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Gauge dependence of the fermion quasiparticle poles in hot gauge theories
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The gauge dependence of the complex fermion quasiparticle poles corresponding to soft collective
excitations is studied in hot gauge theories at one-loop order and next-to-leading order in the high-
temperature expansion, with a view towards going beyond the leading order hard thermal loops and
resummations thereof. We find that for collective excitations of momenta k� eT the dispersion relations
are gauge independent, but the corresponding damping rates are gauge dependent. For k � eT and in
the k ! 0 limit, both the dispersion relations and the damping rates are found to be gauge dependent.
The gauge dependence of the position of the complex quasiparticle poles signals the need for
resummation. Possible cancellation of the leading gauge dependence at two-loop order in the case of
QED is briefly discussed.
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I. INTRODUCTION

The demonstration of gauge independence of physical
quantities is of fundamental importance in gauge theories
at finite temperature. Interestingly, the main break-
through in perturbative gauge theories at high tempera-
ture was in fact motivated by the quest for gauge-
independent damping rates of plasma excitations. It was
realized [1] that in hot gauge theories the usual connec-
tion between the order of the loop expansion and powers
of the gauge coupling constant is lost, hence contributions
of leading order in the gauge coupling constant arise from
every order in the loop expansion. Resummation to all
orders of these leading, gauge-independent hard thermal
loops (HTLs) [1–6] is necessary for a consistent calcu-
lation. The HTL resummation program [1,2] leads to an
effective theory that systematically includes contribu-
tions of different momentum scales [7].

It was proved in Ref. [8] that the singularity structure
(i.e., the position of poles and branch singularities) of
gauge boson and fermion propagators is gauge indepen-
dent when all contributions of a given order of a system-
atic expansion scheme are accounted for. While the
position of quasiparticle poles in the leading order HTL
approximation are completely gauge independent [9,10],
nevertheless gauge dependence will enter at subleading
order and gauge-independent extensions beyond the lead-
ing order HTL results are not yet available. More recently,
several authors [11–13] have shown that the truncated on-
shell two-particle-irreducible (2PI) effective action has a
controlled gauge dependence, with the explicit gauge-
dependent terms always appearing at higher order. It
would be interesting to study possible cancellation of
the leading gauge dependence in the singularity structure
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of gauge boson and fermion propagators beyond the lead-
ing order HTL approximation.

The propagation of fermions in hot and dense matter is
of interest in a wide variety of physically relevant situ-
ations. In ultrarelativistic heavy ion collisions and the
formation and evolution of the quark-gluon plasma, lep-
ton pairs play a very important role as clean probes of the
early, hot stage of the new state of matter [14]. The
propagation of quarks during the nonequilibrium stages
of the electroweak phase transition is conjectured to be an
essential ingredient for baryogenesis at the electroweak
scale in (non)supersymmetric extensions of the standard
model [15]. In stellar astrophysics, electrons and neutri-
nos play a major role in the evolution of dense stars such
as white dwarfs, neutron stars, and supernovae [16].

The goal of this article is to investigate the gauge
dependence of the complex fermion quasiparticle poles
corresponding to soft collective excitations at one-loop
order and next-to-leading order in the high-temperature
expansion. There have been investigations of how the
leading HTL dispersion relations of fermions (and the
gauge independence thereof) are affected by retaining
nonleading powers of temperature [17,18]. While it is
known that quasiparticles at finite temperature will in
general acquire thermal widths due to collisional broad-
ening rendering the quasiparticle poles complex, the
previous authors considered mainly the real parts of the
complex quasiparticle poles (dispersion relations) with-
out discussing the corresponding imaginary parts (damp-
ing rates). In this article, we study the gauge dependence
of both the real and imaginary parts of the complex
quasiparticle poles on equal footing. Furthermore, we
focus on the soft fermion collective excitations of mo-
menta k & eT, where e � 1 is the gauge coupling con-
stant and T is the temperature. On the one hand, it allows
us to fill a gap in the literature where either a numerical
analysis with k� T was carried out [17] or the limiting
cases of eT � k � T and k � 0 were considered [18]. On
the other hand, k & eT is the relevant momentum region
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at the heart of the HTL resummation program [1,2].
Progress made in the soft momentum region will cer-
tainly shed light on the issue of going beyond the HTL
resummation.

