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Deforming baryons into confining strings
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We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nuñez background. The
solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the
remaining N � q. As the separation is taken to infinity we recover known solutions describing infinite
confining strings in N � 1 gauge theory. We present results for the mass of finite confining strings as a
function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the
reduction of a G2 holonomy M theory background. The relation between these deformed baryons and
confining strings is not as straightforward.
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I. INTRODUCTION

The advent of the gravity/gauge theory correspondence
[1–3] has opened a new window into strongly coupled
field theories. Consequently, a lot of effort has been in-
vested in finding supergravity duals of N � 1 theories in
four dimensions. Two of the most studied backgrounds
are [4,5]. Such solutions allow the use of supergravity
analysis to study strong coupling properties of the dual
QCD-like field theories.

Within the dual backgrounds, probe brane analysis has
been used extensively to understand the gravity counter-
parts of nonperturbative field theory objects such as
baryons, mesons and confining strings. The initial studies
considered brane probes in AdS5 � S5, the dual geometry
to N � 4 Yang-Mills theory. Following [6,7], D5-brane
probes wrapping the S5 were used to construct explicitly
the baryon vertex [8–10]. The wrapped brane was identi-
fied as the baryon vertex because the background has N
units of Ramond-Ramond (RR) fiveform flux on the S5:
through the Wess-Zumino term of the probe D5-brane
action the flux acts as a source for N fundamental strings
on the worldvolume. The strings then join the vertex to
external quarks. The work of [8] was extended in [11] to
find numerically solutions describing baryons in which a
fraction of theN quarks were pulled apart from the rest in
spacetime.When the quarks are far apart, the branes were
found to describe the confining strings of the gauge
theory. The probe brane description of confining strings
was further considered in [12], using results from [13–
15].

In this work we find explicit analytic solutions of the
full second order Dirac-Born-Infeld (DBI) equations of
motion. These will be nonsupersymmetric probe branes in
the infrared of supergravity geometries which are dual to
N � 1 confining gauge theories. The solutions describe
baryon vertices where q quarks are being pulled apart
.a.hartnoll@damtp.cam.ac.uk
@cecs.cl
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from the remaining N � q. In the limit of infinite sepa-
ration, the solutions recover known infinite confining
string solutions [11,12]. The fact that our solutions are
very explicit will enable us to calculate analytically vari-
ous properties of the deformed baryons. For instance, we
calculate the mass of finite confining strings as a function
of length.

A schematic illustration of our solutions is given in
Fig. 1 in Section IIB below. Figure 2 shows a couple of
solutions more explicitly. The solutions are one dimen-
sional from a spacetime perspective. At each point the
remaining probe brane directions partially wrap an in-
ternal sphere of the background.

We focus on two background geometries in particular:
the Maldacena-Nuñez solution [5] of IIB supergravity and
a IIA solution which results from dimensional reduction
of M theory on a manifold ofG2 holonomy [16–19]. Both
of these backgrounds describe the near horizon geometry
of wrapped branes; some comparisons are made in [20].

The baryon vertex of N � 1 Yang-Mills theory in
these backgrounds is given by a wrapped probe brane in
an entirely analogous way to the AdS5 � S5 case. In the
Maldacena-Nuñez solution the baryon vertex is a D3-
brane wrapping a nontrivial S3 of the background [21].
For the IIA background it has been proposed that the
baryon vertex is a D2-brane wrapping an S2 [22].

Amongst the deformed baryons we consider, in the
Maldacena-Nuñez case it is easy to identify the finite
length confining strings. In the IIA background, there
does not seem to be a limit of the deformed baryons
that is immediately connected with confining strings.

II. IIB BACKGROUND: THE
MALDACENA-NUÑEZ SOLUTION

A. The Infrared Background: M4 � S3

The Maldacena-Nuñez background [5] is a solution of
type IIB string theory describing the result of the geo-
metric transition induced by D5-branes wrapping an S2 in
the resolved conifold. The background preserves four
07-1  2004 The American Physical Society
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FIG. 1. D3-brane pulled apart by N � q and q fundamental
strings.
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supercharges and is dual to N � 1 super Yang-Mills
theory, modulo issues of decoupling of Kaluza-Klein
and little string theory modes.

