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Large logarithms in the beam normal spin asymmetry of elastic electron-proton scattering
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We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering
induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation
of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to
logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasireal
photons. The asymmetry at small electron scattering angles is expressed in terms of the total photo-
production cross section on the proton and is predicted to reach the magnitude of 20–30 ppm. At these
conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing
electron beam energy, following the high-energy diffractive behavior of total photoproduction cross
section on the proton.
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I. INTRODUCTION

Recently, the two-photon exchange (TPE) mechanism
in elastic electron-proton scattering started to draw a lot
of attention. The reason is that this mechanism possibly
accounts for the difference between the high-Q2 values of
the ratio GEp=GMp [1] measured in unpolarized and
polarized electron scattering. The calculations in
Ref. [2] using a formalism of generalized parton distri-
butions [3] confirm such a possibility and decisive experi-
mental tests are being proposed [4].

On the other hand, it has been known for a long time
[5–7] that the TPE mechanism can generate the single-
spin normal asymmetry (SSNA) of electron scattering
due to a nonzero imaginary (=) part of the TPE ampli-
tude A2�,

An �
2ABorn=�A

�
2��

jABornj2
; (1)

where the one-photon-exchange amplitude ABorn is purely
real due to time-reversal invariance of electromagnetic
interactions.

Our earlier calculations of the TPE effect on the proton
[8] predicted the magnitude of beam SSNA at the level of
a few parts per million (ppm). The effect appears to be
small due to two suppression factors combined: � �
1=137, since the effect is higher order in the electromag-
netic interaction, and a factor of electron mass me arising
due to electron helicity flip. The predictions of Ref. [8],
assuming no inelastic excitations of the intermediate
proton, used only proton elastic form factors as input
parameters and appeared to be in qualitative agreement
with experimental data from MIT/Bates [9]. The result in
Ref. [8] with an elastic intermediate proton state was
reproduced later in Ref. [10]. In another calculation of
beam SSNA in Ref. [11], a low-momentum expansion was
used for the TPE loop integral, which resulted in approxi-
mate analytic expressions valid for low electron beam
energies. The main theoretical problem in the description
04=70(7)=073002(10)$22.50 70 0730
of the TPE amplitude on the proton at higher energies in
the GeV range is a large uncertainty in the contribution of
the inelastic hadronic intermediate states. In Ref. [10] the
beam SSNA at large momentum transfers was estimated
at the level of 1 ppm, using the partonic framework
developed in Ref. [2] for TPE effects not related to the
electron helicity flip.

Current experiments designed for parity-violating
electron scattering allow one to measure the beam asym-
metry with a fraction of ppm accuracy [12–14] and may
also provide data on the parity-conserving beam SSNA.
In fact, such measurements are needed because beam
SSNA is a source of systematic corrections in the mea-
surements of parity-violating observables.

During our previous work [8], we noticed that, while
considering excitation of inelastic intermediate hadronic
states, the expressions for the beam SSNA [Eq. (11) of
Ref. [8]], after factoring out the electron mass, have an
enhancement when at least one of the photons in the TPE
loop integral is collinear to its parent electron; i.e., the
virtuality of the exchanged photon is of the order of
electron mass. It is interesting that this effect did not
appear for the target SSNA calculations [8].
Independently, enhancement due to exchange of collinear
photons for the beam SSNA was observed by other au-
thors (Ref. [15]), who considered the hadronic intermedi-
ate states in the TPE amplitude in the nucleon resonance
region using a phenomenological model (MAID) for
single-pion electroproduction.

In this paper, we study the analytic structure of the
collinear-photon exchange in the TPE amplitude and
demonstrate that it results in enhancement of the beam
SSNA described by single and double logarithms of the
type log�Q2=m2

e� and log2�Q2=m2
e�. Using a general re-

quirement of gauge invariance of the nonforward nucleon
Compton tensor, we find that such enhancement does not
take place for the target SSNA (with unpolarized elec-
trons) and spin correlations caused by longitudinal polar-
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ization of the scattering electrons. When modeling the
TPE mechanism with nucleon resonance excitation, we
observe that, depending on the electron beam energy, the
beam SSNA has a double-logarithmic enhancement if the
Mandelstam variable

���
s

p
nears the resonance mass and a

single-logarithmic enhancement otherwise. For electron
energies above the resonance region and small scattering
angles, we use an optical theorem to relate the nucleon
Compton amplitude to the total photoproduction cross
section and obtain a simple analytic formula for the
beam SSNA in this kinematics.
II. PROPERTIES OF LEPTONIC TENSOR

First, we write the formula for SSNA in terms of rank-
3 leptonic and hadronic tensors which appear in the
interference between the Born and TPE amplitudes as
shown in Fig. 1:

