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Static potential in QED3 with nonminimal coupling
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Here we study the effect of the nonminimal coupling j�����@
�A� on the static potential in

multiflavor QED3. Both cases of four and two components fermions are studied separately at leading
order in the 1=N expansion. Although a nonlocal Chern-Simons term appears, in the four components
case the photon is still massless leading to a confining logarithmic potential similar to the classical one.
In the two components case, as expected, the parity breaking fermion mass term generates a traditional
Chern-Simons term which makes the photon massive and we have a screening potential which vanishes
at large intercharge distance. The extra nonminimal couplings have no important influence on the static
potential at large intercharge distances. However, interesting effects show up at finite distances. In
particular, for strong enough nonminimal coupling we may have a new massive pole in the photon
propagator, while in the opposite limit there may be no poles at all in the irreducible case. We also found
that, in general, the nonminimal couplings lead to a finite range repulsive force between charges of
opposite signs.
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I. INTRODUCTION

One of the most intriguing and long-standing problems
in high energy physics is a complete understanding of the
mechanism of color confinement in 4D QCD. Several
models and techniques have been used to gain deeper
insight into this problem. In particular, supersymmetry
has been used in the four dimensional theory treated in
[1] while bosonization has played an important role in the
analysis of screening/confinement issues inD � 2 models
[2–4]. Those models have in common that it is necessary
to have massive fermions to produce confinement. This
happens also in parity preserving QED in 2� 1 dimen-
sions [5] which will be treated in this work altogether
with the parity breaking (two components fermions)
case. Technically, although bosonization is not so well
developed in D> 2, we can always integrate perturba-
tively over the fermionic fields (see [6–11]) and derive an
effective bosonic action for the vector field. Such effective
action is in general nonlocal even in D � 2 [3]. From this
bosonic action we have an expression for the vector boson
propagator including vacuum polarization or even higher
order effects. A detailed analysis of the analytic structure
of the propagator already reveals, qualitatively, the large
distance behavior of the interaction. In fact, even in other
nonequivalent approaches to study confinement, like
Schwinger-Dyson equations, see e.g. [5], the infrared
properties of the vector field propagator including vac-
uum polarization corrections play a key role. Here we
formally minimize the effective action and calculate the
energy V�L� between two static charges separated by a
ress: dalmazi@feg.unesp.br
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distance L by solving the resulting differential equation.
Basically, this is the route followed in [12–14] in the case
of QED3 with two components fermions (irreducible
QED). In that case an usual, linear in momentum,
Chern-Simons term is generated which makes the
photon massive [15] leading to a screening potential in
opposition to what happens classically. In [16] we have
added a quartic interaction of Thirring type LTh �
g2� 	 i�� i�2=N and checked that the screening scenario
prevails again in multiflavor irreducible QED3, at least at
leading order in 1=N; see also [17,18]. In passing, we
noticed in [16] that in the case of four components fer-
mions with a parity symmetric mass term, henceforth
called reducible QED, the vacuum polarization is not
strong enough to change the classical picture and the
potential remains logarithmic confining at leading
order in 1=N. In all the works [12–14,16] the fermions
were minimally coupled to the electromagnetic potential.
The aim of this work is to analyze the effect on the
screening/confining scenario of adding a nonminimal
coupling term which preserves gauge symmetry and it
is rather natural in 2� 1 dimensions, namely, we add
F�j

� � ����@
�A�j� to the minimally coupled QED ac-

tion. In the irreducible case this extra coupling corre-
sponds to a magnetic moment interaction of the Pauli
type. Such nonminimal coupling has been considered
before in [19–24] in different contexts. It seems to lead
to anyons without the need of a topological Chern-
Simons term as argued in [21,22,24] (see, however,
[23]). Our interest lies in the fact that F�j� breaks parity
explicitly, and the presence of parity breaking terms is
very important for the pole structure of the photon
propagator.
21-1  2004 The American Physical Society
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We start with the partition function,

