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We have constructed a quantum field theory in a finite box, with periodic boundary conditions, using
the hypothesis that particles living in a finite box are created and/or annihilated by the creation and/or
annihilation operators, respectively, of a quantum harmonic oscillator on a circle. An expression for the
effective coupling constant is obtained, showing explicitly its dependence on the dimension of the box.
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I. INTRODUCTION

The fact that the energy eigenvalues of the quantum
harmonic oscillator is given by En � �n� 1=2� �hw
allows us to interpret their successive energy levels as
being obtained by the creation of a quantum particle
of frequency w. This interpretation of the energy
spectrum of the quantum harmonic oscillator was
successfully used in the second quantization formalism.
In short, one could say that Planck’s hypothesis is realized
in the second quantization formalism by the use of crea-
tion and annihilation operators of the quantum harmonic
oscillator system [1]. This realization is obtained for
the quantum harmonic oscillator defined on an infinite
line.

Let us consider a situation in which we want to describe
the interaction of quantum particles living in a finite box
with boundary conditions, for example, using the second
quantization formalism. In this context, it seems natural
to assume the statement concerning the connection be-
tween Planck’s hypothesis and the energy levels of a
quantum harmonic oscillator in this finite space and
therefore analyze the consequences of this assumption
in the construction of a quantum field theory (QFT) in
a compact manifold.

In Ref. [2] a discussion of a quantum harmonic oscil-
lator in a circle and its associated Heisenberg algebra was
presented. It was found that Mathieu’s equation can sat-
isfactorily describe the system and that the creation and
annihilation operators of the system satisfy a sort of
deformed Heisenberg algebra. In Ref. [3] a construction
of a deformed scalar QFT based on q oscillator [4], which
is a deformed Heisenberg algebra, was presented and in
Ref. [5] a procedure to perform perturbative computation
up to second order in the coupling constant was imple-
mented. Subsequently, it was shown [6] that this de-
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formed scalar quantum model is renormalizable up to
second order in the coupling constant.

In this paper, we use the same procedure developed in
Refs. [3,5] to perform a perturbative computation for a
QFT in a box. To do this, we use the hypothesis, already
mentioned, that in a compact space with periodic bound-
ary conditions, particles are created and/or annihilated
by the creation and/or annihilation operators of a
Heisenberg algebra of the quantum harmonic oscillator
defined on a circle. As a result, we find that the effective
coupling constant which appears in the perturbation se-
ries depends on a dimensionless quantity related to the
linear dimension of the box. This approach permits us to
construct a field theory that creates, at any point of the
space-time, particles described by a deformed Heisenberg
algebra, which in the present case, the deformation pa-
rameter is inversely proportional to the dimension of the
box. In this way we can investigate the interaction of
point particles in compact spaces, showing how the
boundary affects this interaction.

Finally, we have computed the variation of the effective
coupling constant for two different values of the size of
the box, namely, one corresponding to the time of nu-
cleosynthesis of the standard cosmological model and the
other to the present epoch. The choice of these values for
the sizes of the box were done simply to perform a
calculation and to show an example of the effect of the
boundary on the effective coupling constant. This does
not mean that our model has a connection with the
standard cosmological model.

This paper is organized as follows: In Sec. II, we
present a discussion of a quantum harmonic oscillator
on a circle which is described by Mathieu’s equation.
The deformed Heisenberg algebra associated with
Mathieu’s equation is presented in Sec. III. In Sec. IV,
we present a construction of a QFT in a box and perform
some perturbative computation. In Sec. V, we present the
bound for the variation of the coupling constant. Finally,
in Sec. VI we conclude with some comments.
18-1  2004 The American Physical Society
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II. THE QUANTUM HARMONIC OSCILLATOR
ON A CIRCLE

In this section we discuss an equation defined on a finite
interval of length L which reproduces the ordinary quan-
tum harmonic oscillator in the limit L! 1. For this
proposal it is convenient to describe quantum mechanics
on a periodic line, and to do this we follow Ohnuki-
Kitakado’s formalism [7]. According to this formalism,
there are inequivalent quantum mechanics on S1 (peri-
odic line) depending on a parameter 	 (0 � 	< 1). The
momentum operator G on S1 in the coordinate represen-
tation is given in this formalism as [7,8]

G ���! 1

i
d
d�

� 	; 0 � 	< 1; (1)

and the coordinate operator is given in terms of the
unitary operator W

W ���! ei�: (2)

Let us consider the following equation on S1 [2]:

G2�� K�W �Wy
� � ��; (3)

whereG andW were already defined.1 In order to have the
above equation in the coordinate representation, we sub-
stitute Eqs. (1) and (2) in Eq. (3) for 	 � 0. Thus, we
obtain

d2����

d�2
� ��� 2K cos������ � 0; (4)

with ��� � 0� � ��� � 2��. This equation is the well
known Mathieu’s equation, which first appeared in 1868
in the study of the vibrations of a stretched membrane of
elliptic cross section [9]. Mathieu’s equation is an impor-
tant equation in physics arising from the study of a
variety of physical problems, from ordered crystals with
the potential cos2x [10] to the wave equation of scalar
fields in the background of a D-brane metric [11]. Note
that this is one possible equation on a periodic line since
we chose for simplicity 	 � 0 in Eq. (4). According to
Ohnuki-Kitakado’s formalism [7], there are inequivalent
quantum mechanics on S1 for each value of the parameter
	 (0 � 	< 1).

