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We calculate the hadronic tensor for inclusive semileptonic B — X {7 decay to O(«;). This allows
O(ayAqcep/my,) corrections to hadronic invariant mass observables to be directly evaluated with
experimentally required cuts on phase space. Several moments of phenomenological interest are
presented to order O(a;Aqcp/m),) and (Q(AéCD/mi), allowing a consistent extraction of the heavy
quark effective theory parameters up to (O(A%CD/mz) and the b quark mass with theoretical error
~50 MeV. The hadronic invariant mass spectrum is examined with a general moment to obtain
observables that test the theoretical error estimate assigned to these parameters; in particular, fractional
moments that directly test the operator product expansion for inconsistencies in the hadronic invariant
mass spectrum are reported. The m;, Agcp/ m2 expansion present for fractional moments of the hadronic
invariant mass spectrum is discussed and shown to introduce a numerically suppressed uncertainty of

(Q(m‘gA‘éCD/mg).
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L. INTRODUCTION

Inclusive semileptonic B — X {7 decay offers an op-
portunity to measure the Cabbibo-Kobayashi-Maskawa
(CKM) parameter |V,,,| and the bottom quark mass [1-9].
Measurements of these parameters are crucial to the B
factory program of overconstraining the CKM sector of
the standard model [10]. Experimental studies of mo-
ments of the differential decay spectrum of B — X {v
combined with a measurement of the total inclusive
decay rate are useful in extracting these parameters, as
these observables can be measured cleanly by experiment,
and calculated from QCD without model dependence
using an operator product expansion (OPE).

The OPE is an expansion in powers of the ratio
Aqcp/my,, where the terms in this expansion are parame-
trized using heavy quark effective theory (HQET). The
OPE demonstrates that in the m; — oo limit, inclusive B
meson decay spectra are equal to b quark decay spectra.
To extract m;, and |V,,| from the inclusive decay spec-
trum with high precision, one needs to accurately know
the relevant matrix elements of terms in the OPE that the
spectrum depends upon. Extensive theoretical effort has
been devoted to calculating the decay rates and moments
of various spectra, to test HQET by the extractions of
these nonperturbative parameters from different spectra,
and to obtain |V,,| and a precise value for the b quark
mass.

Experimental results have been reported by the
BABAR, CLEO and DELPHI Collaborations measuring
various B meson decay spectra and moments [11-16].
Recent analysis of this data [17,18] finds |V,,| = (40.8 +
0.9) X 1072 and m}5 = 4.74 = 0.10 GeV, where the ex-
perimental uncertainties dominate the extraction. As the
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experimental errors are expected to decrease in the near
future, it is appropriate to reexamine the theoretical error
assigned in this extraction. The largest contributions to
the theoretical uncertainties introduced in these fits come
from the estimated size of the O(a;Aqcp/m;) correc-
tions with a lepton energy cut, the O(a;Agcp/m}) terms,
and the O(A¢cp/mym?) terms introduced due to the
HQET expansion employed for m,. [19].

In past calculations, the lepton energy cut dependence
of the O(a;Aqcp/m)) terms was not calculated, and
these terms were treated as a source of error in the
determination of m, and |V,,|. In this paper, we improve
upon past results by calculating the lepton energy cut
dependence of the O(a;Aqcp/mp) terms. With the
calculation of these terms and the moments presented in
this paper, global fits will allow precise determinations
of |V,| and m;, to occur from the inclusive decay
spectrum.

As the precision of determinations of m,, and |V,,|
improves, it becomes important to test the consistency
of the OPE more precisely. Observables that do not
depend strongly on the nonperturbative parameters that
introduces the dominant uncertainty in extractions of m,,
and |V,,| allow one to test if the uncertainty assigned for
all higher order terms in the OPE is sufficiently large. By
examining a general moment of the lepton spectrum [20],
observables of this type, called OPE testing moments,
have been found. In this paper, we apply this technique to
hadronic invariant mass moments. By testing the error
assigned to higher order effects experimentally we im-
prove the confidence in the theoretical error assigned due
to these effects in determinations of m, and |V,,| from
moments of semileptonic inclusive B decay. This allows
extractions of m, from inclusive semileptonic decay to
occur in a theoretically clean and unambiguous fashion

© 2004 The American Physical Society



MICHAEL TROTT

[21]. These results can be combined with the results for
the lepton energy spectrum for cross-checks and fits to
determine the HQET parameters.

The structure of this paper is as follows. In Sec. II the
O(a,) contribution to the hadronic tensor is presented.
Section III reports on moments in the 1S mass scheme
[22-25], and discusses the m,Aqcp/m,. expansion
present in fractional hadronic invariant mass moments.
The decay width to O(a,Agcp/my,) and @(A%CD/m?,)
and the error that should be assigned in the fit of the
moments presented in this paper is discussed. The domi-
nant parameters affecting the extraction of |V,,| inclu-
sively, m}S and A;, are extracted from known moments.
Observables appropriate to precisely test the consistency
of the OPE are reported and moments that allow a mea-
surement of the b quark mass with minimal theoretical
error are presented.

IL. O(ay) CONTRIBUTION TO DECAY SPECTRUM

A. Hadron tensor decomposition

The O(a,) corrections to semileptonic B — X {7 de-
cay have been known for particular spectra and moments
for some time [26—28]. The decomposition of the triple
differential decay spectrum in terms of structure func-
tions has not appeared in the literature to date, although
the limit of this spectrum appropriate for a massless final
state is known [29]. The triple differential decay spec-
trum must be known to allow for the experimentally
required cuts on the kinematic variables to be imposed
in calculating the O(a;Aqcp/m)) terms and to perform a
general moment analysis, and so we present it here.

We decompose the triple differential decay spectrum
in terms of the invariant mass of the W boson § = ¢*/m?
where g* is the momentum of the lepton pair, the ¢ quark
jet invariant mass 2 = (m,v — ¢)*/m3, and the charged
lepton energy E, = E;/m,. This spectrum is written in
terms of a lepton tensor L v and the hadron tensor W#?,

1 dar N
_— = W~ A,EL VA,Z\;E ’ 1
Ty d5dzdE, (3, 2L, (3, 2 E¢) €]

where

1
_ GV Py

r
0 19273

2

Integrating over the charged lepton energy the differ-
ential decay spectrum becomes

1dr
T, dyd?

= 12EOIW,U,V()A]’ 2)L/'U}()A}) 2)’ (3)

where Ey = 1/2(1 + 2 — §) is the leading order energy of
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the ¢ quark jet, p = m?/m3 and t = /1 — 2/E} is the
rapidity of the ¢ quark.

The hadron tensor can be decomposed in terms of the
initial B meson four momentum Q* and the hadronic
decay products four momentum P* = Q* — g*, where
g* is the momentum of the lepton pair. This tensor can be
calculated from the discontinuity of the time ordered
product of the current J, = ¢y, (1 — ys)b,

WY = llm[i f d*xe'P=mv)x(BIT[JTH(x), J”(O)]IE‘)}
7TFO
4)

This tensor is calculated by considering the quark-
gluon level processes involved in this decay. The spectra
obtained from the parton level discontinuity are expected
to accurately describe physical B meson decay spectra so
long as observables are sufficiently inclusive.

The tensor decomposition in terms of the four vectors
Q" and P* yields five nontrivial structure functions W;,

WE($,2) = Wi(§, 2)(P#Q” + PYQ# — P - Qg”
+ie""PQ,Pg) — Wy(9, 2)g"”
+ Wi (9, 2040 + Wy (9, 2)(PLQ”
+ PQ") + Ws(9, 2)P* P, (5)

The operator product expansion of the structure func-
tions is known to O(A%CD/mZ) [1-3,9]. There are two

nonperturbative parameters at O(Agcp/mj) labeled A,
and six parameters at order O(Adcp/mj), labeled 7534
and p,, the definitions of which can be found in [9].