The far infrared of the field theory is described by the
r! 0 region of the background. The background collap-
ses at r � 0 to M4 � S3 with N units of RR flux through
the sphere

ds2IIB � e	0�dx2
1;3 � 0N�d 2

�sin2 �d�2 � sin2�d�2	
	

CRR2 � �0N
�
 �

1

2
sin2 

�
sin�d� ^ d�;

(1)

where 	0 is the value of the dilaton at the origin. The RR
field strength is thus

FRR3 � dCRR2 � �20Nsin2 sin�d ^ d� ^ d�

� �20NvolS3 : (2)

The ranges of the angles are 0 �  � �, 0 � � � �, 0 �
�< 2�. We are working in the string frame.

The Dirac-Born-Infeld action for a probe D3-brane
with these background fluxes is

SDBI �
Z
d4�L

� �T3

Z
d4�e�	

���������������������������������
� det�?G�F 


p
�T3

Z
F ^? CRR2 ;

(3)

where as usual Tp � 1=��2�
p0�p�1
=2	 and here F �

2�0F. We use ?G and ?CRR2 to denote the pullback
onto the worldvolume of the metric and the RR potential.

We will find solutions to the DBI equations of motion in
the background at r � 0, given in (1). Setting r��
 � 0 is a
consistent truncation of the full equations of motion.

B. Probe D3-brane Solutions

We are looking for solutions describing deformed bary-
ons. To this end, we look for probe D3-brane solutions
with the following ansatz. The ansatz can be thought of as
describing fundamental strings extended in the x direc-
tion that the RR flux has blown up at each point, in an
Emparan-Myers effect [23,24], to a D3-brane ‘‘wrap-
ping’’ an S2 in the S3 of the background. See Figs. 1 and 2.

t � 01=2�0; x � 01=2�1;  �  ��1
; � � �2; � � �3;

A � k��1
�0d�1 ) F � k��1
d�0 ^ d�1: (4)

Plugging this ansatz into the full DBI equations of mo-
tion, one finds that the equations are solved if the func-
tions k��1
 and  ��1
 satisfy the following relations
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�k2 � � � sin cos 
2;�
d 
d�1

	2 �
e�2	0

N

�
�e2	0 � C4sin4 � C4

�
�k�

2�k0

C2

�
2
�
;

(5)
where we have introduced

�k �
2�

C2 �k� k0
: (6)
Note that the solution has two dimensionless constants
C; k0. The range of k0 when positive is restricted to
�e	0=2�;1
. For negative k0 the allowed range is more
complicated and will be discussed below. One may take
either the positive or negative square roots in (5) to obtain
the same solutions.

It is perhaps surprising that we can obtain such an
explicit form for the solutions. The solutions are given
precisely, up to an integral. We have found a two parame-
ter family of solutions to the full nonlinear second order
DBI equations of motion in the infrared background. We
have not restricted to supersymmetric solutions. Indeed in
the Appendix A we show that none of our solutions are
supersymmetric. The first equation in (5) has appeared
before in similar configurations [25,26] and is essentially
Gauss’s law for the electric field.

The Eqs. (5) have solutions where  goes from 0 to �.
The spatial sections of these solutions are topologically
S3, with the worldvolume S3 in the nontrivial homology
class of the background H3�M

4 � S3
. However, the so-
lutions are not just sitting at a point in M4 wrapping the
S3, but have an extension along the x direction given by

�x � 01=2
Z �

0

d�1

d 
d : (7)
Two limits at fixed C illustrate the possible behaviors:
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�x�
�
0Ne2	0

4

�
1=2 1

k0
� � � � ; as k0 ! 1;