In order to consider the limit of Eq. (4) when the radius
of the circle goes to infinity, we perform the change of
variables

� �
�
L
y� �; �L � y � L: (5)

Using Eq. (5), Eq. (4) becomes
1It would also be possible to define an equation with qua-
dratic powers of W and Wy, but the above equation is the
simplest one.
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d2�

dy2
�

�
E�

2�2

L2 K cos
�
L
y
�
� � 0; (6)

where E � �2�=L2. Then, using a trivial trigonometric
identity and calling � � E� 2�2K=L2, we obtain

d2�

dy2
�

�
��

�4

L4 Ky
2

�
sin�y=2L
�y=2L

�
2
�
� � 0: (7)

The well known Schrödinger’s equation for the quantum
harmonic oscillator,

d2�

dy2
� ��� y2�� � 0; (8)

is obtained for K � L4=�4 in Eq. (7), if L! 1. It is then
reasonable to take Eq. (4) with K � L4=�4 as the
Schrödinger equation for the quantum harmonic oscilla-
tor on the circle with energy eigenvalue given by
� � �2�=L2 � 2L2=�2.

Suppose now we consider Mathieu’s equation for K �
L4=�4 and L asymptotic. In this case the first levels are
concentrated in values y L and thus, according to
previous discussion, these energy levels of Mathieu’s
equation, which we call �Ln , will provide the energy levels
of the standard quantum harmonic oscillator when L!
1. Now, analogously to the definition of a quantum
particle through the ordinary quantum harmonic oscil-
lator, we define n quantum particles on the circle of
length L as having energy �Ln . By consistency,
�L!1
n � �L!1

0 � n��L!1
1 � �L!1

0 �.
In fact, there is a solution obtained by Ince and

Goldstein [9,12,13] to Mathieu’s equation, Eq. (4), for
asymptotic values of K. Their expansion for �, the char-
acteristic value of the equation, in the present case, i.e.,
K � L4=�4, provides for � the value

�n��n���2n�1�
a2

26
��5�4n�34�2n�9�

a3

216
���� ; (9)

where �n � 2n� 1 and a � �=L. For L! 1 (a! 0),
we recognize the energy eigenvalues of the quantum
harmonic oscillator. Thus, we see that the above asymp-
totic solution [9,12,13] of the characteristic values of
Mathieu’s equation is a deformation of the quantum har-
monic oscillator with deformation parameter equal to
a � �=L.

The above solution corresponds to the energy levels of
Mathieu’s equation when the parameter K appearing in
Eq. (4) is large, i.e., when a4�2n� 1�2=16 is small [12,13].
Note that, even if L is large which leads to a localization
of the solution, this is periodic with period 2L.

Let us now consider dimensional variables. We call the
dimensionless variables y and L as y � x=x0 and L �
Z=x0, where x, Z are dimensional and x0 is a scale
dimensional parameter. In this case when the dimension-
less variable y varies from �L to L, the dimensional
variable x varies as �Z � x � Z. Thus, Z is the dimen-
-2



SOME BOUNDARY EFFECTS IN QUANTUM FIELD THEORY PHYSICAL REVIEW D 70 065018
sional length of the one-dimensional space. Furthermore,
as explained before, the well known Schrödinger’s equa-
tion for the harmonic oscillator is obtained for K �
L4=�4 in Eq. (7), when L! 1. In terms of dimensional
quantities this limit is achieved when Z� x0. Therefore,
we could say that x0 is a scale where deformed properties
become relevant.

III. DEFORMED HEISENBERG ALGEBRA
ASSOCIATED WITH MATHIEU’S EQUATION

The purpose of this section is to construct an algebra,
like the Heisenberg algebra, for the Mathieu system de-
scribed in the previous section. Like the standard algebra
for the quantum harmonic oscillator, the algebra we are
going to construct has creation and annihilation operators
as part of its generators.

To this end let us consider an algebra generated by J0,
A, and Ay described by the relations [14]

J0A
y � Ayf�J0�; (10)

AJ0 � f�J0�A; (11)

�A; Ay
 � f�J0� � J0; (12)

where y is the Hermitian conjugate and, by hypothesis,
Jy0 � J0 and f�J0� is a general analytic function of J0.