B. O(a,) contributions to hadron tensor structure
functions

The hadronic structure functions W; in Eq. (5) have the
perturbative expansion:

Cfas

Wi(3,2) = W)($,2) +
dqr

Wl (3 2) + 0(a3).  (6)

The O(a,) contributions to the structure functions are
calculated by taking all cuts across all intermediate state
contributions to the diagrams shown in Fig. 1. Combined
with the external quark wave-function renormalization
this gives the W;. At tree level, in the massless final state
limit only WY is nonzero. W/ can be expressed as

Wi, 2) = Wi, (Eo. 1, 2 9)8(2 — p)
+W!,(Ep, 1,2)0(2 — p)
+W|(Ey 1,2 A%), (N

where
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A 2 1+ 4 1+t

Wlla(EO; 1,2, y) = —16 — ;10g2<m> — ; 10g<1—_t
2—8E,+6 8

+ (—Pp) log(p) + ;Liz(

+log(p) [tog <=2
VAl
—2(1+2)(E—p) , 252 p)
Wl (Ey 1,2) = +
1(Eor 1, 2) 2ELP 2E, 1
2Bz+p) (4 (t—p+4)
227 Eyt? E3f?
(¢—-pn1 1+1
+ )~ log(~——),
E}r? >t Og(l - t>

8 1+1¢

—p) = 02— (/P + A6)’]

3 i
G- 5]—2 ap MW

8 .
" Acm% 02— (JF + Ag)]
2
tHAL—p+fit
8log( =57t

X—)
12— p + AZ)

and

fir =2+ 0 = p? = 22003 + p) ®)
fr =122+ 2E5(1 + )AL + (AG — p)* — 2Zp.

FIG. 1. The one loop forward scattering diagrams. The had-
ron tensor is derived by calculating the imaginary part of the
diagrams.

8
Eo(t—1)+1> 1
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>log(p) 4 <4(1 +p) leEO 4 4p >log<1 + t>

yt yt  JEpt

1—1t
2Et

2E, 1+
of L) =————— —§ log T
E(1+1)—0p t 1—1

The IR singularities present in the unintegrated spectra
are regulated by a gluon mass A in this calculation and
the divergence cancels between the virtual and brems-
strahlung graphs once one integrates over phase space.
The divergence directly cancels in integrations of these
structure functions as the first two bremsstrahlung terms
in W], each contribute a factor of 8log(Ag), while the
final term contributes a factor of 8/trlog[(1 + 1)/(1 —
)]1og(Ag). For the purposes of this paper it is sufficient
to numerically integrate the O(a,) spectrum with the
regulator assigned a small numerical value Ag ~ 1079,
The Li, (%) functions in W/ are the Dilogarithm functions,
defined as Liy(2) = 3 (z¥/k*) or equivalently, as
Liy(2) = [Ylog(1 — 1)/t]dt. The other structure func-
tions vanish at tree level in the limit m.— 0 and
are IR safe at O(a,). For these structure functions we
find

Wi, 2) = Wi (Ey1,2)8(2 — p)
+W),(Eo, 1,2)0(z — p),

2(2 + p) 1+ ®
. 2+p t
WL (Ey t,8) = — 1 )
2a(Eo £ 2) Eot 0g<1 - t)
(2+82—p%) 4(+p)
WL (Ey t,3) = -
Zb( 0 Z) 2E0l4 E%ZA
_ (B +82-p°) 42+ p)
E3t* Ejtt
4 20+ 22— 82 — p?
oA 2etp) (82— p7)
E, E2 2E}

222+ p) | 282 - pP\ 1 1+1
- T = — log(—)
E; 2K t -1

W31()A7, Z) = W3la(E0, 1, 9)8( — p)
+Wi,(Eo, 1,2)0(z — p),

Zr—20+39—p)

(10)
Wi (Ept,9) =2
3a(0 Y) ﬁ[ Eot

1+¢
X log<ﬁ> — 4log(p) }
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R 16 14— p) 3(2—p)*— 162
Wy (Eo 1,2) = Egt B E3*
_42(2::)) N (_8+4(2—2p)
Ejt E, E?
_(@—p)P -8 522-p)
Ej Ej
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WL, 2) = Wi, (Eo, 1,202 — p),

2(% — 5 — 2
Wi (o 1, 2) = E—p _E-—p)

2E0t4 2E(2)l‘4
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+< 7(z3 p) 3¢ 4/0)
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W19, 2) = Wi, (Eo, 1,9)8(2 — p)
+W51b(EO’ f, 2)0(2 - p))
1r20—9—p). /141
W (Ey 1, 9) = = 1 +41 ,
LBy 1.5) = 5| Zp P tog( ) + 4oxtp) |
282 = p?) 20112 - 3p)
WL (Ept,2) = -
sp(Eo. 1, 2) Eo22" B2 (12)
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2E} >t5 g(l - t)

We have checked the hadron tensor at O(«;) by inte-
grating our results to compare against known O(a,)
spectra and agree with [26] and the historical [30], but
disagree, as do these other authors, with [27]. We also
agree with the total O(a,) contribution to the decay rate
in [31]. The massless limit of the @(a,) hadron structure
functions has been taken for all regular terms and we find
we agree with the regular terms for a massless final state
[29].

C. Lepton tensor and phase space

To find moments of the triple differential spectrum one
must integrate over phase space while imposing the ex-
perimentally required cut on the lepton energy. With no
lepton energy cut the phase space is given by the follow-
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ing region [26], referred to as region R;:

Mo—yp? =9 =E =

1
2

WP+ AP =2 =(1-57 (13)
(

where b =1/2(1 — 2+ $) and p = m2/m3. Without a
lepton energy cut in the phase space, the lepton tensor
integrated over the lepton energy E; is

L2 =9/3(=8uv + 4,4./9)- (14)

When a minimum cut E‘{Pi“ = xmy is introduced, the
phase space and the lepton tensor are modified. We do not
repeat the derivation of the lepton tensor with a cut here,
see [32], but note that the phase space splits into three
regions when a cut is imposed. These three regions cor-
respond to the partitioning of phase space that occurs
when the electron energy lies below or within the phase
space integration range as shown in Fig. 2. We only
consider cuts below the upper limit of E, as given in
Eq. (13), this corresponds to only considering cuts where
EPn < my(1 — /p)/2.

For x = 1/2(a — yJa* — §), where a = 1/2[1 — (\/p +
Ag)? + 9] the cut, labeled as x; in Fig. 2, is below the
lower limit of the lepton energy in Eq. (13) and as the
integration over the lepton energy is unaffected, the
lepton tensor with this cut reduces to the simple expres-
sion above with the electron energy integrated over

Lo —b* =) = E, = 1(b +4b* = ). (15)

However, this lepton energy cut still affects the subse-
quent integrations of Z and y by imposing the constraint
on the range of y,

2
T <5 a6

[1— (Jp + Ag) = 26— =

so that the remaining kinematic variables are integrated
over the phase space region R,

(B0’
i i= @) j

Vit Ao)

/i
T wg L)J a3

FIG. 2. Phase space diagrams with a lepton energy cut.
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(\/:B + )‘G)2 == (1 - \/5)2’ (17)
2x .
[1_('\/b_+)t6)2 I_ZXSyS(l_,\/E_AG)Z

For x = 1/2(a — \/a* — $) while x = \/$/2, labeled in
the diagram as the cut x,, the phase space splits into
two regions. The first region R;;; has the hadron tensor
contracted with the lepton tensor of Eq. (14), and the
range of E, as given by Eq. (15). The remaining phase
space variables are then integrated over the range,