Z �
Z

DA�
YN
r�1

D rD 	 r exp
�
i
Z
d3x

�
�

1

4
F2
��

�
�
2
�@�A

��2 � 	 r

�
i6@�m�

e����
N

p A6 �
�����
N

p F6
�
 r

��A� ��F��j�ext

�	
; (1)

where F� � ����@�A�. Summation over repeated flavor
index r (r � 1; 2; . . . ; N) is assumed. The constant �
065021
represents the magnetic moment of the static charge while
� sets the strength of the dynamical fermions nonmini-
mal coupling. Those couplings have mass dimension �1
and �1=2, respectively. The external current is generated
by a static charge at the point �x1; x2� � �L=2; 0�, i.e.,
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�
x1 �

L
2

�
��0: (2)

Integrating over the fermions we have an effective action
for the photons:
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The logarithm has been evaluated perturbatively in 1=N.
Because of Furry’s theorem, only an even number of
vertices contribute. Since each vertex is of order 1=

����
N

p
,

the leading contribution with two vertices, that corre-
sponds to the vacuum polarization diagram, will be N
independent due to the trace over the internal fermion
lines. The next to leading contribution with four vertices
is of order 1=N and will be neglected henceforth. In
particular, our results will be exact for N ! 1. The
quantities ~A��k� and ~F��k� represent the Fourier trans-
formations of A��x� and F��x�, respectively, and ��� is
the polarization tensor:
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The calculation of ��� is regularization dependent.
Using dimensional regularization which preserves gauge
symmetry and does not add any artificial parity breaking
term, we have

����k� �
f2
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if1
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�: (5)

Defining z � k2=�4m2�, in the case of two components
fermions, in the range 0 
 z < 1, we have
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While for z 
 0 ,
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(7)

Above the pair creation threshold z > 1 the effective
action will develop an imaginary part which we are not
interested in and do not write it down here. In the simpler
case of four components fermions we have instead f1 !
0; f2 ! 2f2 (~f1 ! 0; ~f2 ! 2~f2).

From (3) we can read off the effective action:

Seff �
Z
d3xd3y
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D�1
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2
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ext�
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; (8)

where D�1
���x; y� is the inverse of the propagator in the

spacetime. Minimizing the effective action we deduce
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Introducing the dimensionless couplings,

c1 � e2=16 m; (10)

c2 � e�=4 : (11)

We can write the propagator in momentum space as

~D���k� � ag�� � b
�
g�� �

k�k�
k2

�
� c����k�: (12)
-2



STATIC POTENTIAL IN QED3 WITH NONMINIMAL COUPLING PHYSICAL REVIEW D 70 065021
For 0 
 z < 1 the coefficients are given by

a �
1

4m2�z
; (13)

a� b �
c1

8m2

D� �D����
z

p
D�D�

; (14)

c � �
ic1

16m3z

D� �D�

D�D�

; (15)

D� � �c1 �
���
z

p
c2�

2G� �
���
z

p
c1; G� �

���
z

p
f2 � f1;

(16)

while for z 
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Returning to the calculation of (9), since the external
current is time independent the integral

R
dx0e�ik0x0 �

2 ��k0� allows us to exactly integrate over k0, which
amounts to setting k�k� � �k21 � k22 � �k2 < 0 inside
(9).We can integrate over dx1dx2 using ��x1 � L=2���x2�.
The integral over the angle part of d2k � kdkd, gives
rise to a J0 Bessel function. Thus, we are left with the

integral over k �
����������������
k21 � k22

q
. Placing the negative charge

�Q at �x1; x2� � ��L=2; 0� we finally have the energy of
the pair separated by a distance L:

V�L� � �QA0�y1 � �L=2; y2 � 0�

� �
Q2

2 

Z 1

0
dkk�~a� ~b� i�~ck2�J0�kL�: (21)

The last formula shows that the nonminimal � term can
only contribute to V�L� if the photon propagator contains
a parity breaking piece (~c � 0).

In the next two sections we split the discussion into the
cases of four (reducible) and two (irreducible) compo-
nents fermions.
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II. REDUCIBLE QED (4� 4 REPRESENTATION)

A. Effective action and pole analysis

In this case, the inclusion of vacuum polarization ef-
fects leads to the following nonlocal Lagrangian density:
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where f2 � f2���=4m2� is given in (6) and (7). Notice
that, within dimensional regularization ��� is parity
symmetric (f1 � 0 ) but still, as a consequence of the
parity breaking nonminimal coupling there appears a
nonlocal Chern-Simons term in (22) which breaks parity.