Using the algebraic relations in Eqs. (10)–(12), we see
that the operator

C � AyA� J0 � AAy � f�J0� (13)

satisfies

�C; J0
 � �C;A
 � �C;Ay
 � 0; (14)

being thus a Casimir operator of the algebra.
We present now the representations of the algebra when

the function f�J0� is a general analytic function of J0. We
assume that we have an n-dimensional irreducible repre-
sentation of the algebra given by Eqs. (10)–(12) and also
that there is a state j0i with the lowest eigenvalue of the
Hermitian operator J0

J0j0i � 	0j0i: (15)

For each value of 	0 we have a different vacuum, and
therefore a better notation for this state could be j0i	0

.
However, for simplicity, we shall omit subscript 	0.

Let jmi be a normalized eigenstate of J0,

J0jmi � 	mjmi; (16)

where

	m � fm�	0� � f�	m�1�; (17)

and m denotes the number of iterations of 	0 through f.
2J0 is Hermitian and there exists a vacuum state.
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As proved in Ref. [14], under the hypothesis stated
previously,2 for a general function f we obtain

J0jmi � fm�	0�jmi; m � 0; 1; 2; � � � ; (18)

Ayjm� 1i � Nm�1jmi; (19)

Ajmi � Nm�1jm� 1i; (20)

where N2
m�1 � fm�	0� � 	0. Note that for each function

f�x� the representations are constructed by the analysis of
the above equations as done in Ref. [14] for the linear and
quadratic f�x�.

When the functional f�J0� is linear in J0, i.e., f�J0� �
q2J0 � s, it was shown in Ref. [14] that the algebra in
Eqs. (10)–(12) recovers the q-oscillator algebra for 	0 �
0. Moreover, as shown in Ref. [14], where the representa-
tion theory was constructed in detail for the linear and
quadratic functions f�x�, the essential tool to construct
representations of the algebra in (10)–(12) for a general
analytic function f�x� is the analysis of the stability of the
fixed points of f�x� and their composed functions.

It was shown in Refs. [14,15] that there is a class of one-
dimensional quantum systems described by these gener-
alized Heisenberg algebras. This class is characterized by
those quantum systems having energy eigenvalues given
by

"n�1 � f�"n�; (21)

where "n�1 and "n are successive energy levels and f�x� is
a different function for each physical system. This func-
tion f�x� is exactly the same function that appears in the
construction of the algebra in Eqs. (10)–(12). In the
algebraic description of this class of quantum systems,
J0 is the Hamiltonian operator of the system, and Ay and
A are the creation and the annihilation operators, respec-
tively. This Hamiltonian and the ladder operators are
related by Eq. (13), where C is the Casimir operator of
the representation associated to the quantum system
under consideration.

Now let us show that the asymptotic solution to
Mathieu’s equation we presented in the last section be-
longs to the class of algebras discussed previously. In
other words, we shall construct a Heisenberg-type alge-
bra, an algebra with creation and annihilation operators,
for the Ince-Goldstein solution [Eq. (9)] to the quantum
harmonic oscillator on S1 and we shall find the character-
istic function f�x� [see Eqs. (10)–(12)] for this algebra.
Furthermore, we shall also propose a realization, as in the
case of the standard quantum harmonic oscillator, of the
ladder operators in terms of the physical operators of the
system.

As described in Refs. [15,16], the first thing we have to
do in order to describe the Heisenberg-type structure of a
one-dimensional quantum system is to relate the energy
of the system for two arbitrary successive levels [see
-3
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Eq. (21)]. For the energy spectrum given in Eq. (9), i.e.,

"Ln � n�
1

2
� ��2n� 1�2 � 1


a2

27
� �5�2n� 1�4

�34�2n� 1�2 � 9

a3

217
� � � � ; (22)

we obtain

"Ln�1 � "Ln � 1� �n� 1�
a2

24
� �n� 1�

��10n�n� 2� � 21

a3

212
� � � � : (23)

Thus, we have to invert Eq. (22) in order to obtain n in
terms of "Ln . Taking n from Eq. (22), we get

"Ln�1 � f�"Ln �

� "Ln � 1� �2"Ln � 1�
a2

25
� �2"Ln � 1�

��20"Ln �"Ln � 1� � 27

a3

214
� � � � : (24)

According to Refs. [12,13], this solution is valid when
a4�2n� 1�2=16 is small. Thus, since a � �=L is consid-
ered small, n cannot be very large.