— 2x]

A

(1—2x)<1—2—><z<(1—f)2 (18)

2 =9=[1-(Jp+ As)? — 2x]

1—2x

The second region of type R;;; combines with the
region of phase space where x = 1/2(a — +/a® — $) while
x = /9/2, labeled as x5 on Fig. 2. The resulting combined
phase space has the lepton tensor incorporating the cut
within the phase space range and the subsequent integra-
tion is given by the region Ry,

x=<FE %(b +4/b% — 9),
(VPT AP =2 =(1~- 2x)<1 - 2y—x> (19)

2x
=95 =[1- + Ag)? —2 .
0=y =[0-(p+2A) — 2l —5

III. HADRONIC MASS MOMENTS

A. 1S mass scheme

In calculating moments of the hadronic invariant mass
spectrum, we use the 1S mass and the upsilon expansion
[22,23]. It is well known the pole mass renormalon
[24,25] ambiguity leads to unnecessarily badly behaved
perturbation series for moments when a poor mass
scheme is chosen. In the 1S scheme the renormalon am-
biguity is of O(Acp/m;) and so we expect the pertur-
bation series of moments of the spectra to be better
behaved. We express moments in terms of the 1S mass,
which is related to the b quark pole mass through the
relation [22,23]

IS 2
m, (a,Cr) o 11
=1 - lle+ 2| (€ + -
- 1 5 {1 - [(6 6)/30 4}

X e + @(63)]’», (20)

where € = log[u/(m,a,Cr)] and Cr = 4/3. The pa-
rameter € = 1 determines the order in the modified per-
turbative expansion. Using the upsilon expansion
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necessitates introducing a modified perturbative expan-
sion in order to ensure the cancellation of renormalon
ambiguities [22]. When calculating in the 1S mass scheme
the O(a?) perturbative corrections coming from the mass
transformation Eq. (20) are counted using the parameter
€"!, while O(a”) corrections in the decay rate are
counted as €”".

The dependence on the pole mass of the charm quark in
our results is eliminated through

2mp — m
Zole m[C)ole = g — mp + /\1< D _ Y)
2mvyip
27 4mz — m?
+)\le 2mB+/\lA]S ?2 2Y
4my, 2mpmy
2 =2
my — 4m
—(r + 1= p)
4ingym3,
+(9(A‘(5CD/mbm§). 21

The meson masses mp and mp are the spin averaged
meson masses n’1X (my + 3my+)/4. In this relation we
use the fact that =Y — mb Agcp and expand in the
parameter A g

AIS = my. (22)

The perturbative corrections coming from expressing
the b quark mass in terms of the 1S mass are determined
by using the definitions of A and m}® and the HQET
relationship between meson masses and quark masses

_ At dyhy

+d
mH=mQ+A— +p1 sz

2m 2 4m2Q

Tt 13 +dy(n + 1) (9<A$CD

. ) (23)
4mQ my

where my is the hadronic mass, mg is the heavy quark
mass, and dy = 3 for the pseudoscaler mesons while
dy = —1 for the vector mesons.

In calculating the general hadronic moment, previously
calculated moments by Bauer, Ligeti, Luke and Manohar
(BLLM) [17] were reexamined in the 1S mass scheme to
check results. The results presented in the following sec-
tions for the first hadronic moment and its variance are
different for two reasons. First, in BLLM a 1/mj expan-
sion was used to replace mp in the expansion of sy in
terms of partonic variables,

—4mpg)hy 30, A s

3(m
L 3lmy 4 A
4my 2my

mp = mpg

AQCD). (24)
m

3 3
2(72+7-4)+ 2P2+(9<
B

 4m

In the results reported in the following sections we always
use a 1/my expansion. The corresponding expansion is
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34 6MA
mg = mg iy 2 m—2(72 + 74)
Y Y
3 A¢
+—rpy + (9<e, Q§D>. (25)
my my

Second, we treat a class of powers of (g — my/2)"
differently than BLLM. When terms are generated by
changing A = mp — m,, into Ayg,

- 2A
A=y -2 +Als+ﬂ+ li)‘l
2 my my
+
" (74 732 p1) n (9( QCD>, (26)
my my
the (mp — my/2)" terms are kept only for n = 3. In

BLLM this class of terms are treated as O(1) although
they are formally of order AQCD, leading to this class of

higher order terms of (mp — my/2)" being kept and
summed into the coefficients of the nonperturbative pa-
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rameters. In the following results, the (mp — my/2)"
terms from A are counted as order Adcp and in the results
of Sec. III they are kept only up to CO(A%CD) in the non-
perturbative expansion and up to O(Aqcp) for perturba-
tive terms. Factors of (mz — my/2) are also generated in
the replacement of the ¢ and » quark mass and these
factors are treated as O(1). This implementation of the
1S scheme is similar to the general moment analysis of
the lepton energy spectrum [20]. The lepton moments are
presented in Appendix C and can be combined with the
hadronic spectrum results to cross-check extractions of
A s and A, from these differing spectra. Further hadronic

moments that are appropriate for a global fit, such as 5;1/2

and sil/z are presented in Appendix B.

B. Decay width to O(a,Aqcp/my), O(Acp/m3)

With the 1S scheme implemented as discussed in the
previous section, the decay width of B — X {7 is

A Ajs \2 A A A
I'(B— X.p) =T [0 5325 — 1.132 - 0. 924( > - 1L 89( 18 ) -212—="L 39322
( 0 /2 /2 /2 (v /2P (my/2>2
/\1A1s /\2A1S P2 71
+0.74 1218 173 22705 599 + 4.94 —2.98 +099—2
(mY/2)3 (m\(/z)3 (my/2)3 (my/2)? (my/2)? (mY/2)3
Ass Ass ) }
—4.96—3 __ —494—"* ___0.080€ + 0.133¢ + 0.004¢€ , 27)
("1\(/2)3 (m Y/2) my/2 <mY/2 (

where [y = (G%|V,,|?/1927%)(my /2)3. Uncertainties in
the values of A g, A;, p; and 7; introduce uncertainties in
the inclusive extractions of IVCbI using the decay width. In
the nonperturbative expansion the largest theoretical un-
certainty in the extraction of |V,,| comes from A g and A,
which one can see introduce ~2% uncertainties, followed
by the higher order nonperturbative terms which impose
an uncertainty of ~1% as one can see by examining the
results for the total decay width and estimating the size of
the unknown terms with dimensional analysis.

The size of the O(a?) can be estimated by calculating
the a2 8, contribution to O(a?) [17,33,34], although these
terms are not included in this paper. This has been done in
the 1S scheme for a number of observables and the full
size of these corrections being treated as an error intro-
duces ~2% uncertainty in the extraction of |V,,|. The
next largest uncalculated contributions in the decay width
are the O(a,A;) and O(a,A;g) terms and the
O(Agcp/mym?) neglected terms. The size of the
O(a;Adcp/mj) terms in the 1S scheme may be estimated
by taking the size of the a;A;gy and multiplying by
Aqcp/my, ~ 0.1. For the first moment, this indicates that
the order of the a,A; terms is expected to be ~0.01 A%
which can be safely neglected in fits to determine the
third order parameters in the OPE. However, completely

uncorrelated uncertainties of this size for both a A;
should be used to estimate the error on the fit. The size
of the corrections introduced when using the mass split-
ting formula to replace the ¢ quark mass should also
be estimated in a fit to extract the third order terms in
the OPE, as well as uncertainties due to 1/mj corrections
to the OPE. The number and size of these terms are
completely unknown and the uncertainties introduced
due to these terms can be estimated by introducing com-
pletely uncorrelated errors of their naive dimensional
size.