�x� 2:8044
�
0Ne	0

4

�
1=2

�
9�

8C4

�
1=6 1

�2�k0 � e	0
1=6

�� � � ; as k0 !
e	0

2�
;

(8)

where the numerical factor comes from an elliptic inte-
gral. Therefore the limits correspond to short and large
extensions in spacetime. Note that in the large length
limit only the  � 0 end goes to infinity, due to a pole
in d�1=d from (5) at  � 0. The  � � end remains at a
finite position. We can obtain a pole at  � � rather than
 � 0 by noting that the transformation f !
��  ; k0 ! �C2=2 � k0g leaves the solutions (5) invari-
ant. This symmetry will appear later as the symmetry
q$ N � q. We will see below that it is a different large
length limit that is related to confining strings.

The induced spatial metric of the D3-branes is given by

ds2D3 � 0Ne	

���
d 
d�1

�
2
�

1

N

�
d�2

1

�sin2 
�
d�2

2 � sin2�2d�2
3

��
: (9)

As  ! 0; �, the induced geometry has a conical singu-
larity. Far from being a problem, this is exactly what one
should expect. The spatial sections of the D3-branes are
compact, yet theWess-Zumino term in the DBI action is a
source for the abelian gauge field on the brane. The total
charge on the compact sections must be zero, so there
must be more sources. These will be fundamental strings
attached at the conical points.

We will now understand the conical singularities as
being due to attached fundamental strings. The endpoints
of fundamental strings are electric sources for the world-
volume gauge field on the D3-branes [27,28]. The equa-
tions of motion in the presence of external sources at
 � 0 and  � � become

DEFORMING BARYONS INTO CONFINING STRINGS
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@i
@L
@@iAj

�
@L
@Aj

�Qj
0"

�3
�x� �x
 �Qj
�"�3
�x
: (10)

In this expression, we should integrate the Wess-Zumino
term in the action by parts, so that it contributes to the
equations of motion as part of the @L

@Aj
term. The electric

charges may be read off the solutions as

Q0
0 � lim

 !0

Z �

�2�0

Z 2�

�3�0

@L
@@1A0

d�2d�3;

Q0
� � � lim

 !�

Z �

�2�0

Z 2�

�3�0

@L
@@1A0

d�2d�3:
(11)

This is just Gauss’s law on the brane worldvolume.
Applying the formulas to our solutions

Q0
0 � �

2Nk0

C2 ; Q0
� � N �

2Nk0

C2 : (12)

The total charge due to sources at the conical points is N.
One can check that this precisely cancels the contribution
from the Wess-Zumino term. Let us write Q0

� � N � q
and Q0

0 � q. In the full string theory q 2 Z, correspond-
ing to q string endpoints.

The interpretation of the solutions now becomes clear.
The baryon vertex with N external quarks is being pulled
apart along the x axis with N � q quarks at one end and q
at the other. The configuration is illustrated in Fig. 1.

The next step is to understand the energetics of the
deformation process. The energy density of the solution is
given by

E �
@L

@ _X$
_X$ �

@L

@ _A
� _A�L; (13)

where the X$ denote the spatial coordinates of the back-
ground and _ denotes differentiation with respect to �0.
Considered as an object in four dimensional spacetime,
the tension is
T��1
 �
Z
d�2d�3E �

N

01=22�2C2
�C4sin2 � �C2 � 2�k0
�2C2 sin cos � C2 � 2�k0
	: (14)
The mass of the solution is M �
R
d�1T��1
. We can

calculate the masses in the two limits considered previ-
ously in (8)

M�
N2e2	0

2C2

1

�x
� � � � ; as �x! 0 �k0 ! 1	;

M�
e	0

2�0
jqj�x� � � � ; as �x! 1

�
k0 !

e	0

2�

�
:

(15)

The short length limit takes us outside the regime of
validity of the DBI effective action, because @1F�
01=2=�x becomes large and 0 corrections are important.
Therefore the mass divergence for short extension should
probably not be taken seriously, although it is consistent
with a 1=�x Coulomb potential. The large separation
solution has energy linear in separation, as expected for
a confining theory. The large length expression has a
simple interpretation. It is the mass of q fundamental
strings in the background (1)! This result is as we should
expect in this limit, where almost all the mass is coming
from near the  � 0 endpoint. Most of the D3-brane has
collapsed to form fundamental strings [23].