An �
�i�Q2

�2D�s;Q2�

Z d3k
2Ek

L���H���

q21q
2
2

; (2)

where Q2 � �q2, k�Ek� is the 3-momentum (energy) of
the intermediate on-mass-shell electron in the TPE box
diagram, q1 and q2 are the 4-momenta of the intermedi-
ate photons, q1 � q2 � q. The factor Q2=D�s;Q2� in
Eq. (2) is due to the squared Born amplitude, namely,

D�s;Q2� �
Q4

2
�F1 	 F2�

2 	 
�s�M2�2

�Q2s�
�
F21 	

Q2

4M2 F
2
2

�
; (3)

where F1 (F2) is the Dirac (Pauli) proton form factor, M is
the proton mass, and s � �k1 	 p1�2 is a Mandelstam
variable. Our sign convention for the beam asymmetry
follows from the definition of the normal vector with
respect to the electron scattering plane: k1 � k2.

Using the above notation, we have

L��� � 1
4Tr�k̂2 	me����k̂1 	me��1� �5�̂e�

����k̂	me��� (4)
FIG. 1. Interference between the Born and the TPE box dia-
grams in elastic e-p scattering that determined SSNA.
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and

H��� � 1
4Tr�p̂2 	M����p̂1 	M��1� �5�̂

p�=T��; (5)

where me is the electron mass, �e (�p) is the polarization
4-vector of the electron beam (proton target), �� �

���F1 	 F2� � �p1� 	 p2��F2=�2M�, and T�� is in gen-
eral a nonforward proton Compton tensor that describes
any possible hadronic intermediate states in the TPE
amplitude, while the symbol = denotes the imaginary
(absorptive) part. Thus, we see that in accordance with
Eq. (2) the single-spin normal asymmetry probes the
imaginary part of contraction of the leptonic and had-
ronic tensors defined by Eqs. (4) and (5), respectively. In
turn, this imaginary part is related with the imaginary
part of the nucleon nonforward Compton tensor =T��. It
was noted by De Rujula et al. [7] a while ago for the case
of normal polarization of the proton target. For the case
of beam SSNA on a proton, the first calculation was done
in Ref. [8].

After some algebra, we arrive at the following expres-
sion for the model-independent leptonic tensor:

L��� � L�un�
��� 	 L�pol�

���; (6)

where the spin-independent part is

L�un�
��� � 1

2q
2
1�g��k2� �g��k2���

1
2q
2
2�g��k1� �g��k1��

�k�
k1k2��� 	 1
2g���q

2
1k2� 	q22k1� �q2k��

	1
2q
2�g��k� 	g��k��	 k2��kk1���

	k1��kk2���;


ab��� � a�b� � a�b�; �ab��� � a�b�	 a�b�;

(7)

and the spin-dependent part is given by

L�pol�
��� � ime
�g����qq2�e�	 k����q�e�

	k����q�e�	�e
����qq2�	 ��ek2�����q1�

	k2����q1�
e�	 k1����q2�

e�	 1
2q
2�����e��;

�abcd�  !"#$%a"b#c$d%; (8)

where the on-shell condition k2� � m2
e was used for the

intermediate electron 4-momentum. The above leptonic
and hadronic tensors satisfy the conditions

L���q� � L���q2� � L���q1� � 0;

H���q� � H���q2� � H���q1� � 0
(9)

separately for spin-independent and spin-dependent
parts, as follows from gauge invariance of electromag-
netic interactions.

Let us consider the leptonic tensor in the limiting case
when one of the intermediate photons in the box diagram
is collinear to its parent electron, for example, when q1 �
xk1, x ’ 1. Note first that for an elastic proton intermedi-
ate state such kinematics is not allowed by the 4-
momentum conservation, �xk1 	 p1�2 � M2. But for the
-2
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inelastic intermediate excitations we have x �
�W2 �M2�=�s�M2�, where W2 is the squared invariant
mass of the intermediate hadronic system.

It can be seen, using the relations

q22 � �1� x�q2; k � �1� x�k1; q21 ’ 0; (10)

that in the considered conditions the unpolarized leptonic
tensor is given by

L�un�
��� �

1� x
x

q1�
q2g�� 	 2�k1k2����: (11)

Because any gauge-invariant hadronic tensor has to give
zero after contracting with q1� [see Eq. (9)], we conclude
that collinear-photon kinematics does not contribute to
the target SSNA (or recoil proton polarization) which are
defined by the spin-independent part of the leptonic
tensor L���. This conclusion confirms our previous cal-
culations [8].