C. Integral hadronic moments

The nonperturbative parameters in the decay width can
be determined by global fits to moments calculated from
the decay spectra of B— X €7 such as the hadronic
invariant mass spectra. The first and second moments of
the hadronic invariant mass spectrum have been known
for some time [8,28]. The perturbative corrections to
these moments were obtained by expressing the hadronic
moments in terms of the known O(«;) corrections to the
lepton spectra and the leading order hadronic invariant
mass spectra. This technique fails when a lepton energy
cut is introduced into the phase space, and the general
tensor results of Sec. IT are required. In terms of partonic
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TABLE 1. Coefficients of the nonperturbative parameters for S;(E).

E}Pin 5(1) Agg A%s A?s Ay Ay Mg A s P1 P2 71 72 73 T4

0 0.834 1.646 0451 0.16 1.43 —0.34 0.51 0.07 0.71 -034 032 025 029 015
0.5 0.822 1.623  0.445 0.16 1.44 —-0.30 0.51 0.09 0.72 —-034 032 026 029 016
0.7 0.807 1.592 0435 0.16 1.46 —0.24 0.53 0.12 0.75 -034 033 027 029 017
0.9 0.786 1.549 0420 0.16 .51 —0.14 0.55 0.18 0.79 —-034 034 030 030 018
1.1 0.762 1.496 0397  0.15 1.57  0.00 0.59 0.26 0.87 —-033 035 034 031 0.21
1.3 0.737 1.439 0368 0.15 1.69 0.18 0.66 0.37 099 -030 037 041 032 024
1.5 0.719 1.392 0334 0.14 1.92 042 0.79 0.51 1.23 —-0.23 041 053 033 0.28

quantities the hadronic invariant mass is defined to be
sy = (0 — q)* = mp — mpgm,(1 =2+ 9) + mpP. (28)

It is conventional to examine the first hadronic moment
once the spin averaged meson mass 7 is subtracted.
Moments that give the mean and variance of the hadronic
invariant mass spectrum with lepton energy cuts of dif-
fering values were reexamined recently by BLLM. These

moments are defined with lepton energy cuts EJ'",

Sl(Er;in) =(sp — m%)) |E,ZE'{“in,

S EP) = (s = i) g - )

These moments as functions of the cut on the lepton
energy, including the previously uncalculated perturba-
tive corrections are as follows. The coefficients stated are
for the dimensional nonperturbative parameters listed at
the top of the column. The data used in the numerical
evaluations in this paper are mp = 5.3135 GeV, mp =
1.9730 GeV, my = 9.4603 GeV and the strong coupling
is a,(m;,) = 0.22. For example for the first moment with
no cut we find

S1(0) = 0.834 + 1.646A g + 0.451 A% + 0.16A3
+1.434, — 0.344, + 0.51A, A g + 0.07A,A
+0.71p, — 0.34p, + 0.327, + 0.257, + 0.297,
+0.157, + 0.143€ + 0.175A g€, (30)

and in the following Tables I and II the leading order term
of a moment S, is labeled SY.

For the S,(E;) moments, as explained in Sec. IIT A, the
results differ from those stated in BLLM. This difference
is formally of higher order, and in the nonperturbative
expansion the overall effect of the differing implementa-
tions of the 1S scheme is small. The effect of these terms
in the perturbative expansion is also small for most mo-
ments. However, the variance of the hadronic invariant
mass spectrum is more sensitive to higher order terms due
to the cancellation among leading order terms in the
nonperturbative expansion. The 1S scheme as imple-
mented in BLLM found that the variance increased as
the lepton energy cut was increased due to the dominance
of the O(a,) term and the suppression of leading order
nonperturbative corrections. The O(«;) term is the domi-
nant correction to the variance in the m; — oo limit. The
experimentally measured lepton energy cut dependence
has the variance decreasing as the lepton energy cut
increases. When (g — mvy/2) terms are treated as de-
tailed in Sec. IIT A in the 1S scheme, the O(a,) term and
variance has the experimentally measured dependence on
the lepton energy cut, as can be seen in Tables III and I'V.

The moments S; and S, with a lepton energy cut of
1.5 GeV have been experimentally measured by CLEO
(12],

S1(1.5 GeV) = 0.251 = 0.066 GeV?, 3D

S,(1.5 GeV) = 0.576 = 0.170 GeV*. (32)

Using this data, we can extract values of A;g and A,
for comparison with extractions from the lepton energy
spectrum. We estimate the theoretical error on the extrac-

TABLE II.  Coefficients of the perturbative parameters for S;(E).
1S a? Contribution a, Contribution Combined O(e)
Elpin € A € € A € € Ag €
0 —0.014 0.090 0.157 0.086 0.143 0.175
0.5 —0.014 0.088 0.143 0.069 0.129 0.157
0.7 —0.014 0.086 0.139 0.072 0.125 0.159
0.9 —0.014 0.084 0.134 0.076 0.120 0.160
1.1 —0.014 0.081 0.128 0.080 0.114 0.161
1.3 —0.015 0.077 0.121 0.085 0.106 0.162
1.5 —0.018 0.073 0.117 0.093 0.099 0.166
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TABLE III. Coefficients of the nonperturbative parameters for S,(E,).

E}Pin SS As A%s A?s Ay Ay MAs  AAgg P1 P2 71 72 73 T4

0 0.0163 0.09 0.08 —0.03 —4.87 133 —1.85 2.04 —-641 151 —-1.04 -287 0.00 025
0.5 0.0152 008 0.07 -0.03 —-478 134 —-179 2.07 —-648 139 —-1.03 -282 0.00 025
0.7 0.0153 008 0.07 -0.03 —-465 135 -—-170 2.09 —-6.61 123 -—-101 —-277 0.00 0.25
0.9 0.0167 0.09 0.07 —-0.04 —4.48 137 —1.56 2.12 —6.84 099 -098 —269 0.00 0.25
1.1 0.0195 0.10 0.08 —-0.04 —-426 140 -—1.36 2.17 =723 068 —-095 -—-261 0.00 024
1.3 0.0224 011 009 -0.04 —401 144 -1.10 2.25 -7.88 028 —-092 -253 000 024
1.5 0.0227 011 009 -0.04 -376 152 —=0.77 2.38 —9.05 -022 -091 —248 0.00 0.24

tion due to the unknown third order terms in the usual
way [9] using the results of recent fits when they substan-
tially improve our knowledge of these terms beyond
dimensional analysis. We use the HQET vector pseudo-
scalar mass splitting constraint to determine A, =
0.12 GeV? and the mass splitting formula to third order
(81,

_ k(mm2m.Amg — mym2Amp

Py~ Ty Ty , (33)
my — mek(m,)
to reduce the number of free parameters. A positive value
of p, is imposed in accordance with vacuum saturation
[35] and is drawn from the range [0, 0.125] GeV3. The
unknown matrix elements are then drawn from a flat
distribution, the unknown third order terms are drawn
from between +0.125 GeV? while A, is drawn from
[—600, 0] MeV? in accordance with its full constrained
range from the BLLM fit. We then extract the following
values for A; and A g:

Ay = [—0.13 £ 0.05, = 0.09,:] GeV,

(34
A =[—0.24 £ 0.02, = 0.09,,5] GeV>.

The perturbative errors are estimated by using the two
loop running of a; to vary the scale of a (u) between
my/2 < u <2m,. Adding the theoretical errors in quad-
rature we obtain m}S = 4.86 = 0.10 GeV, which is in
excellent agreement with the inclusive extraction using
the lepton energy moments, m}S = 4.84 + 0.10 GeV [20]
and in agreement with the results of BLLM where m}> =
4.74 = 0.10 GeV, despite the differences in the expansion

and the larger number of observables in the fit. This
extracted 1S mass m}S =4.86 = 0.10 GeV translates
into a value of the MS mass 1, (m,) = 4.34 = 0.09 GeV
which can be compared with other extractions of the MS
mass [21] such as the MS mass found by examining
moments of the bb production cross section [36—40] a

recent analysis of which finds my(m,) = 4.25 =
0.08 GeV [41].