The rest of this article is organized as follows. In
Sec. II, we calculate the real and imaginary parts of the
one-loop fermion self-energy in general covariant gauges
and up to next-to-leading order in the high-temperature
expansion. In Sec. III, we study the gauge dependence of
the complex fermion quasiparticle poles corresponding to
soft collective excitations of momenta k & eT. Possible
cancellation of the leading gauge dependence at two-loop
order in the case of QED is briefly discussed. Section IV
presents our conclusions. In the appendix, we calculate
the vacuum contribution to the fermion self-energy that is
neglected in the main text.
II. ONE-LOOP FERMION SELF-ENERGY IN
COVARIANT GAUGES

We will carry out our perturbative calculations in the
imaginary-time (Matsubara) formalism (ITF) of finite-
temperature field theory [9,10]. The continuation to
imaginary time that describes the theory at finite tem-
perature T is obtained by replacing it ! � with 0 � � �
� � 1=T. Contrary to the usual ITF, however, we will not
work in Euclidean spacetime but keep the metric tensor
and the Dirac gamma matrices the same as in Minkowski
spacetime.

In ITF it proves convenient to work in the spectral
representation of the propagators. The fermion propagator
is given by

s�i
n;k� �
Z 1


1
dk0

�f�k0;k�
k0 
 i
n

; 
n � �2n� 1��T;

(1)

where �f is the free Dirac fermion spectral function (zero
chemical potential) [9]

�f�k0;k� � K6 sgn�k0���K
2�; K � �k0;k�; (2)

with sgn�x� being the sign function. The gauge boson
propagator is given by

d�
�i!n;p� �
Z 1


1
dp0

��
�p0;p�
p0 
 i!n

; !n � 2n�T;

(3)

where ��
 is the free gauge boson spectral function in
general covariant gauges [19]

��
�p0;p� � sgn�p0�

�

g�
 � ��
 1�P�P
 @

@p2
0

�
��P2�;

(4)

with P � �p0;p�. The covariant gauge parameter � is
defined in such a way that � � 1 is the Feynman gauge.
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Since at one-loop order the fermion self-energy has the
same structure (up to gauge group factors) in both
Abelian and non-Abelian gauge theories, for notational
simplicity we will consider the Abelian case in what
follows. The non-Abelian case can be obtained through
the replacement e2 ! g2CF, where CF � �N2 
 1�=2N is
the Casimir invariant of the fundamental representation
in SU�N� gauge theories.

In QED the one-loop fermion self-energy in ITF is
given by

	�i
n;k� � e2T
X
i!m

Z d3p

�2��3

��s�i
n � i!m;q��
d�
�i!m;p�; (5)

where q � k� p. Upon substituting the fermion and
gauge boson propagators into (5), the sum over the bo-
sonic Matsubara frequency can be done easily [9] leading
to

	�i
n;k� � e2
Z d3p

�2��3
Z 1


1
dp0


Z 1


1
dq0 ��
�p0;p����f�q0;q��



nB�p0� � nF�q0�
q0 
 p0 
 i
n

; (6)

where nB;F�x� � 1=�e�x � 1� are the Bose and Fermi
distribution functions, respectively.

After the analytic continuation i
n ! !� 0� to arbi-
trary frequency !, the imaginary part of the (retarded)
self-energy can be readily found to be given by

Im	�!;k� � e2�
Z d3p

�2��3
Z 1


1
dp0


Z 1


1
dq0 ��
�p0;p����f�q0;q��


�nB�p0� � nF�q0����!
 q0 � p0�: (7)

The real part of the self-energy is obtained from the
imaginary one through the dispersive representation

Re	�!;k� � PV
Z 1


1

dk0
�

Im	�k0;k�
k0 
!