Concerning the pole structure of the propagator, setting
f1 ! 0 and f2 ! 2f2 in (16) we obtain D�D� �
z�2�c1 �

���
z

p
c2�2f2 � c1	�2�c1 �

���
z

p
c2�2f2 � c1	. Since

f2 
 �4=3 and c1 > 0 it is clear that the only pole we
have appears at the origin z � 0. Therefore, quite surpris-
ingly, the nonlocal Chern-Simons term in (22) is not able
to make the photon massive like its local counterpart.
Although parity is broken, the photon is still massless.

B. V�L�

For the calculation of V�L� it is important to find the
singularities of (18) and (19). By inspection we observe
that the denominators of ~a� ~b and ~c can only vanish
either for z � 0 or A � 0 � B. However, since ~f1 � 0 it is
clear from (20) that the latter possibility also requires
z � 0. Thus, we conclude that the expression to be inte-
grated in V�L� contains only one singular point which is a
simple pole at z � 0. In passing, this implies that we have
no tachyons in the reducible case.

Substituting (18) and (19), with ~f1 ! 0 and ~f2 ! 2~f2,
in (21) we derive, after trivial manipulations,

V�L� �
Z 1

0

dk
k
J0�kL�G�k�; (23)

where, besides the Bessel function J0, we have

G�k� � �
Q2c1
2 

c1�1� 2c1 ~f2� � 2c2z~f2�c2 � 2�c1�

�2zc22 ~f2 � c1�
2 � 4c31 ~f2�1� c1 ~f2�

:

(24)

Note that ~f2 
 �4=3, which confirms that k � 0 is the
only singularity in (23). The way it stands, the integral in
(23) does not exist since J0�0� � 1 and G�0� �
�3Q2=�2 �3 � 8c1�	 are both finite and nonvanishing.
In order to eliminate the infrared divergence at k � 0
we make a subtraction, namely,
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FIG. 1. The static potential for pure QED3 (reducible) with
�c1; c2; �� � �1; 0; 0� and m � 1 (dark dots), m � 0:1 (light
dots). The dark solid curve corresponds to the m! 1 result
�3=11� lnL, and the light solid one to the fit �3=11��
lnL� 0:48=L� 0:046=L2 � 0:44.
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FIG. 3. The static potential V�L� for QED3 (irreducible) with
different values of the static charge’s magnetic moment � �
�2; 0; 2; 20, respectively, from the darkest to the lightest curve.
All curves were obtained for m � 0:1; c1 � 1 and vanishing
nonminimal coupling c2 � 0.
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V�L� � V�L0� � lim
x!0

Z 1

x

dk
k
�J0�kL� � J0�kL0�	G�k�:

(25)

We can recover the classical result by taking c1 � 0 �
c2, which givesG�k� � �Q2=2 . In this case the integral
(25) can be easily calculated furnishing the well-known
confining potential

V�L� � V�L0� �
Q2

2 
ln
L
L0
: (26)

However, in the general case we have to calculate the
integral numerically. One exception is the limit m! 1.
First, notice that if we simply take m! 1 the effective
action (22) becomes the classical Maxwell action at lead-
ing order and all quantum information is lost. On the
other hand, if we take m! 1 while keeping c1 and c2
finite the effective action (22) becomes
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FIG. 2. The static potential for QED3 (reducible) with non-
minimal coupling �c1; c2; �� � �1; 0:5; 0� and m � 1 (dark
dots), m � 0:1 (light dots). The dark solid curve corresponds
to the m! 1 result �3=11� log�L	, and the light solid one to the
fit �3=11� lnL� 0:42.
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Correspondingly, this amounts to substituting G�k� by
G�0� in (25). Therefore we have

V�L� � V�L0� � �G�0� ln�L=L0�

�
3Q2

�2 �3� 8c1�	
log�L=L0�

�
Q2

scr

2 
log�L=L0�; (28)

where

Qscr �
Q

�1� e2
6 m	

1=2
: (29)