Now if we assume that "Ln is the eigenvalue of operator
J0 on state jni, we identify f�x� appearing in Eqs. (18)–
(20) with that one in Eq. (24) for the quantum system
under consideration. Then the algebraic structure describ-
ing the quantum system under consideration is obtained
using f�x� defined in Eq. (24) into Eqs. (10)–(12) and can
be written as

�J0; A
y
 � Ay � Ay�2J0 � 1�

a2

25
� Ay�2J0 � 1�

��20J0�J0 � 1� � 27

a3

214
� � � � ; (25)

�J0; A
 � �A� �2J0 � 1�A
a2

25
� �2J0 � 1�

��20J0�J0 � 1� � 27
A
a3

214
� � � � ; (26)

�A; Ay
 � 1� �2J0 � 1�
a2

25
� �2J0 � 1�

��20J0�J0 � 1� � 27

a3

214
� � � � ; (27)

where, according to Eqs. (18)–(20), A and Ay are the
ladder operators for the system under consideration, i.e.,
Ay when applied to state jmi, that has J0 eigenvalue "Lm,
gives, apart from a multiplicative factor depending on m,
the state jm� 1i has energy eigenvalue "Lm�1. A similar
role is played by A.
065018
Note that, when a! 0 (L! 1), we reobtain the well
known Heisenberg algebra, as it should be, since we
showed in the previous section that Mathieu’s equation,
Eq. (4), for K � L4=�4 � a�4 gives the well known
Schrödinger’s equation for the harmonic oscillator,
Eq. (8), in this limit.

Now let us realize the operators A, Ay, and J0 in terms
of physical operators as in the case of the one-
dimensional quantum harmonic oscillator, following
what was done in Refs. [15,16] for the square-well poten-
tial and q oscillators [3]. Let us consider a one-
dimensional lattice in a momentum space where the
momenta are allowed to take only discrete values, say
p0, p0 � a, p0 � 2a, p0 � 3a, etc., with a > 0. The left
and right discrete derivatives are given by

�@pf��p� �
1

a
�f�p� a� � f�p�
; (28)

� �@pf��p� �
1

a
�f�p� � f�p� a�
; (29)

which are the two possible definitions of derivatives on a
lattice.

Let us now introduce the momentum shift operators

T � 1� a@p; (30)

�T � 1� a �@p; (31)

which shift the momentum value by a

�Tf��p� � f�p� a�; (32)

� �Tf��p� � f�p� a�; (33)

and satisfies

T �T � �TT � 1̂; (34)

where 1̂ means the identity on the algebra of functions of
p.

Introducing the momentum operator P [17]

�Pf��p� � pf�p�; (35)

we have

TP � �P� a�T; (36)

�TP � �P� a� �T: (37)

Now we go back to the realization of the deformed
Heisenberg algebra Eqs. (25)–(27) in terms of physical
operators. We can associate to the crystalline structure of
Mathieu’s equation discussed in the previous section the
one-dimensional lattice we have just presented.

Observe that we can write J0 for the asymptotic Ince-
Goldstein solution to Mathieu’s equation, Eq. (22), as
-4
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J0 �
P
a
�

1

2
�

��
2
P
a
� 1

�
2
� 1

�
a2

27
�

�
5
�
2
P
a
� 1

�
4

�34
�
2
P
a
� 1

�
2
� 9

�
a3

217
� � � � ; (38)

where P is given in Eq. (35) and its application to the
vector states jmi appearing in (18)–(20) gives

Pjmi � majmi; m � 0; 1; � � � ; (39)

and

�Tjmi � jm� 1i; m � 0; 1; � � � ; (40)

where �T and T � �Ty are defined in Eqs. (30)–(34). It is
useful to note that from Eq. (39) it is possible to define the
number operator N as N � P=a.

With the definition of J0 given in Eq. (38), we see that
"Ln given in Eq. (23) is the J0 eigenvalue of state jni as
desired. Let us now define

Ay � S�P� �T; (41)

A � TS�P�; (42)

where

S�P�2 �
P
a
�

��
2
P
a
� 1

�
2
� 1

�
a2

27
�

�
5
�
2
P
a
� 1

�
4

�34
�
2
P
a
� 1

�
2
� 39

�
a3

217
� � � � (43)

satisfies S2�P� � J0 � 	0, where 	0, defined in Eq. (15),
is "L0 . Following Ref. [2], one can show that Ay, A, and J0
given in Eqs. (41), (42), and (38), respectively, obey the
algebra defined in Eqs. (25), (26), and (27).