For the spin-dependent part of the leptonic tensor, we
obtain in the considered limit

1

ime
L�pol�
���jq1!xk1 �

2�1� x�
x

q1����q�e�

	x
�
�g����qk1�e�	

q2

2
�����e�

	�e
����qk1�	 ��ek2�����k1�

	k2����k1�
e�	 k1����k2�

e�

�
: (12)

If the electron beam is polarized longitudinally (�e
� ’

k1�=me), the term in the square brackets of Eq. (12) turns
to zero, and we have the same situation as in the case of an
unpolarized beam, namely, the region of the small q21 (or
q22) does not contribute when the intermediate photon is
collinear to its parent electron.

A different phenomenon takes place in the case of the
normal polarized electron beam

�e
� �

2��k1p1q����������������������������������������������
Q2
�s�M2�2 �Q2s�

p : (13)

In this case the term in square brackets of Eq. (12) is not
zero and the considered collinear-photon kinematics con-
tributes with essential logarithmic enhancement.
Moreover, here we will demonstrate using specific ex-
amples that this enhancement can be double logarithmic.

Therefore, conservation of the electromagnetic current
that follows from gauge invariance [Eq. (9)] is the reason
why the collinear intermediate photons appear in the
TPE contribution to the beam SSNA but not to the target
SSNA. By analogy, we do not anticipate contributions
from collinear-photon exchange in unpolarized electron-
proton scattering, parity-violating asymmetries due to
longitudinal electron polarization, charged current
neutrino-nucleon scattering, and/or lepton weak capture
if the normal polarization of leptons is not involved.
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III. HADRONIC TENSOR IN THE RESONANCE
REGION

We first study the analytic properties of TPE loop
integration in a resonance model taking into account
nucleon resonances with quantum numbers N��1

	

2 �,
N��1

�

2 �, and ��3
	

2 � as intermediate hadronic states. In
this model the imaginary part of the nucleon Compton
tensor is given by

=T�� � =
T���	� 	 T����� 	 T������: (14)

Using a general Lorentz structure of nucleon resonance
excitations, we verified that the contribution from col-
linear kinematics of intermediate photons is zero for the
quantity L���H��� [Eq. (2)] for the unpolarized electron
beam. On the contrary, if the electron beam has normal
polarization, the resulting expression is proportional to
the difference between the resonance and the proton
masses. Thus, we conclude that the collinear intermediate
photons can give a large contribution to the beam SSNA
in the resonance region.

For example, the general form of the integrand
L���H��� in the case of intermediate Roper N�1

	

2 � reso-
nance excitation is proportional to

�a	 bq21 	 cq22 	 dq21q
2
2 	 eq41 	 fq42�FR�q

2
1�FR�q

2
2�;

(15)

where coefficients a; b; . . . depend on M, MR, s, and q2,
and FR�q21;2� are the transition form factors of the reso-
nance excitation.

The 3-dimensional loop integration in Eq. (2) is done
over all allowed angles of the intermediate electron and
the invariant mass of the intermediate hadronic state
in the range M	m� <W <

���
s

p
�me, as follows from

the energy-momentum conservation, where W2 � �q1 	
p1�2 � �q2 	 p2�2 and m� is a pion mass. Namely,

d3k
2Ek

�
kdW2

4
���
s

p d�k:

In the center-of-mass system (cms)

q21 � 2m2
e 	 2kk1 cos-1 � 2EkEk1;

q22 � 2m2
e 	 2kk1 cos-2 � 2EkEk1;

(16)

where k1 and Ek1 are the 3-momentum and the energy of
the initial electron; -1 (-2) is the angle between 3-
momenta of the intermediate and the initial (scattered)
electrons.

Collinear-photon kinematics corresponds to cos-1 ’ 1
(or cos-2 ’ 1) when the quantities q21 and q22 become
small and change from their minimal value �2m2

e 	
2kk1 � 2EkEk1� up to EkEk1-

2
1. The most singular term

in the TPE diagram integral at such conditions comes
from the coefficient a in Eq. (15). We use a subtraction
procedure to present the result of angular integration of
this term,
-3
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Z d�k

q21q
2
2

FR�q
2
1�FR�q

2
2� �

Z d�k

q21q
2
2

�0�q
2
1; q

2
2� �

2�
Ek1k

Z 1

�1

dc1
jc� c1j

�
�1�q21�

q21
�
�1�q21c�

q21c

�
�

2�

q21cEk1k
�1�q

2
1c�L2

	
�

Q2k2
F2R�0�L1; (17)

where c � cos-, with - being the electron cms scattering angle, c1 � cos-1, q21c � q21 (c1 ! c), and

�0�q21; q
2
2� � FR�q21�FR�q22� � FR�0�
FR�q21� 	 FR�q22�� 	 F2R�0�; �1�q21� � FR�0�
FR�q21� � FR�0��;