D. Fractional moments
1. The 1/m, expansion

In integer moments such as §; and S5, a Agcep/m,
expansion only enters the predicted value of a moment
through the mass transformation relationship Eq. (21).
Fractional moments have additional cuts in the complex
q - v plane due to the branch cut starting at s; = 0 when
sy 1s taken to a noninteger power. These branch cuts are
separated from the physical cut by a scale set by m,., as the
physical branch cut begins at s = m3,. As m, — 0 these
cuts coalesce and one would expect predictions for frac-
tional moments in this limit to be ill defined, as discussed
in recent work [19]. We find an explicit m;,Aqcp/m?
expansion in calculations of fractional moments of sy;
the neglected terms in this expansion are numerically
suppressed for hadronic invariant mass observables lead-
ing to a small numerical uncertainty being introduced.
This can be shown by examining a general moment of the
squared hadronic invariant mass s%. The dependence of
the general moment as a function of n is found by per-
forming a binomial expansion of s},

TABLE IV. Coefficients of the perturbative parameters for S,(E).

1S a? Contribution

a, Contribution Combined O(e)

Epin € A € A € € Ajg €
0 0.105 0.163 0.551 0.424 0.656 0.588
0.5 0.102 0.159 0.163 —0.202 0.265 —0.043
0.7 0.099 0.154 0.099 —0.266 0.198 —0.112
0.9 0.094 0.147 0.057 —0.283 0.151 —0.136
1.1 0.089 0.140 0.029 —0.273 0.118 —0.132
1.3 0.085 0.135 0.010 —0.240 0.096 —0.112
1.5 0.083 0.133 0.002 —0.211 0.083 —0.078
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TABLE V. Coefficients of the nonperturbative parameters for OPE testing moments. The OPE testing moments in the table are
defined in the following way: D} = $[2.0,0.5,2.2,0.7], D = S[1.9,0.6,2,0.7], D} = §[2.6,0.6,2.9, 1], D% = S[2.4,1, 1.9, 0.8] and

D3 = §[2.9,1.4,2.2,1.3].

Ags A%s A?s Ay Ay MAs A P P2 71 72 73 T4

DL 07779 —0.028 0.01 0.00 000 -0.04 -—-0.01 -—-0.06 0.05 —0.00 0.00 0.03 -0.01 -—-0.01
Di 0.8845 —0.019 0.00 0.00 0.00 -0.02 -0.01 -—0.03 0.03 0.00 0.00 0.01 —-0.01 -0.01
D} 0.7829 0.047 0.10 0.04 0.00 -0.13 -—-0.03 -0.16 0.06 0.03 0.00 0.03 —-0.02 —0.02
Dé 1.9030 0.166 —0.08 —0.03 0.00 0.22 0.08 038 —0.27 0.00 -0.01 -—-0.15 0.06 0.07
D> 2428 0.040 —-0.46 —0.20 0.00 0.66 0.19 099 -0.62 —-0.08 -—-0.03 -0.29 0.12 0.14

n i Zk: I(n+1) Ckplan—kp,2n (35) Sn,Ep,m E; | = {sii) lElZEl (37

st o= P myn, » By m, Lgy | = — 0

H sl +1 - kKI(k) ! b : : (s7) |1€,2E2
The coefficient functions Cj are O(Afep/my).  so that

Expanding up to O(Adcp/mj) in the nonperturbative
expansion we find

-1
sy = 2 €0+ ey + gety + M D
Z 1!Z
L apn s sy, B = 1)(n—2)
X(Cg + 3C7 + 3°C3) +T

X(Ch+3CT+ PO+ | (36)
where the Cf are functions of n and the nonperturbative
matrix elements.' For integer moments this expression
has no 1/z dependence. However, for noninteger moments
in this range one obtains contributions of order ¥ where
k = n is the ceiling of the fractional moment power n. As
the lower limit of z is p = m2/m3, this corresponds to a
myAocp/m, expansion entering into the calculations of
fractional moments. This expansion does not seem to
introduce a large uncertainty for fractional moments
compared to integer moments as the neglected class of
terms is numerically suppressed for n values in the range
[0, 3] but the best way to estimate the uncertainty intro-
duced is under study. In the following investigation of
hadronic fractional moments no additional uncertainty is
added to account for this theoretical error and we exam-
ine how known sources of error primarily from unknown
matrix elements can be reduced.

When examining a general moment s%, to obtain inter-
esting observables, we expand in the ratio Agcp/mo and
then examine the n and Ef{}ﬁn dependence of the coefficient
functions of the nonperturbative matrix elements. The
essential observation motivating this approach is that
one is allowed to choose n and E?i“ within a range of
reasonably accessible experimental values, in order to
maximize the utility of a measured moment in obtaining
information on the nonperturbative matrix elements. We
define a general moment function,

"These C! coefficient functions are reported in Appendix A.

Sy (EP™) = S[1, Ef», 0, EP™] — mj,,
Sy(EPin) = S[2, Ein, 0, EPin] — (S[1, EPn, 0, Epin])2,

Our search of the hadronic mass moments is restricted to
the parameter space,

m <3, n<3 0.5 GeV < E%‘_“ < 1.5 GeV,

(38)

to ensure a well-behaved OPE. In this parameter space we
find two types of moments of interest, moments that allow
the OPE to be precisely tested for deviations from experi-
ment and moments that allow one to extract the 1S mass
with minimal error. We consider each type of moment in
the following sections.

2. OPE testing moments

A discrepancy of the prediction of the OPE when
compared with data can come from a number of possible
sources when one is considering percent level extractions
of |V,|: a higher order matrix element that is being
neglected could be anomalously large, the OPE itself
could not be converging or quark-hadron duality violation
could effect determinations [42—47]. By finding moments
where only the leading order unknown nonperturbative
parameters are suppressed and checking the predicted
values against experiment, one can assess the theoretical
error that is being assigned to the inclusive extraction
of |V,,| in a clear and unambiguous fashion. This tech-
nique [20] has recently been used to test the OPE in
the lepton energy spectrum. Measurements of these
OPE testing observables in this spectrum indicated
that the OPE is a valid description of the data to
the percent level [48]. It is important to note that
the OPE testing moments presented allow one to check
that the error assigned in the extractions of |V,,| and m,
is large enough to account for all of these possible effects
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TABLE VI Coefficients of the perturbative parameters for OPE testing moments and their predicted value.
1S a? Term a, Term Combined O(e)

Label € Ag € € Ajg € € Mg € Predicted value for moment
D} —0.001 —0.005 —0.006 —0.001 —0.007 —0.007 0.7686 = 0.0018€ = 0.0040(N.P.)
D? —0.001 —0.003 —0.005 —0.004 —0.006 —0.007 0.8804 = 0.0014€ = 0.0025(N.P.)
D} —0.001 —0.004 —0.005 —0.012 —0.006 —0.016 0.7582 = 0.0016€ = 0.0067(N.P.)
D? 0.006 0.029 0.025 —0.012 0.030 0.017 1.9448 + 0.0078€ = 0.026(N.P.)
D} 0.010 0.050 0.026 —0.036 0.036 0.014 2.5380 = 0.0102¢ = 0.047(N.P.)

if the OPE testing moments properly describe the data [49]. (A selection of these OPE testing moments for the hadronic
invariant mass spectrum is presented in Table V.) The nonperturbative parameters for these moments are not suppressed
except for the leading unknown nonperturbative terms A ;g and A;. A typical OPE testing moment is as follows:

= §[2,0.5,2.2,0.7]

2
—07779[1+0168 Ais +o345< Als) +0501<
my/2 v/2

I8 025 s

— 0.0094¢€ —

82 (my/2)3

TN (mY/z)%

0.008¢ Ais }
my/2

Varying the unknown parameters in the same way, and
treating the leading order nonperturbative parameters as
unknowns and varying them over the region A;q =
—0.13 £ 0.1 GeV, A; = —0.3 £ 0.3 GeV?, this moment
is predicted to be

D! =0.7686 = 0.0018, = 0.0040yp.. (40)

The perturbative error is obtained by the scale varia-
tion in the standard way. As in the lepton spectra,
the OPE testing moments are such that with no nonper-
turbative input other than the known value of A,, we
can predict the value of a moment to an accuracy of
1%. As the error on the nonperturbative terms is reduced
with global fits, it is important to cross-check with
the predicted and measured values of these moments

TABLE VIL

v/2

+027T ——=

A
15) +0.01—2L

/\IAIS

“ %22 (my/2)*

Ay
m Y/2)2 —1.94

73
(my/2)?