Note that the realization we have found in Eqs. (41),
(42), and (38) is qualitatively different from the realiza-
tion of the standard harmonic oscillator. This is reason-
able, since we have two physically different systems.
Even if the standard quantum harmonic oscillator defined
on �1 � x � 1 is a limiting case of the periodic one, it
is not periodic and in this case there is no lattice associ-
ated to it. On the other hand, once L is finite, �L � x �
L, the periodic structure is explicitly manifest and the
realization in the finite case, given in Eqs. (41), (42), and
(38), shows it clearly.
IV. A QUANTUM FIELD THEORY IN A BOX

In Sec. II we have presented a description of a quantum
harmonic oscillator on a circle and in Sec. III, its asso-
ciated Heisenberg-type algebra, i.e., an algebra having
the Hamiltonian and the step operators as generators,
corresponding to a quantum harmonic oscillator on a
circle. This algebra is a deformed Heisenberg algebra
which goes to the standard Heisenberg algebra when the
radius of the circle goes to infinity.
065018
In this section, using the hypothesis that the successive
energy levels of the quantum harmonic oscillator on a
circle are still obtained by the creation or/and annihila-
tion of a quantum particle on a periodic structure, we are
going to construct a quantum field theory in a compact
space.

In the momentum space appropriated to the realization
of the deformed Heisenberg algebra we discussed, besides
the operator P defined in Eq. (35), one can define two self
adjoint operators as

) � �i�S�P��1� a �@p� � �1� a@p�S�P�


� �i�A� Ay�; (44)

Q � S�P��1� a �@p� � �1� a@p�S�P� � A� Ay; (45)

where @p and �@p are the left and right discrete derivatives
defined in Eqs. (28) and (29).

It can be verified that operatorsP,), andQ generate the
following algebra on the momentum lattice:

�);P
 � iaQ; (46)

�P;Q
 � ia); (47)

�);Q
 � 2iS�P��S�P� a� � S�P� a�
: (48)

This algebra is the analog of the Heisenberg algebra in the
deformed case.

Since the analog of the Heisenberg algebra for the
deformed case has three generators, it is convenient to
define three fields which we call +�~r; t�, �� ~r; t�, and
}�~r; t�. In terms of Fourier series these fields are given as

+� ~r; t� �
X
~k

1�����������������
2�!� ~k�

q Q~k�t�e
i ~k:~r; (49)

��~r; t� �
X
~k

i!� ~k������������������
2�!� ~k�

q )
� ~k�t�e

i ~k:~r; (50)

where !� ~k� �
�����������������
~k2 �m2

p
, m is a real parameter, and � is

the volume of a rectangular box and

}� ~r; t� �
X
~k

����������
!� ~k�
2�

s
S ~ke

i ~k:~r: (51)

The time-dependent operators in the Hilbert space Q~k�t�,
)~k�t�, and S ~k will be defined in what follows, and the

components of ~k are given by

ki �
2�li
Zi
; i � 1; 2; 3; (52)

with li � 0;�1;�2; � � � and Zi being the lengths of the
three sides of a rectangular box �. We introduce for each
point of this ~k space an independent deformed quantum
-5
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harmonic oscillator constructed in the last two previous
sections such that the deformed operators commute for
different three-dimensional lattice points. We also intro-
duce an independent copy of the one-dimensional mo-
mentum lattice defined in the previous section for each
point of this ~k lattice so that Py

~k
� P~k and T ~k, �T ~k, and S ~k

are defined by means of the previous definitions,
Eqs. (30), (31), and (43), through the substitution P! P~k.

It is possible to show that

Ay
~k
� S ~k �T ~k; (53)

A~k � T ~kS ~k; (54)

J0� ~k� �
P~k
a

�
1

2
�

��
2
P~k
a

� 1
�
2
� 1

�
a2

27

�

�
5
�
2
P~k
a

� 1
�
4
� 34

�
2
P~k
a

� 1
�
2
� 9

�
a3

217

�� � � ; (55)

where

S2~k �
P~k
a

�

��
2
P~k
a

� 1
�
2
� 1

�
a2

27
�

�
5
�
2
P~k
a

� 1
�
4

� 34
�
2
P~k
a

� 1
�
2
� 39

�
a3

217
� � � � ; (56)

satisfy the algebra in Eqs. (25)–(27) for each point of this
~k lattice and the operators Ay

~k
, A~k, and J0� ~k� commute

among them for different points of this ~k lattice.
Now we define operators ) and Q for each point of the

three-dimensional lattice as

)~k � �i�T
� ~kS� ~k � S ~k

�T ~k� � �i�A
� ~k � A

y
~k
�; (57)

Q~k � T ~kS ~k � S� ~k �T� ~k � A~k � A
y

� ~k
; (58)

such that )y
~k
� )

� ~k and Qy
~k
� Q

� ~k, exactly as it happens
in the construction of a spin-0 field for the spin-0 quan-
tum field theory [1]. These operators appear in the Fourier
expansion of the fields given in Eqs. (49)–(51).