There is a different large separation limit that has a
more interesting physical interpretation. An infinite
-3
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length occurs whenever d�1=d has a pole at some  0 2
�0; �	. In the large length limit we have just considered,
the pole is at the endpoint  0 � 0 when k0 � e	0=2�.
From Eq. (5) one can see that there is another possibility.
This is the interior point  0 � �2�k0=C2 � �q=N when
C2 sin 0 � e	0 . In this case one finds the mass

M�
e	0N

2�20
sin
�q
N

�x� � � � ;

as �x! 1

�
k0 !

�C2

2�
sin�1 e

	0

C2

�
: (16)

Note that in this limit k0 is negative and hence q is
positive. The expression (16) is immediately recognized
as the sine formula for the mass of the confining strings of
the theory [12,29,30]. The mass per unit length of the qth
confining string in the infinite length limit becomes
0
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FIG. 2. Probe D3-brane solutions with a large but finite ex-
tension in the x direction. The background has N � 30 and
	0 � 1. The top configuration has q � �10 while the bottom
configuration has q � 10. One angular direction has been
suppressed.
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T �
e	0N

2�201=2
sin
�q
N
; (17)

recovering the result obtained in [12]. Our solutions place
the confining strings in a larger context. The confining
strings arise as an infinite length limit of a two parameter
family of explicit probe brane solutions describing de-
formed baryon vertices.

The difference between the two different long length
limits, ([15,16]), is illustrated in Fig. 2. We see how in the
former case the brane collapses at one end, as we noted
following the tension calculation ([15]).

The physical reason for the difference between the two
cases is as follows. In the confining string case q � N is
positive and hence the charges at each end, Q0

0 and Q0
�,

are both positive. The brane expands in a dielectric effect
[23,24] due to the RR flux on the S3 of the background,
with slightly more expansion at the end with more charge.
However, in the collapsing case q is negative. Therefore
the charge Q0

0 is negative while Q0
� is positive. The result

is that the brane expands near the end with positive
charge but the negatively charged end collapses into
fundamental strings.

The allowed range of negative k0 with C2 fixed is
complicated and we see in the next section that it is
more natural to parameterize in terms of C with q fixed.
Suffice to note that if e	0 <C2 then one allowed range is
k0 2 ��C2=2 � e	0=�2�
;�C2sin�1�e	0=C2
=�2�
	. In
this case �C2sin�1�e	0=C2
=�2�
 � �e	0=�2�
 so the
pole at k0 � �e	0=�2�
 is not reached.

C. Energetics of Finite Length Confining Strings

We can use the explicit expressions for the mass (14)
and length (7) to examine the energetics of the full space
of probe D3-brane solutions. We would like to calculate
the mass of the D3-brane with a fixed length in spacetime,
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FIG. 3. Mass against length for confining strings with q �
4; 6; 8; 10. The background has N � 30 and 	0 � 1.
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�x, and a fixed charge imbalance q. There is a unique
solution associated with a pair ��x; q
, providing a more
physical parameterization of the space of solutions than
�C; k0
.

Figure 3 is a plot of mass against length for finite
length confining strings at four values of q.

As the length goes to infinity, the tension becomes the
known result for infinite confining strings (17). It is
curious that the curves almost intersect at a single point,
call it �L0;M0
, although they do not seem to go through
precisely the same point. It seems plausible that the
intersection is exact to subleading order at large �x.
Mathematically, this fact requires that the subleading
correction to (16) take the following form
1There is a factor of 2 missing in the IIA expressions of [18].
The angle of the M theory circle should be rescaled to have
range 2�.