A
(my/2)?

+371— 2

/2 — 1.50

(my/ 2)}

(39)

in order to ensure the error on |V,,| and mis is not be-
ing underestimated. Tables V and VI present a selection
of OPE testing moments in the parameter space
examined.

3. Moments to measure m)> with minimal error

Moments that allow a direct measurement of the b
quark mass with minimal dependence on the unknown
Ay nonperturbative parameter have also been found.
Moments of this type are important as a measurement
of m}S to this precision will be an important step in
reducing the error on |V,,| as well as extracting |V,
These moments are particularly suited to being used in a
fit to extract the 1S mass. An example of this type of
moment is

The nonperturbative parameters of moments to measure the 1S mass accurately. In the table above the moments are

defined in the following way: B. = §[3,0.5,0.5,0.9], B = 5[2.4,0.5, 1.2, 1.3], B} = §[2.5,0.5, 1, 1] and B} = §[2,0.5, 1.3, 1.3].

Ags Al A M A MA AAg P1 P2 T ™ T3 T4
B! 51.9318 35300 6.06 —1.09 093 851 3.01 22.32 —13.63 2.01 0.00 —14.30 6.51 522
B%) 10.2470 4850 1.38 037 002 174 0.43 3.25 —2.84 —0.03 —0.04 —-2.03 088 072
Bi 12.2674 6.116 1.48 0.28 0.31 1.35 0.79 3.62 —3.50 0.24 0.00 —2.43 1.10 0.88
sz 47852 1.659 0.55 0.20 0.10 0.55 0.16 0.93 —-0.95 —-0.11 0.01 —-0.62 030 0.23
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TABLE VIIL
moment to extract the 1S mass.
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The perturbative parameters of moments to measure the 1S mass accurately, and the error estimated in using the

1S @? Term a, Term Combined O(e)
€ A € € Ag € € As € Error in extraction of 1S mass
Bl —0.003 2.231 4.345 —0.536 4.343 1.70 +3 MeV € £ 50 MeV(N.P.)
B 0.042 0.353 0.383 —0.336 0.426 0.017 +5 MeV € £ 55 MeV(N.P.)
B} 0.042 0.454 0.564 —0.318 0.606 0.137 *1 MeV € * 54 MeV(N.P.)
BY 0.017 0.121 0.090 —0.158 0.107 —0.004 +2 MeV € * 59 MeV(N.P.)

B! = §[3,0.5,0.5,0.9]

= 51.9318[1 +3.215 Ais

2
+ 2.609( Ais ) — 2.216( Ais ) +040 2L

my /2 my /2 my /2 (my/2)2
AiAs P P2
+3.67 + 6.14 + 4549 ——="_—27.78 +4.10
(my/z)2 (my/2)3 (my/2)3 (mY/2)3 (my/2)?
A
—0.004 — —29.15——=—— 4+ 13.26——— + 10.64————— + 0.084€ + 0.154€¢ 41)
G e e/ o /2 } (

Note that moments of this type have a strong dependence
on A5 and a weak dependence on A; while the coeffi-
cients of the higher order terms in the nonperturbative
series are not suppressed. These moments are thus
well suited to measure the b quark mass with minimal
error as the largest source of theoretical error is
suppressed in a controlled fashion. Estimating the error
on the extraction in the usual way one finds the m}>
mass extracted from this moment will have a theoretical
error of *50 MeV(N.P.) = 3 MeV(e), where the error
is dominated by the unknown nonperturbative correc-
tions at third order. Adding these errors in quadrature
one obtains an overall theoretical error in the extraction
~50 MeV. It is important to experimentally measure
moments of this type for a precise value of the b quark
mass to be extracted from this spectrum. This error
assessment in the extraction of m})S is assigned in
accordance with how the theoretical error is assigned
in the OPE testing moments. By measuring both
the OPE testing moments and the moments presented in
this section, one can extract m}> with an experimentally
verified theoretical error; comparisons of the b quark
mass extracted in this way with extractions using other
techniques will be a useful cross-check of theoretical
techniques. A selection of moments of this type is given
in Tables VII and VIIL

IV. CONCLUSIONS

We have presented the O(a;) corrections to the struc-
ture functions of the hadronic tensor for B — X {7.
The O(a,) and O(a;Aqcp/m,) perturbative corrections
for lepton energy moments and hadronic invariant
mass moments have been calculated. The effects of
the charm quark expansion in fractional moments

was shown to be small and moments that allow one
to extract the nonperturbative parameters relevant for
a percent level determination of |V ,| from inclusive
B decay were presented. Using the techniques outlined,
a b quark mass measurement with a theoretical error
at the 50 MeV or better should be possible using
the inclusive semileptonic decay data. This theoret-
ical error assessment, including the assumption of negli-
gible quark-hadron duality violation that this analysis
relies upon, is directly testable with the OPE test-
ing moments presented in this paper. Fits based on the
results presented should allow an extraction of |V,,| with
~2% theoretical error. As the lepton energy cut depen-
dence of the O(a;Aqgcp/m)) term is now known, the
largest estimated theoretical uncertainty in inclusive ex-
tractions of |V.| and m}S comes from the O(a?)
corrections.
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APPENDIX A: S; EXPANSION

The coefficient functions of the general hadronic mo-
ment sy in terms of the pole mass and the HQET local
operator expansion are as follows:
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nA  n[A 434, - (n - 1)A?] N (n — DnAl(n — 2)A% — 3(A1 + 3A2)]
my, Zm%7 6m?7
_nlry + 37, 4+ 73+ 37, — p; — 3p,)

=1+

4m3 (A1)
b
Cl o +A . (/\1 + 3A2 - 2l’lA2) T nA[(n - I)AZ - 2()\1 + 3)\2)] . (Tl + 37'2 + T3 + 37'4 - pP1 3p2) (A2)
07 T m 2m? 2m3 4m? ’
b b b b
A2 A(mA? — A, —3A
CG=+—s+ (n ] ), (A3)
2my, 2m;,
A3
C=+-—, (Ad)
0 ?)m?7

cl— A [2(n— DA% + Ay +3A,] (n—=DA[(n - 2)A% —2(A; +3M)] L (1 + 31, + 73+ 374 — p; — 3pn)
! my, Zm% 2m?7 4m2 ’
(AS5)
A% 2A[(n— 1AZ — A, — 3),]
G=-=- — 2 (A6)
my, m;,
A3
cl=-=, (A7)
my,
A% Al(n —2)A?2 — A, —32A
C% _ +_2 + [(l’l ) - 1 2], (A8)
my, my,
A3
C3 — _;’__’ A9
> = (A9)
A3
Cl=—-——. Al10
3 3m; (A10)
APPENDIX B: HADRONIC INVARIANT MASS MOMENTS FOR FIT
Hadronic moments that are appropriate for a global fit are shown in Tables IX-XIV.
TABLE IX. Coefficients of nonperturbative parameters for S, = S[0.5, E}Pin, 0, E’g‘i“].
E?in S(l) 2 Ass A%S A?s Ay Ay AtAs A A P1 P2 71 72 73 T4
0 21799 0411 0133 0.07 039 —0.05 0.07 0.06 035 -0.11 010 o011 007 0.03