L1 �
1

K
log
2K 	 1

2K � 1
; K �

�������������
1

4
	 /

s
; / �

m2
e�Ek1 � Ek�

2

Q2k2
; L2 � log

A	A�

m2
e�Ek1 � Ek�

2s2
;

A� � k1k� Ek1Ekc	
���������������������������������������������������������������������������������
�k1k� Ek1Ekc�

2 	m2
esin

2-�Ek1 � Ek�
2

q
:

(18)
The first two terms in the right-hand side of Eq. (17) are
regular and they can be easily integrated numerically
[after choosing specific parametrization of FR�q21�],
whereas the last two, enhanced logarithmically, appear
due to proximity to the dynamical pole that arises from
collinear-photon kinematics, and increased precision is
required if this problem were solved entirely by numeri-
cal integration.

We can use this subtraction procedure to extract the
large-logarithm contributions of the other terms in the
right-hand side of Eq. (15). But it should be noted that at
small values of q21, for example, the following relation
holds for the quantity q22 ’ q2�s�W2�=�s�M2�.
Therefore, every additional power of q22 in the numerator
in this case gives an additional factor of the order q2=s as
compared with a contribution from the term a=�q21q

2
2�.

Such contributions will give only small corrections for
the case of small-angle (low-q2) electron scattering.

Now let us consider W integration that brings an addi-
tional enhancement from the region of small momenta k
of the intermediate electron that appears in the denomi-
nators of the last two terms of Eq. (17). Small values of k
correspond to the intermediate hadronic system picking
the entire energy provided by the external electron beam,
namely, W2 � s. Calculating the resonance contribution
to the TPE loop integral, one may restrict integration over
W2 to the resonance region M2

R � �RMR <W2 <M2
R 	

�RMR, in Eq. (2). If s � M2
R, small values of k are not

reached and no additional enhancement results from this
integration; therefore, the resonance contribution at large
energies may be enhanced only by the first power of a
large logarithm. Moreover, the structure of expres-
sion (15) implies that in this case the effect may be only
of the order of the ratio M2

R=s because there is no con-
tribution that can compensate a large denominator
D�s;Q2� coming from Born normalization. In such con-
ditions, the contribution of the resonances to the beam
SSNA becomes negligible at the electron beam energies
high enough so that the upper limit in W of TPE loop
integral extends above the resonance region.
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On the other hand, we may describe suppression of the
resonance contribution away from the resonance peak by
the absorptive part of Breit-Wigner factor FBW, which
reads

FBW �
�RMR

�W2 �M2
R�
2 	 �2RM

2
R

;

where �R is the total width of the resonance.
Loop integration with the above Breit-Wigner factor

was done numerically using an adaptive multidimen-
sional integration technique, and the result will be dis-
cussed in Sec. V. In the meantime, we demonstrate how a
double-logarithmic enhancement appears at the level of
analytical formulas. Let us formally extend the integra-
tion region with respect to W2 up to its upper limit of
W �

���
s

p
�me allowed by kinematics and consider the

W2 dependence coming only from the integral phase
space, while neglecting other W-dependent factors. Then
we can perform analytic integration and the result reads

Z kdW2

4
���
s

p
�

Q2k2
L1 �

�

4Q2

�
log2

Q2

m2
e
	
4�2

3

�
; (19)

Z kdW2

4
���
s

p
�

Q2
1ckEk1

L2 �
�

4Q2

�
1

2
log2

4E2k1
m2

e
	

�2

3

	
2

1	 c
Li2

�
�
1	 c
1� c

��
; (20)

where Li2�x� is a dilogarithm. Thus, we see that integra-
tion over W2 results in an additional large logarithmic
factor due to contribution of the region where W2 ’ s,
when the energy of the intermediate electron becomes
very small. For resonance excitation, such a situation
takes place for the electron beam energy such as

���
s

p
’

MR only. But for multiparticle hadronic states with a
continuously varying invariant mass it should always
manifest itself.
-4
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IV. MASTER FORMULA FOR THE BEAM
ASYMMETRY

As we noted before, the resonance contribution in the
beam SSNA dies out beyond the resonance region. But the
many-particle intermediate states can contribute to the
imaginary part of the Compton tensor in the box diagram
at large values of W2 near s: We verify that at small Q2

this contribution is double logarithmically enhanced due
to collinear kinematics when the values q21 and q22 are
small. In the following, we develop a realistic unitarity-
based model for description of the imaginary part of the
Compton tensor for such kinematics.

Small values of Q2 correspond to the forward limit of a
nucleon virtual Compton amplitude. On the other hand,
because q21 and q22 are also small because of the collinear-
photon contributions, we can relate the forward Compton
amplitude to the total photoproduction cross section by
real photons.