066007
M�q
 �
e	0N

2�20
sin
�q
N

��x� L0	 �M0 � � � � ;

as �x! 1: (18)
This is an interesting result that completely determines
the q dependence of the subleading term. It seems diffi-
cult to derive (18) directly from the integral for the mass.

Note that in the other limit, �x! 0, there is no mass
divergence in these cases. This limit is C! 1 at fixed
positive q.

It is useful to write the expression for mass (14) in
terms of q
M �
N3=2e	0

2�201=2

Z �

0

sin2 � � � �q=N
�2 sin cos �  � �q=N
�����������������������������������������������������������������������������������������������������
�e2	0=C4 � sin4 � �sin cos �  � �q=N
2

q d : (19)
It is simple to check that this integral is invariant under
q$ N � q, as we should expect. If q is positive, then the
allowed range of C2 is �e	0= sin��q=N
;1
.

Figure 3 and Eq. (19) constitute concrete predictions
for the mass of confining strings with finite length. The
subleading, constant, contribution to the mass in (18)

M0 �
e	0N

2�20
sin
�q
N
L0; (20)

is presumably concentrated near the endpoints of the
confining string.

III. IIA BACKGROUND: G2 MANIFOLDS

A. The Infrared Background: M4 � S2

The D7 family ofG2 holonomy manifolds are classical
solutions of M theory [16–19]. From a IIA perspective,
they describe the result of the geometric transition in-
duced by D6-branes wrapping an S3 in the deformed
conifold. Like the Maldacena-Nuñez background, the
solution preserves four supercharges and is thought to
be dual to N � 1 super Yang-Mills theory, modulo is-
sues of decoupling of Kaluza-Klein and gravitational
modes [20].

In the infrared regime, r! 0, the background collap-
ses to M4 � S2 with N units of RR flux through the
sphere1

ds2IIA � e2	0

�
dx2

1;3 � 0N2 1

4
�d�2 � sin2�d�2	

�

CRR1 � 01=2N
1

2
cos�d�:

(21)
The RR twoform flux is

GRR
2 � dCRR1 � �01=2N

1

2
sin�d� ^ d�

� �01=2N
1

2
volS2 :

(22)

The ranges of the angles are 0 � � � � and 0 � �< 2�.
The general D7 solution has another free parameter at r �
0 which determines the squashing of an S3 in the G2

geometry. We have set this parameter to one for simplic-
ity. Further, we have rescaled the Minkowski coordinates
to emphasize the similarity with the infrared of the
Maldacena-Nuñez solution (1).

The action for a probe D2-brane with these fluxes is

SDBI � �T2

Z
d3�e�	

���������������������������������
� det�?G�F 


p
�T2

Z
F ^? CRR1 : (23)

As before, setting r��
 � 0 is a consistent truncation of
the full probe brane equations of motion. Therefore we
may use the DBI action in the background at r � 0 given
in (21).

B. Probe D2-brane Solutions

We will find probe D2-brane solutions similar to the
D3-brane solutions of the previous section. The ansatz we
take describes fundamental strings extended in the x
direction blown up to a D2-brane by the Emparan-
Myers effect [23,24]. At each value of x the D2-brane is
wrapping an S1 in the S2 of the background.

t � 01=2�0; x � 01=2�1; � � ���1
; � � �2;

A � k��1
�0d�1 ) F � k��1
d�0 ^ d�1:
(24)
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One finds that the DBI equations of motion are solved if
the functions k��1
 and ���1
 satisfy the following rela-
tions

cos 2� � �k2;�
d �k
d�1

�
2
� C2�D� �k	�1 � �k2	 � C2�D� �k	sin2�;

(25)

where we have introduced

�k �
32�2k0

N2e4	0C2
�k� k0
; (26)

and the three dimensionless constants C;D; k0 are related
by

D �
4

N2e4	0C2

�
N4e8	0C4

256�2k2
0

� e4	0 � 4�2k2
0

�
: (27)

The solution therefore has two arbitrary constants. The
range of D is restricted to �1;1
.