Thus, we see that at leading order in 1=m the vacuum
polarization has a mild effect on the classical static
potential. It leads to a screening of the static charges but
it is not strong enough to change the confining nature of
the potential. In particular, the nonminimal couplings
introduced by the constants � and � have no influence
at all. In fact, this is not surprising since we are keeping c1
and c2 fixed and takingm! 1 which corresponds to e�����
m

p
and �� 1=

����
m

p
. This is a situation where the minimal

coupling certainly prevails against the nonminimal one.
In order to clearly outline the effect of the nonminimal

coupling we must keep all parameters �c1; c2; m� finite
and calculate V�L� numerically. Our results for the reduc-
ible case are shown1 in Fig. 1 (pure QED) and Fig. 2
(nonminimally coupled QED). Fixing c1 � 1 we see that
in both figures the valuem � 1 is already very close to the
1In Figs. 1 and 2 the symbol V stands for the difference
V�L� � V�L0 � 1�, while in Figs. 3–7 it represents V�L�. The
potential is always depicted in units of Q2=2 .
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FIG. 4. The static potential V�L� for QED3 (irreducible) with
� � 0 and different nonminimal couplings c2 � 0:5; 0:2;
�0:5, respectively, from the darkest to the lightest curve. All
curves were obtained for m � 0:1; c1 � 1.
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m! 1 case. This could also be interpreted as a confir-
mation of our numerical integration which is rather tricky
due to the oscillations of the Bessel function. The remark-
able effect of the nonminimal coupling is a repulsive
force in a finite range 0 
 L 
 Lmin. Numerically we
have noticed that Lmin � 1=m. In particular, in Fig. 2
Lmin � 2:5 and 0:25, respectively, for m � 0:1 and m �
1. The effect produced by c2 � 0 and � � 0 can be
similarly caused by making � � 0 and c2 � 0.
Furthermore, they can also compete such that the repul-
sive force can be turned off if we set� and c2 accordingly.
The same happens in the irreducible case (next section)
and the figures we have are similar (for small L) to
Figs. 3–5. Therefore we skip them. The logarithmic fit-
tings in Figs. 1 and 2 are in agreement with the analytic
result derived in the Appendix of [25] for pure QED
(reducible), namely, V�L� � �G�0� lnL� const � h�L�,
where h�L� should fall off at least as fast as 1=L as L!
1. In summary, the new couplings � and � can play a
role only at finite L. The point is that if we use a 4 � 4
2 4 6 8 10 12
L
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−0.5

0.5

1

1.5

V

FIG. 5. The static potential V�L� for QED3 (irreducible) with
� � 3; 0;�4, respectively, from the darkest to the lightest
curve and �c1; c2; m� � �1; 0:5; 0:1�.
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representation only a higher order Chern-Simons term
will be generated due to the parity breaking nonminimal
coupling, but as k! 0 this term will be negligible if
compared to a Maxwell term and the photon remains
massless as it is classically. Consequently, the origin k �
0 will dominate the calculation of V�L�. Around that
region the higher momenta coupling terms which multi-
ply � and � can be dropped.
III. IRREDUCIBLE QED (2� 2
REPRESENTATION)

A. Effective action and pole analysis

Because of the parity breaking term of ��� the effec-
tive action now is more complicated:

L eff �
��@�A

��2

2
� ����A�

�
e��f2

8 m

�

�
e2 � 4�2�

16 

�
f1

�
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F��
4

�
1

�

�
e2 � 4�2�

16 m

�
f2 �

e�
2 

f1

�
F�� � �A�

��F��j�ext; (30)

where f2 � f2���=4m2� and f1 � f1���=4m2� are
given in (6) and (7).

For finite fermion mass the analysis of the singularities
of the photon propagator is much more involved. First of
all, the pole at z � 0 in (15), which also appears in the
local Maxwell-Chern-Simons theory, is not a physical
one. In particular, it disappears if we look at the gauge
invariant propagator hF��k�F���k�i. Thus, the physical
poles can only come from either D� � 0 or D� � 0.
Since G� 
 �2 the first possibility is ruled out; see
(16). Therefore, we have to examine the equation D� �
�c1 �

���
z

p
c2�

2G� �
���
z

p
c1 � 0 with G� being a monotoni-

cally decreasing function in the range 1 
 G� 
 2. We
have not been able to find an analytical solution to that
equation but we have made a rather detailed analysis on
the number of poles (n) in the region 0 
 k2 < 4m2 ac-
cording to different coupling values. One can show ana-
lytically that

c2 > c1 �
�����
c1

p
! n � 2; (31)

c2 <�1=4 ! n � 0; (32)

�1=4 
 c2 < c1 �
�����
c1

p
! n � 0 if c1 � 1; (33)

c1 �
�����
c1

p
< c2 < c1 �

�����
c1

p
! n � 1 if c1 � 1; (34)

0< c2 < c1 �
�����
c1

p
! n � 1 if c1 
 1: (35)

The missing region c1 < 1 and �1=4 
 c2 < 0 is rather
awkward and only numerical results have been obtained.
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In particular, besides n � 0; 1; 2 poles we also found it
possible to have n � 3 poles if the QED coupling is very
small 0< c1 < 0:041.

It is remarkable that for c2 > 0 the poles follow basi-
cally the same pattern [16] of QED with a Thirring term
LTh � g2� 	 i�� i�2=N [16] with the Pauli coupling �
playing the role of g. Namely, for strong enough Pauli
coupling, when compared to the QED coupling, a new
pole appears besides the one we have in pure QED. If � is
reduced this extra pole disappears. Besides, for very
strong QED coupling we may have no real poles at all.
That also happens in pure QED as we remarked in [16]. It
is tempting to ascribe those similarities with the QED
065021
plus Thirring case to the fact that both couplings g and �
have the same mass dimension m�1=2.

Finally, we stress that it is impossible to have a mass-
less photon in the 2� 2 representation whatever value we
choose for c1 and c2.

B. V�L�

Now the integral we need to evaluate is

V�L� � V�L0� � lim
x!0

Z 1

x
dkk�J0�kL� � J0�kL0�	H�k�;

(36)

where
H�k� � �
Q2c1
8 m2

�c21 � zc22�
2��c21 � zc22 � 2�mc1c2z�f2 � 2c1c2f1 ��m�c21 � zc22�f1 � c1	

��c21 � zc22�
2 ~f1 � 2zc21c2	

2 � z��c21 � zc22�
2 ~f2 � c1�c

2
1 � zc22�	

2
: (37)
2The 2 � 2 Dirac matrices satisfy the algebra ���; ��	 �
�2i�����

�. Consequently, the nonminimal coupling term
can be interpreted in the irreducible case as a magnetic moment
interaction of Pauli type: 	 ��� F

�� � 	 �� F
�.
In the reducible case the integral for V�L� was dominated
by the pole at the origin k �

����������������
k21 � k22

q
� 0. Now, in order

to have a singularity both expressions inside brackets in
the denominator of (37) must vanish at the same time.
This will never happen at the origin since ~f1�0� � �2 and
~f2�0� � �4=3. A detailed analysis reveals that this can
only happen for some real k > 0 if we fine-tune c1 and c2.
The fine-tuning is only possible in the small region
�1=4< c2 < 0 and 0< c1 < 0:1354. Since k�k� �
�k21 � k22 < 0 the singularity is interpreted as a tachyonic
pole. Henceforth, we exclude the above fine-tuning from
the parameter space which guarantees that we are tachyon
free. Consequently, there will be no singularity in
the integration range of (36) and we need to calculate it
numerically. An important consequence of the absence
of singularities is that we can interchange the limit
and the integral: limL!1

R
1
0 dkkJ0�kL�H�k� �R

1
0 dklimL!1kJ0�kL�H�k� � 0. Therefore, we certainly

have a screening potential in this irreducible case no
matter what we choose for the couple �c1; c2� or for the
external charge magnetic moment �. This result has been
confirmed by our numerical calculations using
MATHEMATICA software. For all cases the potential tends
to zero as L! 1. The specific details of the potential are
exhibited in the figures.

First, we show in Fig. 3 the effect of the external
charges magnetic moment � in the pure QED case with-
out the Pauli term (c2 � 0). It is interesting to notice that
for large values of � a repulsive force appears for finite L
which changes the form of the potential compared to what
one has in previous works of pure QED [12–14].