By a straightforward calculation, one can show that the
Hamiltonian

H �
1

2

Z
�
d3r���~r; t�2 � 4j}� ~r; t�j2

�+� ~r; t��� ~r2
�m2�+� ~r; t�
 (59)

can be written as

H �
1

2

X
~k

!� ~k��Ay
~k
A ~k � A~kA

y
~k
� 4S�N~k�

2


�
1

2

X
~k

!� ~k��S�N~k � 1�2 � �1� 4�S�N~k�
2
; (60)
065018
where 4 is an arbitrary number and

S�N~k�
2 � N~k � ��2N~k � 1�2 � 1


a2

27
� �5�2N~k � 1�4

�34�2N~k � 1�2 � 39

a3

217
� � � � : (61)

Since the term in the Hamiltonian (59) proportional to 4
is time independent, it seems that it cannot produce any
relevant effect. Thus, for simplicity, we will take 4 � 0.
In order that the energy of the vacuum state becomes zero,
we replace H in Eq. (60) by

H �
1

2

X
~k

!� ~k��S�N~k � 1�2 � S�N~k�
2 � N2

0
; (62)

where

N2
0 � f�	0� � 	0 � 1� a2=24 � 21a3=212 � � � � : (63)

Note that in the limit L! 1, the above Hamiltonian is
proportional to the number operator.

The eigenvectors ofH form a complete set and span the
Hilbert space of this system. They are the following:

j0i; Ay
~k
j0i; Ay

~k
Ay
~k0
j0i for ~k � ~k0; �Ay

~k
�2j0i; � � � ; (64)

where the state j0i satisfies as usual A~kj0i � 0 [see

Eq. (12)] for all ~k and A~k, A
y
~k

for each ~k satisfying the
deformed Heisenberg algebra Eqs. (25)–(27).

The time evolution of the fields can be studied by
means of Heisenberg’s equation for Ay

~k
, A~k, and S ~k��

S�N~k�
. Define

h�N~k� �
1
2�S

2�N~k � 2� � S2�N~k�
: (65)

Thus, using Eqs. (60) or (62) and �N;Ay
 � Ay, we obtain

�H;Ay
~k

 � !� ~k�Ay

~k
h�N~k�: (66)

We can solve Heisenberg’s equation for the deformed case
and the result is

Ay
~k
�t� � Ay

~k
�0�ei!� ~k�h�N~k�t: (67)

Note that for L! 1 we have h�N~k� ! 1 and Eq. (67)
gives the correct result for this undeformed case.
Furthermore, we easily see that operators P~k and S ~k are
time independent. We emphasize that the extra term h�N~k�
in the exponentials depends on the number operator, this
being the main difference from the undeformed case. The
Fourier transformation of Eq. (49) can then be written as

+� ~r; t� � 	� ~r; t� � 	� ~r; t�y; (68)

where

	�~r; t� �
X
~k

1�����������������
2�!� ~k�

q ei ~k:~r�i!� ~k�h�N~k�tA ~k; (69)
-6
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with A~k in Eq. (69) being time independent and 	�~r; t�y is
the Hermitian conjugate of 	�~r; t�.

The Dyson-Wick contraction between3+�x1� and+�x2�
can be computed using Eqs. (68) and (69), which results
in

DNF �x1; x2� �
X
~k

ei ~k:�~r12

2�!� ~k�
�S�N~k � 1�2e�i!� ~k�h�N~k��t12

�S�N~k�
2e�i!� ~k�h�N~k�1��t12
; (70)

where �t12 � t1 � t2, �~r12 � ~r1 � ~r2. The minus sign in
the exponent holds when t1 > t2 and the positive sign
when t2 > t1. Note that when L! 1, h�N~k� ! 1 and
S�N~k � 1�2 � S�N~k�

2 ! 1 recovering the standard result
for the propagator.

We now present the result concerning the perturbative
computation of the first order scattering process 1� 2 !
10 � 20 for p1 � p2 � p01 � p02 with the initial state

j1; 2i �
1

N2
0

Ay
p1A

y
p2 j0i (71)

and the final state

j10; 20i �
1

N2
0

Ay
p01
Ay
p02
j0i; (72)

where Api and Ay
pi satisfy the algebraic relations in

Eqs. (25)–(27). These particles are supposed to be de-
scribed by the Hamiltonian given in Eq. (59) with an
interaction given by �

R
�t

:+� ~r; t�4:d3r, where �t � � �

t is the four volume of integration. To the lowest order in
�, we have (� means the standard S matrix)

h10; 20j�j1; 2i1 � �i�
Z
�t

d4xh10; 20j:+4�x�:j1; 2i: (73)