A general form of the Compton tensor T�� in terms of
18 independent invariant amplitudes that are free from
kinematical singularities and zeros was derived in
Ref. [16]. Among these amplitudes we choose the ones
that contribute at the limits q2 ! 0 and q21 ! 0. It auto-
matically constrains virtuality of the second photon to
q22 ! 0. There is only one structure that contains the
tensor g�� and does not die off under the considered
conditions. It reads [16]

T�� � 
�� �p �q�2g�� � �q1q2� �p� �p� 	 � �p �q�� �p�q1�
	 �p�q2���A�q21; q

2
2; q

2; W2�;

�p �
1

2
�p1 	 p2�; �q �

1

2
�q1 	 q2�: (21)

It can be verified that T�� defined by the above equation
satisfies the conditions T��q1� � T��q2� � 0. Taking
into account that, in accordance with Eq. (9), the terms
containing q1� and q2� do not contribute in the construc-
tion with the leptonic tensor, we can rewrite the expres-
sion in square brackets as


�g�� �
�q1q2�

�W2 �M2 � q1q2�
2 
4p1�p1� 	 2�p1q���

	 q�q�� �

p1q���

W2 �M2 � q1q2

�
�W2 �M2 � q1q2�2:

(22)

The normalization convention is chosen such that the
imaginary part of the quantity �W2 �M2 �
q1q2�

2A�W2; q2 � 0; q21 � q22� is connected with the in-
elastic proton structure function W1�W

2; q21� by the fol-
lowing relation:

�W2 �M2 � q1q2�
2=A�W2; q2 � 0; q21 � q22�

�
�
M

W1�W
2; q21�; (23)
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and W1, in turn, defines the total photoproduction cross
section [17] as

W1�W2; 0� �
W2 �M2

8�2�
%�p
tot �W

2�: (24)

Keeping in mind that the main contribution to the beam
SSNA arises from collinear-photon kinematics, in our
further calculations we can use

=T�� �



�g�� �

q1q2
�W2 �M2 � q1q2�

2 
4p1�p1�

	2�p1q��� 	 q�q�� �

p1q���

W2 �M2 � q1q2

�

�
�
M

W1�W2; q21� (25)

in Eq. (5).
It may seem at first that in the limiting case of very

small Q2 we can omit all terms proportional to q in the
right-hand side of Eq. (25), keeping only the term�

�g�� �
4�q1q2�

�W2 �M2 � q1q2�
2 p1�p1�

�
�
M

W1�W2; q21�;

that at q2 � 0 satisfies automatically the Callan-Gross
relation. But such approximation is valid only for the
symmetric part of T�� with respect to the indices �
and �. The reason is that the corresponding symmetric
part of the leptonic tensor [see Eq. (8)] contains the
momentum transfer q, and keeping it in the symmetric
part of hadronic tensor leads after contraction to addi-
tional small terms of the order at least Q2=W2. On the
other hand, the antisymmetric part of the leptonic tensor
contains terms which do not include the momentum q.
Therefore, the antisymmetric part in Eq. (25) has to be
retained because it contributes at the same order with
respect to Q2=W2. Note, however, that this antisymmetric
part of the hadronic tensor is not related to the polarized
nucleon structure functions, but it comes about as a con-
sequence of the gauge-invariant structure of Eq. (21) even
for a spinless hadronic target.

Thus, in the considered limit the hadronic tensor de-
fined in general by Eq. (5) can be written in the following
form:

H��� � 2�W1�F1 � 0F2�

�

�
�g�� �


p1q���
W2 �M2 � q1q2

�
p1�;

0 �
Q2

4M2 : (26)

When deriving this expression, we also omit the terms
proportional to p1�p1� because they are suppressed by an
additional power of Q2 due to the factor of �q1q2�. Using
the relations
-5
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FIG. 2. Beam energy dependence of the loop integral (see the
text for details) at fixed Q2 � 0:05 GeV2 using a Breit-Wigner
factor FBW�W� with (a) parameters of � resonance (solid line),
(b) replacing FBW�W !

���
s

p
� (dashed line), (c) same as (a) but

replacing FBW�W� by 1=5 of its peak value at W � MR (dotted
line), and (d) same as (c) but using an analytic formula of
Eq. (19) (dashed-dotted line).
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� g��p1�L
�pol�
��� � 2ime
�p1qq1�

e� 	 �k1p1q�
e��;

�
p1q���p1�L
�pol�
��� � ime�u� s��p1qq1�

e�;

s	 q2 	 u � 2M2, which are valid for the normal beam
polarization 
��ek1� � ��ek2� � ��ep1� � ��ep2� � 0�,
and the explicit form of 4-vector �e given by Eq. (13),
we arrive at