; (8)

where PV denotes the principal value.
For a massless fermion, rotational invariance and chi-

ral symmetry entail that the fermion self-energy in equi-
librium can be parametrized by [9,10]

	�!;k� � 	�0��!; k��0 � 	�1��!; k�� � k̂; (9)

where k � jkj, k̂ � k=k, and 	�0� and 	�1� are scalar
functions
-2
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	�0��!; k� � 1
4tr�	�!;k��

0�;

	�1��!; k� � 
1
4tr�	�!;k�� � k̂�:

(10)

Since we are interested in the self-energy calculated in
general covariant gauges, it is convenient to decompose
the former into gauge-independent and -dependent con-
tributions. We write

	�!;k� � 	FG�!;k� �	��!;k�; (11)
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where 	FG is the gauge-independent part calculated in the
Feynman gauge and 	� is the remaining gauge-dependent
part.

A. The imaginary part

We first study the gauge-independent contribution
Im	FG. Evaluating the Dirac traces and performing the
trivial integrals over p0 and q0 in (7), we obtain
Im	�0�
FG�!; k� � e2�

Z d3p

�2��3
1

2p
f�1� nB�p� 
 nF�q����p� q
!� � �nB�p� � nF�q����p
 q�!�g � �! ! 
!�;

Im	�1�
FG�!; k� � 
e2�

Z d3p

�2��3
k̂ � q̂
2p

f�1� nB�p� 
 nF�q����p� q
!� � �nB�p� � nF�q����p
 q�!�g


�! ! 
!�:

(12)
In the above expressions, the support of the energy-
conserving delta functions ��p� q
!� and ��p� q�
!� is !> k and !< k, respectively, corresponding to the
usual two-particle cuts, while that of ��p
 q�!� is
!2 < k2 corresponding to the Landau damping cut which
is purely a medium effect [1,9].

The different contributions in (12) have a physical
interpretation in terms of (off-shell) scattering processes
taking place in the thermal medium. The terms propor-
tional to ��p� q
!� arise from the processes in which
a (timelike) fermion decays into a fermion and a gauge
boson f� ! f� �, and those proportional to ��p
 q�
!� originate in the Landau damping process in which a
(spacelike) fermion scatters off a gauge boson in the
medium f� � � ! f. Here the off-shell fermion is de-
noted by a superscript ‘‘�.’’

In what follows we will neglect the vacuum contribu-
tion, i.e., the terms which do not contain any thermal
distribution functions, as we are interested mainly in the
finite-temperature medium effects. Interested readers can
find in the appendix the calculation for the vacuum
contribution.

The angular integration over % � k̂ � p̂ in (12) can be
performed analytically by using change of variables % !
z � q�%� and the energy-conserving delta functions. The
requirement that the energy-conserving delta functions
must have a nonempty support restricts the range of the
radial integration over p for fixed k and !. The remaining
integration over p for arbitrary k and ! is an involved
numerical task [17] which, however, is not very useful for
the purpose of studying next-to-leading order corrections.
In order to compare with the leading order HTL results,
we here focus on a high-temperature expansion for which
k;! � T and keep terms in Im	 to O�T� in the Landau
damping cut contribution but to O�T0� in the two-particle
cut contribution.

A comment here is in order. One would presumably
expect that it is sufficient to keep terms in Im	 uniformly
up to next-to-leading order in the high-temperature ex-
pansion, namely, terms of order O�T�. Whereas this is
correct for generic k�! � T, it is not correct in the
limit k � ! � T which is in turn relevant to the effec-
tive fermion mass and the damping rate at rest that is
obtained in the long-wavelength limit (k ! 0). As will be
seen below, the O�T0� two-particle cut contribution in
Im	 will give rise to the O�lnT� term in Re	 which will
become next-to-leading order in T in the limit
k � ! � T.