The first order computation follows, step by step, the
computation of the first order scattering process given in
Ref. [3] and gives us the following result:

h10; 20j�j1; 2i1 �
�6i�2��4

�2 ����������������������������������!~p1!~p2!~p01!~p02
p

�N4
0

h�0�
74�P1 � P2

�P0
1 � P

0
2�; (74)

where

Pi � � ~pi; ! ~pi�; P0
i � � ~p0i; ! ~p0 i�; (75)

and from Eq. (65)

h�0� � 1� 3
a2

25
� 123

a3

213
� . . . : (76)

Note that when L! 1 (a! 0) we have N0 ! 1, h�0� !
1, the box � becomes an infinite box, and Eq. (74)
3xi � �~ri; ti�

065018
becomes the standard undeformed result [1]. It is conve-
nient to note at this point that we are, by hypothesis,
identifying the linear dimensions of the box �, where we
perform the spatial integration in Eq. (73) with the di-
mensional length Z (L � Z=x0) of the circle where the
harmonic oscillator is defined. This identification is not
strictly necessary; it comes from our approach that every-
thing happens inside the spatial box �.We suppose that in
a universe approximated by a finite spatial box � the step
operators of the quantum harmonic oscillator defined on a
circle of length Z, where Z is a linear dimension of the
box �, create and/or annihilate point particles. Thus, if
the spatial box � increases, so does the length of the
circle where the harmonic oscillator is defined.

To second order in � the scattering process 1� 2 !
10 � 20 is given as

h10; 20j�j1; 2i2 �
��i�2

2
�2

ZZ
�t

d4xd4y

�h10; 20jT�:+4�x�::+4�y�:
j1; 2i; (77)

where T denotes the time-ordered product. In order to
convert the time-ordered product into a normal product,
we use the Wick’s expansion. The propagator in the
present case [see Eq. (70)] is not a simple c number since
it depends on the number operator N and this fact induces
modifications in the standard Wick expansion. This sub-
ject was already discussed in Ref. [5] where the compu-
tation of a scattering process for a deformed QFT to
second order in the coupling constant was presented.

Following Ref. [5] we find for the scattering process
under consideration, up to second order in the coupling
constant, is given by

h10; 20j�j1; 2i2 �
1

2�2 ����������������������������������!~p1!~p2!~p01!~p02
p

�
�N4

0

h�0�

�
2
74�P1

� P2 � P0
1 � P

0
2��I � I

0 � I00 � I000�;

(78)

where

I � �
�2��2

4�

X
~k

1�����������������������������������������������������
� ~k2 �m2���~s� ~k�2 �m2


q ; (79)

with ~s � ~p1 � ~p2 and

I0 � I�~s! �~s�; (80)

I00 � I� ~s! ~t � ~p1 � ~p01�; (81)

I000 � I� ~s! ~u � ~p1 � ~p02�: (82)

In summary, the scattering process 1� 2 ! 10 � 20 for
p1 � p2 � p01 � p02 with the initial and final states given
in Eqs. (71) and (72), respectively, where Api , A

y
pi satisfy

the algebraic relations in Eqs. (25)–(27) and the particles
are supposed to be described by the Hamiltonian given in
-7
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Eq. (59) with an interaction given by �
R
�t

:+� ~r; t�4:d3r is
given up to second order in the coupling constant � as

h10; 20j�j1; 2i �
�N4

0

h�0�
A1 �

�
�N4

0

h�0�

�
2
�As2 � A

t
2 � A

u
2�; (83)

where A1 is obtained from Eq. (74), As2 comes from I and
I0 in Eq. (78), and At2 and Au2 come from I00 and I000,
respectively.

Note that when L! 1 (a! 0) we have N0 ! 1,
h�0� ! 1, the box � becomes an infinite box, Eq. (83)
becomes the standard undeformed result with A1, As2, A

t
2,

and Au2 being the same contributions that we find in the
standard � +4 (nondeformed) model corresponding to
the tree level, the s, t, and u channels for one-loop level,
respectively. Also, it is worth noticing that the perturba-
tive expansion shows that the coupling constant which
appears in the interacting Hamiltonian is modified as
�! �N4

0=h�0�. This means that the effective coupling
constant, �eff � �N4

0=h�0�, in this framework is modified
due to the presence of the deformation parameter
a � �=L.
V. CONTRIBUTION FROM THE BOUNDARY FOR
THE VARIATION OF THE COUPLING

CONSTANT

The comments in the last paragraph of the previous
section allow us to connect the effective coupling con-
stant appearing in the perturbation expansion, which is
given by �N4

0=h�0�, with the size of the box we are
considering, i.e., the linear dimension Z of the box �.
In this section, based on this connection we are going to
compute the variation of the effective coupling constant
for two different values of Z, namely, one corresponding
to the time of nucleosynthesis of the standard cosmologi-
cal model and the other to the present epoch. The choice
of these values, as said before, was done just to perform a
calculation. With this choice we are not assuming that the
Universe is described by our model. In fact, we want just
to have an idea of what would be the contribution from
the boundary, in a compact space, to the variation of the
coupling constant in the framework our approach.