L�pol�
���H��� � ime

������
Q2

q
�F1 � 0F2�

�
�W2 �M2�2

4��
%T�W2; q21�; (27)

where %T�W
2; q21� is the total photoproduction cross sec-

tion with the transverse virtual photons. Now we combine
this expression with formula (2) for the beam SSNA and
perform analytic integration. When integrating we take
%T�W

2; q21� ! %�p
tot �W

2� and assume %�p
tot �W

2� to be con-
stant with energy ( � 0:1 mb, according to Ref. [18]). The
angular integration results in a large logarithm L1 defined
in Eq. (18). Integration with respect to W2 produces
double-logarithmic enhancement in the final result. In
the integration, special care needs to be taken of the
region of small energies of the intermediate electron;
see the appendix for the details. As a result, the master
formula that defines the beam SSNA for small values of
Q2 and takes into account contributions from collinear
intermediate photons in the TPE box diagram has the
following form:

Ae
n �

me

������
Q2

p
%�p
tot

16�2
F1 � 0F2
F21 	 0F22

�

�
log2

Q2

m2
e
� 6 log

Q2

m2
e

	
4�2

3
	 4

�
: (28)

One can see that at fixed values of Q2 the beam SSNA
does not depend on the beam energy if the total photo-
production cross section is energy independent. This re-
markable property of small-angle beam SSNA follows
from unitarity of the scattering matrix and does not rely
on a specific model of nucleon structure.

V. NUMERICAL RESULTS AND DISCUSSION

First we analyze the general features of the beam
SSNA in the nucleon resonance region. We perform 3-
dimensional numerical integration in Eq. (2), selecting
the most singular term from Eq. (15) in front of the
coefficient a. The integral

2Q2

�

Z d3k
2Ek

FBW�W�

q21q
2
2

is shown in Fig. 2 using different assumptions about the
energy-dependent integrand. For the plots of Fig. 2, we fix
Q2 � 0:05 GeV2 and vary the electron beam energy. One
can see that if we choose the mass and width of a��1232�
resonance, the result of the integration is still strongly
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peaked at the electron beam energy close to the position
of this resonance in real photoproduction with the same
photon beam energies. The position of the � peak is
slightly shifted to the higher energies (by about
35 MeV), which corresponds to the intermediate electron
carrying a cms energy of about 50 electron masses. If the
TPE integral were fully dominated by the region of small
k, the result would be given by a dotted line in Fig. 2. If
the above integral is calculated with an energy-
independent nonresonant background which we take for
illustrative purposes at 1=5 of the �-resonance peak
value, we see that the resonance contribution dies off at
higher electron beam energies, confirming the analytic
arguments of Sec. III. It can also be seen from Fig. 2 that
the analytic formula of Eq. (19) gives a good description
of integration of energy-independent terms at the beam
energies above the resonance region.

The master formula for beam SSNA Eq. (28) neglects
possible Q2 dependence of the invariant form factor of
the nucleon Compton amplitude, which was taken in its
forward limit during the derivation. In numerical calcu-
lations, we estimate additional Q2 (equals Mandelstam t)
dependence by introducing an empirical form factor that
was measured experimentally in the Compton scattering
on the nucleon in the diffractive regime (see [19] for
review). In the following, we use an exponential suppres-
sion factor for the nucleon Compton amplitude
exp��BQ2=2�, choosing the parameter B � 8 GeV�2

that gives a good description of the nucleon Compton
cross section from the optical point to �t � 0:8 GeV2

(see Table V of Ref. [19]). The predictions of Eq. (28)
combined with the above described exponential suppres-
-6
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sion are presented in Fig. 3 for the electron scattering
kinematics relevant for the E158 experiment at Stanford
Linear Accelerator Center (SLAC) [13]. We choose fit 1 of
Ref. [20] for the total photoproduction cross section in
Eq. (28). Exact numerical loop integration of Eq. (2) and
the analytic results of Eq. (28) agree with each other with
accuracy better than 1%. Contributions from the reso-
nance region (W2 < 4 GeV2) were estimated at 10–20%
at beam energies of 3 GeV but rapidly decreasing below
1% at higher energies. We also tested sensitivity of our
results to q21;2 dependence of the electroproduction struc-
ture function W1 [Eq. (23)], taking various empirical
parametrizations for it. We found no sensitivity for
SLAC E158 kinematics and only moderate sensitivity ( �
10%) when we extend our calculation to lower energies
( � 3 GeV) and higher Q2 � 0:5 GeV2. For beam ener-
gies of 45 GeV, numerical integration shows that more
than 95% (80%) of the result for beam SSNA comes from
the upper 1=2 (3=4) part of the W2-integration range.
Based on the results of numerical analysis, we conclude
that formula (28) gives a good description of beam SSNA
at small Q2 and large s above the resonance region.