Separating the leading HTL contributions that can be
calculated analytically, then in the remaining contribu-
tions expanding the distribution functions in the high-
temperature limit and cutting off the potentially diver-
gent momentum integrations at T, we obtain after some
algebra (k;! � T)
Im	�0�
FG�!; k� ’

�e2T2

16k

�
1�

2!

�2T
ln

��������!� k
!
 k

��������
�
'�k2 
!2� �

e2T
8�

�
!
k
ln

��������!� k
!
 k

��������
1

j!j

2T

�
'�!2 
 k2�;

Im	�1�
FG�!; k� ’ 


�e2T2

16k

�
!
k
�

k

�2T

�
1�

!2

k2

�
ln

��������!� k
!
 k

��������
�
'�k2 
!2�

�
e2T
8�

�
!
k



1

2

�
1�

!2

k2

�
ln

��������!� k
!
 k

���������sgn�!�
k
2T

�
'�!2 
 k2�;

(13)
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where '�x� is the Heaviside step function. Three impor-
tant features are gleaned from the above expressions: (i)
The gauge-independent part Im	FG receives contribu-
tions both from above and below the light cone, corre-
sponding, respectively, to the two-particle and Landau
damping cuts. (ii) The leading O�T2� terms in Im	FG are
recognized as the HTL results, which arise solely from
the Landau damping process [1,5,6,9]. (iii) The sublead-
ing terms are suppressed by inverse powers of T and
originate in the Landau damping as well as in the fermion
decay processes.
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Next, we calculate the gauge-dependent contribution
Im	�. The gauge-dependent part of the free gauge boson
spectral function contains the derivative of the on-shell
delta function @��p2

0 
 p2�=@p2
0, thus the integral over p0

can be done using integration by parts which in turn gives
rise to derivatives of the Bose distribution function
dnB�p�=dp as well as of the energy-conserving delta
functions @��p
 q
!�=@!, etc. Such structures are
expected to be generic to the gauge-dependent higher
loop contributions linear in ��
 1�.

After some lengthy but straightforward algebra, we
obtain
Im	�0�
� �!; k� � ��
 1�e2�

Z d3p

4�2��3

�
�1� p̂ � q̂�

�
�1� nB�p� 
 nF�q��

@
@!

��p� q
!� 

dnB�p�
dp

��p� q
!�

�


�1
 p̂ � q̂�
�
�nB�p� � nF�q��

@
@!

��p
 q�!� �
dnB�p�
dp

��p
 q�!�

�	
� �! ! 
!�;

Im	�1�
� �!; k� � ��
 1�e2�

Z d3p

4�2��3

�
�k̂ � p̂��p̂ � q̂� 
 k̂ � q̂

p
��1� nB�p� 
 nF�q����p� q
!� � �nB�p� � nF�q��

��p
 q�!�� � k̂ � p̂
�
�1� p̂ � q̂�

�
�1� nB�p� 
 nF�q��

@
@!

��p� q
!� 

dnB�p�
dp

��p� q
!�

�
� �1
 p̂ � q̂�

�
�nB�p� � nF�q��

@
@!

��p
 q�!� �
dnB�p�
dp

��p
 q�!�

��	


�! ! 
!�:

(14)
It is noted that the various contributions in (14), being
gauge dependent and hence in contrast to those in (12),
will not have a physical interpretation in terms of the
scattering processes taking place in the medium. The
gauge-dependent contributions are expected to cancel in
physical quantities in a consistent calculation that gener-
ally requires resummation of perturbation theory.
Clearly, such a task is beyond the scope of this article.

The angular integration in (14) can be done analyti-
cally as in the gauge-independent contribution. Again
neglecting the vacuum contribution, we find in the high-
temperature limit the following rather compact expres-
sions (k;! � T):

Im	�0�
� �!; k� ’ ��
 1�

e2T
16�

�
1�

!
k
ln

��������!� k
!
 k

��������


j!j

T
'�!2 
 k2�

�
;

Im	�1�
� �!; k� ’ ��
 1�

e2T
16�

�
!
k



1

2

�
1�

!2

k2

�

 ln

��������!� k
!
 k

���������sgn�!�
k
T
'�!2 
 k2�

�
;

(15)
where we have combined part of the contributions from
above and below the light cone by using the identity
'�x� � '�
x� � 1. The leading gauge-dependent terms
in Im	� are of order O�T� and the subleading ones are
suppressed by inverse powers of T as is the case for
Im	FG.