0.5 21771  0.406  0.131 0.07 039 —0.04 0.07 0.07 035 -0.11 010 o011 007 0.03
0.7 21735 0399 0129 0.07 040 —0.03 0.07 0.07 035 —-0.11 010 011 0.07 0.04
0.9 2.1685 0388 0.125 0.07 040 —0.01 0.08 0.08 037 -0.10 010 0.12 0.08 0.04
1.1 21625 0375 0119 0.06 0.42 0.02 0.09 0.10 039 -009 010 013 0.08 0.05
1.3 21565 0362 0112 006 0.44 0.07 0.10 0.12 043 —-0.08 011 014 0.08 0.06
1.5 2.1522 0350 0104 0.06 050 0.12 0.12 0.14 051 -0.05 012 017 0.08 0.07
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TABLE X. Coefficients of perturbative parameters for S, = S[0.5, E‘é‘in, 0, E}?ﬁ“].

PHYSICAL REVIEW D 70 073003

1S a? Contribution

a, Contribution

Combined O(e)

Efpin € A € € Ag € € A €
0 —0.003 0.023 0.026 0.006 0.023 0.029
0.5 —0.003 0.022 0.031 0.014 0.027 0.037
0.7 —0.003 0.022 0.031 0.017 0.028 0.039
0.9 —0.003 0.021 0.031 0.020 0.027 0.041
1.1 —0.003 0.020 0.030 0.021 0.027 0.041
1.3 —0.004 0.019 0.029 0.023 0.025 0.042
1.5 —0.004 0.018 0.028 0.025 0.024 0.043

TABLE XI. Coefficients of nonperturbative parameters for S;, = S[1.5, E?‘i“, 0, E?li“].

SO

E?in 3/2 Ays A%s A?s Ay Ay AMAss A As P1 P2 T T2 73 T4
0 10.286  5.377 1.833  0.56 3.72 —1.00 1.88 0.21 0.63 -0.72 076 0.21 0.85 0.50
0.5 10.249  5.296 1.801 0.55 3.77 —0.87 1.90 0.30 0.67 =074 077 024 086 0.51
0.7 10.200 5.189 1.757 0.54 3.85 —0.67 1.95 0.42 0.72 —=0.77 0.78 029 087 0.55
0.9 10.133  5.040 1.689 053 4.00 —0.35 2.04 0.63 0.81 —0.81 0.81 0.37 088 0.60
1.1 10.054  4.859 1.597  0.51 4.25 0.09 2.19 0.92 0.97 —-0.84 0.85 0.50 091 0.67
1.3 9.976 4.669 1.485 048 4.66 0.68 2.46 1.32 1.22 -0.84 092 072 094 0.76
1.5 9.919 4.515 1.366 044 5.40 1.43 2.96 1.83 1.69 —=0.72 1.05 1.10 098 0.89
TABLE XIIL Coefficients of perturbative parameters for S5, = S[1.5, EP™", 0, EPin].
1S a? Contribution a, Contribution Combined O(e)
E?in € AIS € € Als € € AIS €
0 —0.041 0.264 0.603 0.402 0.562 0.667
0.5 —0.041 0.261 0.483 0.225 0.443 0.485
0.7 —0.041 0.255 0.458 0.215 0.417 0.470
0.9 —0.041 0.248 0.432 0.216 0.391 0.464
1.1 —0.042 0.239 0.405 0.222 0.363 0.462
1.3 —0.045 0.229 0.380 0.236 0.335 0.465
1.5 —0.053 0.215 0.363 0.263 0.310 0.478
TABLE XIII. Coefficients of nonperturbative parameters for S,, = S[2, E}Pi“, 0, E?‘i“].
E?in S(Z)a Ags A%s A?s A Ay AAss A Ays P1 P2 T ) 73 T4
0 22297 15253 5984 1.66 793 —1.88 5.00 1.62 -0.89 —-1.12 147 —-089 223 141
0.5 22.189  15.00 5.856 1.64 8.11 —1.50 5.10 1.89 -086 —1.25 150 —-0.79 225 147
0.7 22.048 14.675 5685 1.60 839 —0.94 5.28 2.28 -0.80 —-141 155 —-0.63 228 1.55
0.9 21.857 14222 5438 154 888 —0.06 5.60 291 -0.69 —-163 163 —038 232 1.68
1.1 21.634 13.684 5120 146 9.65 1.18 6.13 3.82 -0.50 -—1.87 176 0.01 238 1.87
1.3 21.413  13.122 4749 136 10.90 2.82 7.04 5.03 -0.16 =205 197 0.63 246 212
1.5 21.252 12,671 4378 1.24 13.07 4.93 8.69 6.61 048 —2.00 230 1.64 257 244
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TABLE XIV. Coefficients of perturbative parameters for S,,(Ey).

1S a? Contribution a, Contribution Combined O(e)
Efpin € A € € A € € Ag €
0 —0.104 0.689 1.929 1.367 1.826 2.045
0.5 —0.103 0.679 1.425 0.596 1.321 1.275
0.7 —0.103 0.666 1.322 0.536 1.220 1.202
0.9 —0.104 0.647 1.227 0.526 1.124 1.173
1.1 —0.107 0.624 1.135 0.541 1.028 1.164
1.3 —0.115 0.596 1.051 0.578 0.937 1.174
1.5 —0.135 0.561 0.995 0.656 0.860 1.217

APPENDIX C: LEPTON ENERGY MOMENTS FOR FIT

Lepton energy moments appropriate for extracting A ;5 and Al from previous work [20] in terms of the inverse upsilon

lepton

mass expansion and Ag = my/2 — m}S definition of Eq. (22) via A" = 7y — my/2) + Ajg are given in
Tables XV-XXIII. The general moment is defined for the lepton spectrum in an identical fashion to the general

moment for the hadronic invariant mass spectrum.

EﬂlBX
™ pn dr
[E, EidedE,

¢ dE,
Rln, Eq,m, Ep] = e (1)
/ £, E¢ i dE¢
TABLE XV. Coefficients of the nonperturbative parameters for R; = R[1, E™", 0, EPi"].
Epin R) A Al Al Ay Ay MAs LA py P2 7| T 3 T4
0 1.3920 -0.075 -0.02 000 -0.10 -021 -0.04 -0.05 -0.03 0.01 -0.02 -0.01 -0.03 -0.03
0.5 1.4216 —0.074 —-0.02 0.00 -0.10 —-0.21 —-0.04 -0.05 -0.03 001 -0.02 -0.01 -0.03 -0.03
0.7 1.4611 -0.073 -0.02 0.00 -0.10 -0.20 -0.04 -0.05 -0.03 001 -0.02 -0.02 -0.03 -0.03
0.9 1.5173 -0.073 —-0.02 000 -0.10 -020 -0.04 -0.05 -0.04 0.01 -0.02 -0.02 -0.03 -0.03
1.1 1.5884 —0.073 —0.02 000 -0.10 -0.19 -0.04 -0.05 -0.04 0.00 —-0.02 -0.02 -0.02 -0.03
1.3 1.6724 -0.074 —-0.02 000 -0.10 -0.18 —-0.04 -0.05 -0.04 0.00 —-0.02 -0.02 -0.02 -0.03
1.5 1.7674 —-0.076 —-0.02 0.00 -0.11 -0.17 -0.04 -0.05 -0.05 -0.01 -0.02 -0.03 -0.02 -0.03
TABLE XVI Coefficients of the perturbative parameters for R;(E,).
1S a2 alB, a, alP, Combined terms