We also calculated the contribution of the elastic inter-
mediate proton state to the beam SSNA for high energies
and small electron scattering angles using the formalism
of Ref. [8] and found it to be highly suppressed compared
to the inelastic excitations. For the kinematics of SLAC
E158 [13], this suppression is a few orders of magnitude
due to different angular and energy behavior of these
contributions.

Shown in Fig. 4 are the calculations for beam SSNA as
a function of Q2 for different energies of incident elec-
trons. One can see that at small Q2, the asymmetry

follows
������
Q2

p
behavior described by Eq. (28), while at

higher Q2 the asymmetry turns over and starts to de-
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crease due to the introduced exponential form factor
exp��BQ2=2�. It can be seen that at fixed Q2 the magni-
tude of beam SSNA is predicted to be approximately
constant, as follows from slow logarithmic energy depen-
dence of the total photoproduction cross section.

The latter feature is demonstrated in Fig. 5, showing
the calculated beam SSNA at fixed Q2 in a wide energy
range up to

���
s

p
� 500 GeV, where we used several pa-

rametrizations for the total photoproduction cross section
on a proton from Refs. [20,21], shown in Fig. 6. The
physical reason for the almost constant photoproduction
cross sections at high energies is believed to be soft
Pomeron exchange [21]; therefore, the beam SSNA in
the considered kinematics is sensitive to the physics of
soft diffraction.

The predicted Q2 and energy dependence of beam
SSNA, along with its relatively large magnitude, is quite
-7
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different from the model expectations assuming that no
hadronic intermediate states are excited in the TPE am-
plitude. Our unitarity-based model of small-angle elec-
tron scattering predicts the magnitude of the beam SSNA
to reach 20–30 ppm in a wide range of beam energies.
The good news is that it makes beam SSNA measurable
with a presently reached fraction-of-ppm precision of
parity-violating electron scattering experiments [14]. On
the other hand, the experiments measuring parity-
violating observables need to use special care to avoid
possible systematic uncertainties due to the parity-
conserving beam SSNA. Fortunately, these effects can
be experimentally separated using different azimuthal
dependence of these asymmetries.

VI. SUMMARY AND CONCLUSIONS

In the present paper we calculate the beam SSNA for
small values of Q2 and provide physics arguments for the
dominance of contributions from collinear photons in the
TPE mechanism. For electron energies above the nucleon
resonance region and small Q2, the contribution of col-
linear virtual photons leads to the beam SSNA that is

positive and has the order of me

������
Q2

p
%�p
tot , where %�p

tot is the
total photoproduction cross section on the proton. This
quantity is multiplied by the factor of the order unity that
includes a combination of double- and single-logarithm
terms. The fact that the beam SSNA does not decrease
with the beam energy at fixed Q2 makes it attractive for
experimental studies at higher energies, for example, the
energies to be reached at Jefferson Lab after the forth-
coming 12-GeV upgrade of the Continuous Electron
Beam Accelerator Facility.
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Since the collinear-photon-exchange effect follows
from general properties of the rank-3 leptonic tensor, it
should also take place at large values of Q2 where the
collinear kinematics has to contribute with at least loga-
rithmic enhancement. The situation is different for un-
polarized (or longitudinally polarized) electrons and for
the case of the normal beam polarization. In the first case
the leptonic tensor is proportional to the collinear-photon
4-momentum q1� that leads to cancellation of the col-
linear region contribution due to the condition of gauge
invariance, q1�H��� � 0, while this cancellation does
not take place for the normal beam polarization. Such
behavior of the beam SSNA does not depend on the value
of Q2 and we verified this fact by considering excitations
of N� resonances in the intermediate state. It means that
the 3-momentum integration in Eq. (2) in general pro-
duces logarithmic enhancement in the beam SSNA, un-
less the dynamics of the nonforward Compton amplitude
on a nucleon suppresses this contribution.

The beam SSNA is amplified by the effect similar to
the Compton peak in deep-inelastic scattering [22] but
with replacement of leptonic and hadronic blocks.
Namely, intermediate photon in the TPE box diagram
can be collinear to the parent electron and carry 4-
momentum that is enough to create a large invariant
mass of the intermediate hadronic state. Moreover, the
virtuality of this collinear photon is small and such
kinematics leads to a dynamical pole (and consequently
enhancement) in the box diagram with inelastic hadronic
intermediate states. Emission of hard collinear photons is
known to enhance helicity-flip effects, as was noted in the
original article of Lee and Nauenberg [23] and recently
discussed, for example, in the context of radiative muon
decay [24].