We have found a two parameter family of solutions to
the full second order equations of motion. It seems very
likely that these solutions are not supersymmetric, as we
showed for the IIB solutions in the Appendix A. However,
we have not explicitly checked nonsupersymmetry in the
present IIA case.

From the Eqs. (25), we see that there will be solutions
where � runs from 0 to �. This corresponds to �k running
between �1 and 1. The spatial sections of these solutions
are topologically S2, with the worldvolume S2 in the
nontrivial homology class of the background
H2�M� S2
.

The length of the solutions in the x direction is given by
an elliptic integral

�x �
01=2

C

Z 1

�1

d �k����������������������������������
�1 � �k2
� �k�D


p : (28)

It is clear that the length is inversely proportional toC.We
may use asymptotic properties of elliptic integrals to
calculate the length as D! 1 and as D! 1

�x�
01=2

���
2

p

2C
ln�D� 1
 � � � � ; as D! 1;

�x�
01=2�
C

1

D1=2
� � � � ; as D! 1;

(29)

corresponding to long and short extensions, respectively.
In the long solutions, only the �k � �1 end goes to infin-
ity, the �k � 1 point remains at a finite position.

The induced spatial metric of the solutions is given by

ds2D2 �
0N2

4
e2	0

�

4

N2 � C2�D� �k��1
	

�
d�2

1

��1 � �k��1

2	d�2

2

�
: (30)

As �k! �1 one can see that the induced geometry has a
066007
conical singularity due to an angular deficit. As previ-
ously, we interpret the singularities as due to the presence
of fundamental string sources. In this case, the electric
charges at the conical points are

Q0
0 � lim

�!0

Z 2�

�2�0

@L
@@1A0

d�2;

Q0
� � � lim

�!�

Z 2�

�2�0

@L
@@1A0

d�2:
(31)

Applying this formula to our solutions, we find

Q0
0 �

N
2
�

16�2k2
0

NC2e4	0
; Q0

� �
N
2
�

16�2k2
0

NC2e4	0
: (32)

The total charge of the sources is N, which again pre-
cisely cancels the contribution of the Wess-Zumino term
as required. It will be useful to write Q0

� � N=2 � q and
Q0

0 � N=2 � q with N=2 � q 2 Z. The total number of
fundamental strings ending on the probe brane is againN,
so the solutions may be interpreted as deformed baryon
vertices.

The four dimensional tension of the solution is given by

T��1
 �
Z
d�2E �

4jk0j

01=2N

�
1

C2 �
N2D

4
�
N2 �k
4

�
: (33)

Integrating the tension over the spatial worldvolume
gives the mass

M �
Z
d�1T��1


�
4jk0j

0NC2 �x�
jk0jN

01=2C

Z 1

�1
d �k

�����������������
D� �k

�1 � �k2


s
:

(34)

Considering the short and long limits,D! 1 andD! 1
respectively, one obtains relations between the mass and
the length. There are in fact two possible short limits

M�
01=2N2e2	0�2

4C2

1

��x
2
� � � � ;

as �x! 0 �k0 ! 1 ) D! 1	;

M�
N2e2	0

801=2
� � � � ;

as �x! 0 �k0 ! 0 ) D! 1	:

(35)

As in the previously discussed IIB solutions, both of the
short limits take us outside the regime for validity of the
DBI action. The long limit is also precisely as for the IIB
solutions. One may obtain the following relation

M�
e2	0

2�0

N2 � q
�x� � � � ;

as �x! 1 �D! 1	;
(36)

which is exactly the mass of N=2 � q fundamental
strings in the background (21). Again this is consistent
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with the fact that most of the mass comes from the � � 0
region, where the D2-brane has collapsed to N=2 � q
fundamental strings.