In order to investigate the variation of the effective
coupling constant, let us define p � N4

0=h�0�, which for
two different values of L, namely, L�, gives

p� �
�1� a2�=2

4 � 21a3�=2
12 � � � ��2

1� 3a2�=2
5 � 123a3�=2

13 � . . .
; (84)

where we have used Eqs. (63) and (76) with a� � �=L�,
L� � Z�=x0, and ��eff � �p�.

In what follows, let us compute the dimensionless
quantity �	=	, given by

�	
	

�
���eff�

2 � ���eff�
2

���eff�
2 � 1�

���eff�
2

���eff�
2 ; (85)
065018
where � means the present time and the time at the
moment of nucleosynthesis, respectively.

We have assumed that the creation and/or annihilation
operators of the quantum harmonic oscillator on a peri-
odic line create and/or annihilate a quantum particle.
Along these lines we showed in Secs. II and III that there
is a deformation parameter a which is connected to the
linear size of the box where the second quantized formal-
ism is constructed through a � �=Lwith L given by L �
Z=x0. As discussed in Sec. II, x0 is a scale where the
deformation starts to become relevant. In what follows,
we will assume that the value of x0 is at least equal to the
one corresponding to the scale of the electroweak phase
transition just to have a reference size which will permit
us to perform our calculation.

Now let us compute the dimensionless quantity �	=	
for two different values of the dimensions of the box,
namely, for Z� � 1028 cm and Z� � 1019 cm in accor-
dance with our choice . For these values of the size of the
box, the deformation parameters are a� � �=L� �
�x0=Z� � 10�15 and a� � 10�6. Because of the magni-
tude of the deformation parameters under consideration,
it is sufficient to take the lowest order expansion for p�,
which is

p� � 1�
a2�
25

� � � � : (86)

Taking into account this expansion and the estimated
value of a�, we obtain for �	=	 the following result:

�	
	

�
a2�
25

� � � �< 10�12: (87)
VI. FINAL COMMENTS

In this paper we have constructed a QFT in a finite box.
In order to construct this QFT, we used the hypothesis
that particles living in a finite box with periodic boundary
conditions are created and/or annihilated through the
creation and/or annihilation operators, respectively, of a
quantum harmonic oscillator on a circle.

The quantum harmonic oscillator we have used is
described by Mathieu’s equation and its associated crea-
tion and annihilation operators obey a deformed
Heisenberg algebra. We have thus followed the treatment
given in Refs. [3,5], which presents the construction of a
deformed QFT based on q oscillators, in order to con-
struct the present QFT in a finite box.

The perturbative series we have found shows an effec-
tive coupling constant given by �eff � �N4

0=h�0�, where
N0 and h�0�, see Eqs. (63) and (76), which depends on the
dimensionless quantity L � Z=x0, where Z is a linear
dimension of the finite box � and x0 is a scale where
the modified description of the creation of particles starts
to be relevant.
-8
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Even though our model is not a cosmological model,
we considered an estimation of the bound for the varia-
tion of the effective coupling constant taking into account
two values, Z, of the linear dimension of the finite box �,
one corresponding to the time of the nucleosynthesis of
the standard cosmological model and the other to the size
of the Universe nowadays. The result obtained, �	=	 <
10�12, is in the range of results on the constraints for the
variation of the coupling constants for different epochs of
the Universe [18]. Thus, we think that it would be inter-
065018
esting to analyze the approach we considered in this paper
in the framework of a cosmological model in order to
investigate the variation of the fundamental constants of
nature.
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Tran, Phys. Rev. D 59, 126002 (1999).

[12] E. L. Ince, Proc. R. Soc. Edin. 46, 20 (1925); S.
Goldstein, Proc. Cambridge Philos. Soc. 23, 303
(1927).

[13] Tables Relating to Mathieu Functions, National Bureau
of Standards (Columbia University, New York, 1951). See
Eq. (2.35) on p. XVIII of this reference for the asymptotic
expansion, Eq. (9) of this paper.

[14] E. M. F. Curado and M. A. Rego-Monteiro, J. Phys. A 34,
3253 (2001).

[15] E. M. F. Curado, M. A. Rego-Monteiro, and H. N.
Nazareno, Phys. Rev. A 64, 012105 (2001).

[16] M. A. Rego-Monteiro and E. M. F. Curado, Int. J. Mod.
Phys. A 17, 661 (2002).

[17] A. Dimakis and F. Muller-Hoissen, Phys. Lett. B 295,
242 (1992).

[18] J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003).
-9


