to the phase transition. If this behavior turns out to
be correct in the full theory, one can hardly hope to be
able to determine the critical number of flavors from
lattice Monte-Carlo simulations. A sign pointing in this
direction is found for small Nf: The chiral condensate is
very small compared to the natural mass scale e2.
Furthermore it agrees with the values recently deter-
mined on the lattice [18,19]. The qualitative behavior of
the B-function and the condensate does not depend on our
choice for the vertex ansatz, though there are quantitative
differences, in particular, near the critical number of
flavors, Ncrit

f . The results with our most sophisticated
vertex suggest a critical number of flavors Ncrit

f � 4.
In other linear covariant gauges we find a completely

different picture. No indications for a phase transition are
seen in our numerical analysis. The value of the conden-
sate becomes heavily dependent on the gauge parameter,
and for � � 0 our results exceed the bounds set by lattice
simulations. It appears as if no self-consistent power law
solutions exist in the symmetric phase. A possible expla-
nation for this fact can be found with the help of the
Landau-Kalatnikov-Fradkin transformation laws. We find
that, given a power law solution in Landau gauge with
exponent #, the gauge transformed propagator has the
same anomalous dimension only for momenta �e

2

8� � p�

�, whereas below this scale it has an anomalous dimen-
sion # � �1. Such a solution cannot be found from the
Dyson-Schwinger equations with our vertex truncation.
We thus conclude that further transverse structure in the
vertex is mandatory to obtain gauge covariant solutions
for the propagators of QED3. These extra terms could
allow for three possible scenarios in the symmetric phase
of QED3: (a) terms explicitly proportional to the gauge
parameter � could lead to solutions in accordance with the
Landau-Khalatnikov-Fradkin transformation of the
Landau gauge solutions; or (b) they could invalidate all
Landau gauge solutions found so far; or (c) they could
allow for solutions in the symmetric phase that are not
power laws in the infrared region. Although we do believe
that the scenario (a) is most likely to be realized we
cannot exclude the other possibilities so far. A thorough
investigation of all existing proposals for the transverse
structure of the fermion-photon vertex in this respect
seems desirable and will be carried out in future work.
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APPENDIX A: REGULARIZATION OF THE
PHOTON DSE

The aim here is to provide a formulation for the photon
equation that can be used not only in combination
with the Brown-Pennington projector, � � 3 [cf.
Equation (14)], but with general values of � . The depen-
dence of the Landau gauge vacuum polarization on � then
provides a measure of the violation of transversality in
the photon equation.

To see the problems arising with � � 3 we analyze the
ultraviolet behavior of the photon DSE, Eq. (15). The
kernels Wi are then given by

W1�p
2; q2; k2� �

�k4

p4 � k2

�
1 � �

p2 �
2�q2

p4

�
� 1

�
�1 � ��q2

p2 �
�q4

p4 ; (A1)

W2�p
2; q2; k2� �

2�3 � ��

p2 ; (A2)

W3�p
2; q2; k2� �

�k6

p4 � k4

�
1 � �

p2 �
�q2

p4

�
�k2

�
1 �

2�� � 3�q2

p2 �
�q4

p4

�
�q2 �

�� � 1�q4

p2 �
�q6

p4 ; (A3)

W4�p2; q2; k2� �
�2�k4

p4 � k2

�
4

p2 �
4�q2

p4

�
� 2 �

4q2

p2

�
2�q4

p4 ; (A4)
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W5�p
2; q2; k2� �

�k4

p4 � k2

�
1 � �

p2 �
2�q2

p4

�
� 1

�
�� � 3�q2

p2 �
�q4

p4 ; (A5)
W6�p2; q2; k2� �
�k4

p4 � k2

�
3 � �

p2 �
2�q2

p4

�
� 1

�
��� � 1�q2

p2 �
�q4

p4 : (A6)
Let us first concentrate on the term proportional to the
kernel W1. In the ultraviolet we can use the angular
approximation A�q2� � A�k2� � 1, furthermore the mo-
menta q2 and k2 are larger than all fermion masses. One
angular integral yields a trivial factor 2� and the integral
is dominated by the part q2 > p2
UV1�p2� � �
g2Nf
�2��2

Z 1

p
dqq2

Z �

0
d- sin�-�

1

q2k2

�

�
�k4

p4 � k2

�
1 � �

p2 �
2�q2

p4

�
� 1

�
�1 � ��q2

p2 �
�q4

p4

�
: (A7)
Now we perform the angular integrals according to
Eqs. (B1) through (B5) and expand the resulting loga-
rithm for momenta q2 � p2. To leading order we obtain
UV1�p2� � �
g2Nf
�2��2

Z 1

p
dq

�
2�3 � ��

3p2 �
��10 � 2��

15q2

�O�p2=q4�

�
; (A8)
which is convergent if � � 3 but contains a linear diver-
gence for all other values. Treating all other terms in the
fermion loop in the same way we arrive at the expression
UV�p2� � �
g2Nf
�2��2

Z 1

p
dq

�
2�3 � ��

3p2 �
��10 � 2��

15q2 � � � � � B�q2�2
�
2�3 � ��

p2q2 �
2�3 � ��

3q4

�
�
A0�q2�

2

�
�

4q2�3 � ��

3p2

�
5 � �

15
� � � � � B�q2�2

�
4�3 � ��

3p2 �
5 � 3�

15q2 � � � �

��
� B0�q2�A�q2�B�q2�

�
�

8�3 � ��

3p2 �
10 � 6�

15q2 � � � �

��
:

(A9)
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which contains linear divergences proportional to �3 � ��
at various places. In order to eliminate these terms we
subtract appropriate expressions from the kernels Wi
given in Eqs. (16) through (21). This results in the modi-
fied kernels

eW 1�p2; q2; k2� � W1�p2; q2; k2� �
2k2�3 � ��

3p2 ; (A10)

eW 2�p
2; q2; k2� � 0; (A11)

eW 3�p
2; q2; k2� � W3�p

2; q2; k2� �
8q2k2�3 � ��

3p2 ; (A12)

eW 4�p2; q2; k2� � W4�p2; q2; k2� �
8k2�3 � ��

3p2 ; (A13)

eW 5�p2; q2; k2� � W5�p2; q2; k2� �
4k2�3 � ��

3p2 ; (A14)

eW 6�p2; q2; k2� � W6�p2; q2; k2� �
4k2�3 � ��

3p2 : (A15)

Based on our analytical infrared calculus as well as on
our numerical calculations we investigated the depen-
dence of the solutions on the projection parameter � and
TABLE III. The chiral condensate extracted
function, see Eq. (27), and obtained by taking th
of the gauge parameter �, all in the quenched (N

��h ���i�=�10�3e4� � � 0 �
asympt. -Tr[S(0)] a

BC-vertex 3.34 3.24
CP-vertex 3.29 3.29
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found very small effects not affecting any of our con-
clusions in the main body of this work.
APPENDIX B: ANGULAR AND RADIAL
INTEGRALS

In d � 3 dimensions the following angular integrals
are needed for the UV-analysis of the photon equationZ �

0
d-

sin�-�

k4 �
2

�q2 � p2�2
; (B1)

Z �

0
d-

sin�-�

k2 �
1

pq
ln
�
p� q
jp� qj

�
; (B2)

Z �

0
d- sin�-� � 2; (B3)

Z �

0
d- sin�-�k2 � 2�p2 � q2�; (B4)

Z �

0
d- sin�-�k4 � 2p4 � 2q4 �

20

3
p2q2; (B5)

where k2 � �q� p�2 � p2 � q2 � 2pq cos�-�. For the
IR-analysis of the coupled system we need the following
integrals
Z
ddq

1

�q2�a�k2�b
� �d�d=2�p2�d=2�a�b

��d=2 � a���d=2 � b���a� b� d=2�
��a���b���d� a� b�

; (B6)
and for the Fourier-transforms necessary for the LKFT
we needZ �

0
d- sin- cos-e�ipx cos- � �2i

�
cos�px�
px

�
sin�px�

�px�2

�
;

(B7)

Z 1

0
dxxb sin�ax� �

��1 � b�

a1�b sin
�
�1 � b�

�
2

�
;

0< jb� 1j< 1; �3:761�4�� (B8)
Z 1

0
dxxb cos�ax� �

��1 � b�

a1�b cos
�
�1 � b�

�
2

�
;

0< �b� 1�< 1; �3:761�9�� (B9)

Z 1

0
dxxb sin�ax�e�cx �

��1 � b�

�a2 � c2��1�b�=2

� sin
�
�1 � b� arctan

�
a
c

��
;

b >�2; c > 0; �3:944�5�� (B10)
from the asymptotics of the fermion mass
e trace of the propagator, for different values
f � 0) approximation. The units are 10�3e4.

� 0:5 � � 1
sympt. -Tr[S(0)] asympt. -Tr[S(0)]

3.54 3.25 3.67 3.26
3.34 3.35 3.46 3.46
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FIG. 8. Here we display the photon polarization �p2� as
calculated from the photon DSE using Nf � 1 and the
quenched fermion propagator functions without back-coupling
for three different values of the gauge parameter �. The scale is
set by choosing e2 � 1.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

p
2

10
-5

10
-4

10
-3

10
-2

10
-1

M
(p

2 ) ξ=0
ξ=0.5
ξ=1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

p
2

0.4

0.6

0.8

1.0

Z
f(p

2 )

ξ=0
ξ=0.5
ξ=1
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Z 1

0
dxxb cos�ax�e�cx �

��1 � b�

�a2 � c2��1�b�=2

� cos
�
�1 � b� arctan

�
a
c

��
;

b >�1; c > 0; �3:944�6�� (B11)

where the numbers in square brackets refer to the corre-
sponding equations in Ref. [55].

APPENDIX C: NUMERICAL RESULTS IN
QUENCHED APPROXIMATION

QED3 in quenched approximation employing the BC-
vertex in the fermion and photon equation has been in-
073007
vestigated in detail in Refs. [12,48] (for recent work see
Ref. [35] and references therein). In the chirally broken
phase, the gauge dependence of the photon polarization as
well as the chiral condensate was found to be rather weak
for the condensate and uncomfortably large for the pho-
ton polarization. For the condensate a discrepancy be-
tween the value extracted from the asymptotic form of the
scalar fermion self-energy, see Eq. (27), and the value
obtained from the trace of the fermion propagator, see
Eq. (73), has been found. All we have to add to these
investigations is an answer to this last problem. As can be
seen from Table III, adding the CP term to the BC-vertex
in the fermion DSE removes this discrepancy and slightly
reduces the gauge dependence of the condensate.

The corresponding numerical solutions are displayed
in Figs. 7 and 8. For the fermion propagator, no qualitative
difference between Landau gauge and gauges with non-
vanishing gauge parameter is found. Notice that 0<
Zf�p2� � 1 on the entire momentum range, as one would
expect from quenched perturbative theory, Eq. (23). For
the photon polarization we find sizable violations of gauge
invariance employing the BC-vertex in accordance with
Ref. [48]. Adding the CP term also in the photon DSE
does not help in this respect and furthermore introduces
spurious divergences.
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