Unlike in the Maldacena-Nuñez case, the large length
limit which collapses at one end (36) is the only possible
large length limit. This follows from the fact that in (25)
we see that d�1=d �k can only have poles at the endpoints
�k � �1 and not in the interior. Therefore, there is no limit
of the solution space analogous to that of the confining
strings we found previously.
IV. DISCUSSION AND CONCLUSIONS

We have found explicit nonsupersymmetric probe D-
brane solutions in the infrared of two N � 1 confining
geometries. There is a two parameter family of solutions
which may be labeled by an extension in spacetime, �x,
and by a fraction of quarks, q=N, that is being pulled
apart from the others in spacetime.

The solutions describe deformed baryon vertices. In the
IIB case we considered, the Maldacena-Nuñez back-
ground, there was a limit at large �x in which the solu-
tions became the infinite confining strings of the dual
theory. Away from the infinite length limit, the solutions
give predictions for the mass of finite confining strings in
the dual theory.

We found a similar two parameter family of solutions
in a IIA geometry, obtained by dimensional reduction of a
G2 holonomy background of M theory. However, in the
IIA solutions there is not a limit with the properties of
infinite confining strings. The only large length limits
involve collapse into fundamental strings at one end of
the baryon vertex. There does exist a proposal for iden-
tifying the confining strings as membranes in the G2

background [31]. Translating this idea into a formula for
the string tensions with the required symmetry q$ N �
q remains an open problem.

Various possibilities for future research suggest them-
selves. It seems likely that solutions similar to those we
have described will exist in other backgrounds, including
AdS5 � S5. In fact, presumably a systematic study of such
DBI solutions in infrared geometries of the form M4 �
S8�p is possible, along the lines of [25]. The fact that the
infrared geometry is independent of how the compact
directions of the background D-brane are wrapped high-
lights the genericity of the solutions and of the dual field
theory deformed baryons/confining strings.

It would be interesting to see if other appearances of
confining strings in dualities admit similar energetics at
finite length. Important examples are the confining
strings of MQCD [29,30] and of the theory on nonextre-
mal D4 branes at high temperature [11].

Ultimately, one would like to reproduce the properties
of finite confining strings that we have described via a
field theoretic calculation. Recent field theory work on
066007
confining strings in four dimensional SU�N
 theories has
been both numerical, see for example [32], and analytical
[33].
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APPENDIX: CHECKING
NON-SUPERSYMMETRY OF IIB SOLUTIONS

A probe brane is supersymmetric if at least one of the
Killing spinors of the background, ), satisfies

�*) � ); (37)

where [34]

�* �
i�����������������

?G� F
p X1

0

1

2nn!
,$1-1...$n-nF$1-1

. . .F$n-nJ
�n

p :

(38)

In type IIB supergravity we have

J�n
p � ��1
n��/3

n�p�3

2 /2 � ��0
	; (39)

with

��0
 �
1

�p� 1
!
)$1...$�p�1
,$1...$�p�1


: (40)

We are using the standard notation in which we write the
IIB spinors as an SL�2;R
 doublet of real spinors. The
lower case gamma matrices are the pullback of the space-
time gamma matrices ,$ � E �a

$��a.
If we use the following vielbein for the metric at the

origin (1)

Ei � e	0=2dxi �i � 0; 1; 2; 3
;

E4 � 0; E5 � 0; E6 � 0;

E7 � e	0=2d ; E8 � e	0=2 sin d�;

E9 � e	0=2 sin sin�d�;

(41)

then the supersymmetry projector for the embedding (4)
becomes

�* �
i����������������������������������������������

k2 � e2	0�1 � �@1 
2	
q
��e	0�/2 � �0��1 � @1 �7	�89


�k�/3/2 � �89
	: (42)
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The Killing spinors of the Maldacena-Nuñez back-
ground are given in [35]. There are four real supercharges.
However, the only property we shall need is that the
spinors satisfy

�/1 � 1
) � ): (43)
066007
If we use this property in (37) we find that a necessary
condition for solutions is that ��1 � @1 �7
) � 0.
However this condition then requires @1 � �1, which
is not consistent with the form of the solutions (5).
Therefore, none of the solutions are supersymmetric.
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