Because of the enhanced collinear-photon exchange
contributions, experiments measuring normal SSNA are
sensitive to the energy-weighted integrals of the same
nucleon Compton amplitudes (namely, their absorptive
parts) that can be accessed in Compton scattering experi-
ments where at least one of the photons is real. In contrast,
calculations of TPE effects for unpolarized electron scat-
tering require knowledge of the nucleon Compton ampli-
tude with two spacelike virtual photons. In relation to
normal single-spin asymmetries, we state that the TPE
effects in experiments with unpolarized (or longitudi-
nally polarized) electrons, as opposed to the normal
polarized electron beams, probe different domains of
the nonforward nucleon Compton scattering which can
be hidden in the TPE amplitude with inelastic hadronic
states. In the first case, the entire 3-dimensional phase
space in the TPE loop integration contributes, while the
regions of small photon virtualities are suppressed. It
justifies the ‘‘handbag’’ approach with generalized parton
distributions for these observables, as developed in
Ref. [2]. For the second case, small virtualities of the
-8
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exchanged photons dominate the TPE integral. In the
kinematics s � �t above the resonance region, the
beam SSNA is defined by the total photoproduction cross
section that, in turn, is described by (soft) Pomeron
exchange. Therefore, the soft diffractive (Pomeron) phys-
ics dominates the beam SSNA of small-angle elastic
electron-proton scattering associated with electron helic-
ity flip, in contrast to the known helicity-conserving
property of Pomeron exchange between hadrons.

Large logarithms are also present in the QED radiative
corrections to a related observable, beam SSNA of po-
larized Moller scattering [25], where they are caused by
initial- and final-state radiation of collinear (real)
photons.

When applying the approach [2] to the beam SSNA, as
was done recently in Ref. [10], the contributions of hard
collinear virtual photons are excluded in the handbag
model of the TPE interaction. Since the collinear-photon
region contributes with large logarithmic enhancement,
the beam SSNA is sensitive to ‘‘nonhandbag’’ terms (for
example, Regge-exchange terms) in the TPE mechanism,
which are important to include in dynamical models of
this observable.
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APPENDIX

Taking into account Eqs. (2) and (27) one can write the
beam SSNA at small values of Q2 as

Ae
n �

me

������
Q2

p
%�p
tot

4�3
F1 � 0F2
F21 	 0F22

Z d3k
2Ek

�W2 �M2�2

�s�M2�2
Q2

q21q
2
2

:

(A1)

The angular integration in Eq. (A1) can be done by
introducing the Feynman parameter,Z d�k

q21q
2
2

�
Z 1

0
dy

Z d�k


�2m2
e 	 2�kky��

2 ;

ky � yk1 	 �1� y�k2 � 
Ek1; yk1 	 �1� y�k2�;

�kky� � Ek1Ek � 2kjkyj cos-y; d�k � d�d cos-y:
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Integration over d�k and Feynman parameter y is
straightforward, leading to

Z d3k
2Ek

�W2�M2�2

�s�M2�2
Q2

q21q
2
2

�
�
2

Z Ek1

me

dEk

k
�1� z�2L1; (A2)

where z � Ek=Ek1, and we extended the upper limit up to
Ek1 because the difference between the value of Ek at
inelastic threshold [when W2 � �m� 	M�2] and Ek1 is
negligible at large s, and the quantity L1 is defined in
Eq. (18).

To calculate the integral in Eq. (A2), we note first that
the region where k ’ 0 does not contribute because of the
factor of L1. For this reason we can change integration
with respect to Ek by integration over k. Then we divide
the integration region into the following two parts, 0<
k< #me and #me < k < Ek1, and choose the auxiliary
parameter # in such a way that

# � 1; #me � Ek1 �
������
Q2

q
#: (A3)

In the first region we can neglect Ek as compared with
Ek1 and write the corresponding contribution in the form

I1 � �
Z #me

0

dk
k
L1

�
Z #

�����
Q2

p
=2Ek1

0

2�dz��������������
1	 z2

p log
�
z	

��������������
1	 z2

p �

� �log2
�
#

������
Q2

p
Ek1

�
: (A4)

In the second region the quantity / that enters L1 is small
and we have

I2 � �
Z 1

z#

dz
z
�1� z�2

�
log

Q2

m2
e
	 2 log

z
1� z

�
;

z# �
#me

Ek1
� 1:

(A5)

The integration in Eq. (A5) gives

I2 �
�
2

�
2 log

1

z#
log

Q2

m2
e
� 2log2z# � 3 log

Q2

m2
e
	
2�2

3
	 2

�
:

In the sum I1 	 I2 the auxiliary parameter # is can-
celled and we arrive at

Z d3k
2Ek

�W2 �M2�2

�s�M2�2
Q2

q21q
2
2

�
�
4

�
log2

Q2

m2
e
� 6 log

Q2

m2
e
	
4�2

3
	 4

�
:
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