In Fig. 4 we take � � 0 and analyze the effect of the
magnetic moment of dynamical fermions (Pauli term) at
fixed QED coupling c1 � 1. Similarly to the reducible
case, the Pauli term leads also to a new, if compared to
pure QED, repulsive force which is placed at small values
of L. That happens even for tiny values of the Pauli
coupling c2. We have also let the couplings � and c2
appear altogether; the final output is shown in Fig. 5. It
is possible to turn the repulsive force which appears for a
fixed value of c2 into an attractive one by changing the
static charges parameter �. Because of a term that de-
pends on the product�c2, see (37), now the influence of�
is opposite to the pure QED (c2 � 0) case. As we increase
� the repulsive force diminishes. In the specific case of
Fig. 3, i.e., �c1; c2; m� � �1; 0:5; 0:1�, we checked that no
repulsive force appears for � � 1:67.

C. Large mass limit

If we repeat the procedure of the last section and send
m! 1 while keeping c1 and c2 constant, the effective
action (30) blows up at leading order. So we found it more
useful instead to take m! 1 and keep e and � fixed in
order to have a local theory, which becomes

Leff � �

�
1�

e�
 

�
1

4
F��F

�� �
1

8 
����A

��e2

�4�2��@�A� �
��@�A

��2

2
� �A� ��F��j�ext

�O

�
1

m

�
: (38)

Besides the well-known generation of a Chern-Simons
term, we also have a charge renormalization:

Qren �
Q

�1� e�
 �

1=2
; (39)

which is due to a cooperative effect with the Pauli2

interaction which in its turn also generates a higher order
-6
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FIG. 7. Amplified view of the small L region of Fig. 6.
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FIG. 6. The static potential V�L� for QED3 (irreducible) for
m! 1 (solid line), m � 1 (dark dots), and m � 0:1 (light
dots) with couplings mc1 � e2=�16 � � 0:1 and c2 � e�= �
0:5.
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Chern-Simons term. This higher derivative term leads in
general to an extra pole in the photon propagator. Both
poles are real for c2 � �1=8�e�= � �1=2�. The for-
mula (21) becomes in this case

Vm!1�L� � �
Q2

2 

�
 � � e��

�4

�
�

Z 1

0

dkkJ0�kL�

�k2 �m2
���k

2 �m2
��
; (40)

where

m� �
 

2�2

�
1 �

e�
 

�

������������������
1�

2e�
 

s �
: (41)

We can check that as �! 0, which is the case of pure
QED3, �4�k2 �m2

�� !  2 while m� ! e2=4 . Thus, we
are left with the well-known massive photon of the
Maxwell-Chern-Simons theory which is the effective
action for pure QED3 (irreducible) at m! 1. The sim-
plicity of the photon propagator allows us to calculate
V�L� analytically. We just need the identity 1=�k2 �
m2

���1=�k2 �m2
��� �m2

��m2
��=��k

2 �m2
���k

2 �m2
��	.

Consequently,

Vm!1�L� �
Q2

2 
1���������������

1� 2e�
 

q �K0�m�L� � K0�m�L�	: (42)

For �! 0 we reproduce, at leading order in 1=m, the
result of pure QED3 obtained in [12]. Because of the
relative sign among the modified Bessel functions the
potential due to two different poles is now bounded for
L! 0, since K0�x! 0� ! � ln�x�, and (42) becomes
constant as L! 0 (Fig. 7). Thus, the attractive force
vanishes as L! 0. For finite fermion mass the vanishing
force can turn into a repulsive one. In Fig. 6 we compare
the potential Vm!1 with the numerical results obtained
065021
for m � 0:1; 1 in units such that e2=�16 � � 0:1 and
e�= � 0:5.