E?in € Ais € €BLm € A € €Bm € Ajs € €BLm
0 0.004 0.001 0.006 —0.001 —0.001 —0.002 0.003 0.000 0.003
0.5 0.004 0.001 0.006 —0.001 —0.001 —0.003 0.003 0.000 0.002
0.7 0.004 0.001 0.006 —0.001 —0.001 —0.004 0.002 0.000 0.002
0.9 0.004 0.001 0.006 —0.002 —0.001 —0.005 0.002 0.000 0.001
1.1 0.004 0.001 0.006 —0.002 —0.001 —0.006 0.001 0.000 0.000
1.3 0.004 0.001 0.006 —0.003 —0.001 —0.007 0.001 0.000 —0.001
1.5 0.004 0.001 0.006 —0.003 —0.001 —0.007 0.001 0.000 —0.001
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TABLE XVIL Coefficients of the nonperturbative parameters for variance V; = (R[2, EP", 0, EP"] — R[1, Ein, 0, EPIN?).

Ep® |41 A Als Al A Ay AAs A Ay P1 P2 Ty ) T3 T4
0 0.1804 -—0.032 0.00 0.00 -0.05 -0.07 -0.01 -001 -0.04 -001 -0.01 -0.02 -0.01 -0.01
0.5 0.1542 —-0.032 0.00 000 -0.05 -006 -0.01 -001 -0.04 -0.01 -0.01 -0.02 -0.01 -0.01
0.7 0.1280 —0.030 0.00 0.00 -0.05 -0.06 -0.01 -0.01 -0.04 -0.01 -0.01 -0.02 -0.01 -0.01
0.9 0.0988 —0.028 0.00 0.00 -0.05 -0.06 -—-0.01 -0.01 -0.04 -0.01 -001 -0.02 -001 -0.01
1.1 0.0705 —-0.025 0.00 0.00 -0.05 -0.05 -001 -0.01 -004 -0.01 -001 -0.02 -001 -0.01
1.3 0.0458 -—0.021 0.00 0.00 -0.05 -0.04 -0.01 -0.01 -0.04 -0.01 -0.01 -0.02 -0.01 -0.01
1.5 0.0261 -—-0.017 0.00 0.00 -0.04 -0.03 -001 -0.02 -004 -0.01 =001 -0.02 =001 -0.01
TABLE XVIIL. Coefficients for lepton variance perturbative parameters.
1S a2 alBy a, alf, Combined terms

E?in € Ajs € GZBLM € A € GZBLM € A € 6123LM

0 0.002 0.000 0.003 —0.002 0.000 —0.002 0.000 0.000 0.001

0.5 0.002 0.000 0.003 -—0.002 —0.001 —0.001 0.000 0.001 0.001

0.7 0.002 0.000 0.003 —0.002 0.000 —0.001 0.000 0.000 0.002

0.9 0.001 0.000 0.002 —0.001 0.000 —0.001 0.000 0.000 0.002

1.1 0.001 0.000 0.002 —0.001 0.000 —0.001 0.000 0.000 0.002

1.3 0.001 0.000 0.002 —0.001 0.000 —0.001 0.000 0.000 0.001

1.5 0.001 0.000 0.002 —0.001 0.000 0.000 0.000 0.000 0.001

TABLE XIX. Coefficients for the nonperturbative parameters of V, = ((R[1, Ei", 0, EP"] — (R[1, Efi", 0, ETin]))3).
Ep" V3 Ags Als  Ajg Ay Ay MA A P1 P2 T T T3 T4
0 —0.0376 0.001 0.002 0.0 —-0.01 0.02 0.0 0.01 -0.03 -0.01 00 -001 00 0.0
0.5 —0.0207 0.0 0.002 0.0 —0.01 0.01 0.0 0.0 -0.03 -0.01 00 -—-001 00 0.0
0.7 —0.0105 0.0 0.001 0.0 —-0.01 0.01 0.0 0.0 -0.03 —-0.01 00 -—-001 00 0.0
0.9 —0.0036 —0.002 0.001 0.0 —-0.01 0.01 0.0 0.0 -0.03 -0.01 00 -001 00 0.0
1.1 —0.0001 —0.002 0.001 0.0 —-0.01 0.0 0.0 0.0 -0.02 -0.01 00 -001 00 0.0
1.3 0.0009 —0.002 0.0 0.0 —-0.01 0.0 0.0 0.0 -0.02 —-0.01 00 -—-001 00 0.0
1.5 0.0009 -0.001 0.0 0.0 —-0.01 0.0 0.0 0.0 —-0.02 0.0 0.0 0.0 0.0 0.0
TABLE XX. Coefficients for the perturbative parameters of V,.
1S a2 alBy a, alB, Combined contributions

Ep" € Ajs € €BLM € Ajs € €BLM € Ajs € €BLM
0 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000
0.5 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.9 —0.008 0.000 0.000 0.007 0.001 0.000 —0.001 0.001 0.000
1.1 —0.007 0.000 0.000 0.005 0.000 0.000 —0.002 —0.001 0.000
1.3 —0.006 0.000 0.000 0.005 0.000 0.000 —0.001 0.001 0.000
1.5 —0.005 0.000 0.000 0.003 0.000 0.000 —0.002 0.000 0.000
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TABLE XXI.

Coefficients of the nonperturbative parameters of the lepton energy OPE testing moments, where D,
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$[0.2,1.3,1,1], D, = S[0.8, 1,0.1, 1.3], Dy = S[0.7, 1.6, 1.5, 1.5], D% = 5[2.4,1,1.9,0.8] and D3 = S[2.9, 1.4, 2.2, 1.3].

Ay Ag A Ay Ay MAs A P1 P2 Ty T T3 T4
D, 0.5452 0.001 —0.003 —0.01 0.002 —0.02 0.00 —0.01 0.01 0.01 0.00 0.01 0.01 0.00
D, 1.7626 0.014 0.014 0.00 0.001 0.09 0.01 0.05 -0.01 -0.02 0.00 -0.01 0.01 0.01
D; 05215 -0.011 —0.009 0.00 —-0.002 —-0.04 -0.01 -0.03 0.01 0.01 0.00 0.00 0.00 0.00
D, 06051 -—-0.015 -0.011 —-0.003 —-0.006 —0.04 -0.01 -0.03 0.01 0.01 0.00 0.00 0.00 0.00

TABLE XXII. Coefficients of the perturbative parameters of the lepton energy OPE moments.

1S a? alp, a, alB Combined contributions

Emin € Ajg € €A m € Ag € €A m € Ag € €A m
D, 0.000 0.000 0.000 0.000 0.000 0.004 0.001 0.000 0.004
D, —0.001 0.000 0.000 —0.001 —0.001 —-0.012 —0.002 —0.001 —-0.012
Ds 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.003
D, 0.001 0.001 0.001 —0.001 —0.001 0.003 0.000 0.000 0.004

(1]

(2]

(3]

(4]

(6]
(7]

(9]

(10]

TABLE XXIIL

Predictions and measurements for lepton energy OPE testing moments.

Label Predicted value Measured value
D, 0.5459 * 0.0001€ = 0.0010(N.P.)

D, 1.7585 * 0.006€ = 0.0036(N.P.) ce

D3 0.5200 * 0.0001€ * 0.0014(N.P.) 0.5193 *= 0.0008
D, 0.6053 * 0.0002¢ * 0.0018(N.P.) 0.6036 = 0.0006
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