The agreement, for most of the values of L, of the
analytic formula (42) obtained at leading 1=m approxi-
mation with the numerical results already at m � 1 is
impressive. Of course, we have checked that larger values
m> 1 lead to an even better agreement. The repulsive
force close to the origin appears only in the presence of a
nonminimal coupling � � 0 (or � � 0 ) and a finite
fermion mass.
V. CONCLUSION

In this work we have calculated, at leading order in
1=N, the influence of a nonminimal coupling term on the
static potential of QED with four and two components
fermions. In the four components case the only effect of
the vacuum polarization at large intercharge separations
is a screening of the original static charges. The potential
keeps its classical shape V�L� � ��Q2

ren=2 � lnL at L!
1. Although parity is broken due to the nonminimal
coupling, the potential is still of confining type. The
interesting point is that the generated Chern-Simons
term is of higher order in the momentum and becomes
negligible when compared with the Maxwell term as k!
0. Consequently, the photon does not acquire mass which
leads to a long-range confining potential. Technically, the
massless pole changes the factor kJ0�kL� in the integral
for the potential V�L� into J0�kL�=k. Since the Bessel
function is an oscillating function with decreasing am-
plitude, as L! 1 the integral is dominated by the region
around k � 0. In summary, the extra nonminimal cou-
plings play no role in V�L� for large distances as far as our
1=N approximation is valid.

In the irreducible case of pure QED it is well known
that a traditional (linear in momentum) Chern-Simons
term is generated and the classical pole at k � 0 is re-
placed by a massive pole. This picture remains correct
whatever values we choose for the new couplings � and
�. Therefore we expect a short-range screening potential
-7
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as in pure irreducible QED. Indeed, we have obtained
numerically V�L! 1� ! 0 as one can check in our
figures of the previous section. Because of the lack of
the pole at k � 0 one can take the limit L! 1 before the
integral in (25) is performed and the result will vanish as
a consequence of J0�x! 1� ! 0.

Concerning the presence of massive poles we have
found basically three different regions in the coupling
space. For strong enough Pauli coupling, when compared
to the QED coupling (c2 > c1 �

�����
c1

p
), we have a second

massive pole besides the one generated by the usual
Chern-Simons term. Our local limit m! 1 indicates
that it is due to a higher order Chern-Simons term. If
we decrease the Pauli coupling we reach an intermediate
region and return to just one pole region as in pure QED.
The most embarrassing result appears for very weak
Pauli coupling (or very strong QED coupling), namely,
we may have no poles at all. That happens, for instance, if
c2 < c1 �

�����
c1

p
and c1 > 1. In particular, it occurs in pure

multiflavor QED (c2 � 0) if c1 � e2=�16 m�> 1.
Recalling that our effective action for the photon be-
comes exact for N ! 1, the no pole region might indi-
cate a breakdown of the 1=N expansion in the specific
region c2 < c1 �

�����
c1

p
and (c1 > 1).

Although at large distances the new couplings � and �
have not led us to new physical effects, at small distances
we found a repulsive force of finite range between charges
of opposite signs. This effect appears only for a finite
fermion mass. As we increase the mass of the fermion the
potential bends down and the repulsive effect disappears
in agreement with our effective action (38) at m! 1. We
do not have any explanation for the repulsive effect but we
intend to return to that question by studying the existence
of bound states in the future. We should remark that a
repulsive effect between charges of opposite signs, simi-
lar to a centrifugal barrier, was observed before in [17] in
irreducible QED3 with a Thirring term with positive
065021
coefficient (opposite sign to the one used in [16]). How-
ever, we stress that our numerical calculations were ob-
tained without any approximation for large masses or
small couplings as in [17]. The similarity between the
addition of the Thirring term and the nonminimal cou-
pling might have its root in the fact that both the Thirring
and the nonminimal coupling constants � used here have
the same mass dimensionality m�1=2. Studies of duality
in vector models in D � 2� 1 coupled to fermionic
matter [26–28] indicate that there might be a more direct
relation between the Pauli and the Thirring term in d �
2� 1 dimensions.

Finally, we point out that another motivation to study
the effect of a nonminimal coupling of the Pauli type is
the fact that this term is radioactively generated anyway
(irreducible case), at least in a Maxwell-Chern-Simons
theory [29,30]. Furthermore, it has been recently shown
in [30] that if the Chern-Simons term is not present from
the start the Pauli term will be generated with an infinite
coefficient which points to the need of having this term
from the beginning in order to have an infrared finite
theory. In our calculations we suppressed a possible
Chern-Simons term in the starting Lagrangian because
we would like to single out the effect of the Pauli-type
term. It is clearly desirable to have both terms from the
start, but the profusion of coupling constants makes the
analysis made here much more involved, which is out of
the scope of this work.
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