B. The real part

From the above results for the imaginary part of the
fermion self-energy, the corresponding real part can be
obtained using (8). In the high-temperature limit that we
are interested in, the upper and lower limits of the inte-
gral over k0 in (8) can be cut off at T and 
T, respectively.
The contributions to Re	 from the ignored regions of
integration are at most of order O�T0�, hence are negli-
gible at the next-to-leading order under consideration. It is
worthy noting that, since Im	�0� [Im	�1�] is an even
(odd) function of ! therefore, as a result of (8), Re	�0�

[Re	�1�] is an odd (even) function of !.
In the high-temperature limit we obtain for the gauge-

independent part (k;! � T)
-4
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Re	�0�
FG�!; k� ’ 


e2T2

16k

�
1�

2k

�2T

�
ln

��������!� k
!
 k

��������
 e2!

16�2

 ln
T2

j!2 
 k2j
;

Re	�1�
FG�!; k� ’ 


e2T2

8k

�
1�

2k

�2T

��
1


!
2k

ln

��������!� k
!
 k

��������
�

�
e2k

16�2 ln
T2

j!2 
 k2j
;

(16)

where we have kept terms up to O�lnT� as remarked
above. This is because the O�T� term in Re	�0�

[Re	�1�] is proportional to k (k2) in the limit k � ! �
T, therefore the putative subleading O�lnT� term becomes
next-to-leading order in T in this limit [note that
Re	�1��!; k� vanishes identically in the limit k ! 0 due
to rotational symmetry].

Again the leading O�T2� terms in Re	FG are the HTL
results [3,5,6,9,10]. The O�lnT� terms in (16) arise from
the O�T0� terms above the light cone in (13), thus origi-
nating in the region of hard loop momentum. Such lnT
contributions are not unique in the one-loop fermion self-
energy. Indeed, similar lnT behavior that originates also
in the hard loop momentum region has been found in the
gauge boson polarization [4,20] as well as, in general, the
n-point vertex function [21] at one-loop order in high-
temperature non-Abelian gauge theories.

Similarly we find for the gauge-dependent part
(k;! � T)

Re	�0�
� �!; k� ’ 
��
 1�

e2!

16�2 ln
T2

j!2 
 k2j
;

Re	�1�
� �!; k� ’ ��
 1�

e2k

16�2 ln
T2

j!2 
 k2j
:

(17)

The lnT contributions in (17), like the gauge-independent
ones in (16), arise from the region of hard loop momen-
tum as well. Following the argument in Ref. [5] based on
the ultraviolet divergences in the absence of distribution
functions, one might expect the leading term in Re	� to
be linear in T. Nevertheless, explicit calculation shows
that the leading term actually goes like lnT at high
temperature. As we will see momentarily, the absence
of the O�T� term in Re	� has an important consequence
in the gauge dependence of fermion dispersion relations.

Furthermore, upon comparing (16) and (17), we find
that the O�lnT� term in Re	� has the same prefactor as
that in the corresponding Re	FG, hence they can be
combined together to yield a single gauge-dependent
term proportional to �. This, however, is not the case
for the imaginary part of the self-energy, where only
some of the terms in Im	� and Im	FG can be combined
together.
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III. GAUGE DEPENDENCE OF THE FERMION
QUASIPARTICLE POLES

Having calculated the one-loop fermion self-energy at
next-to-leading order in T in general covariant gauges, we
now proceed to study gauge dependence of the complex
fermion quasiparticle poles.

The full (retarded) inverse fermion propagator is given
by the Dyson-Schwinger equation

iS
1�!;k� � !�0 
 k� � k̂� 	�!;k�; (18)

where 	�!;k� is the (retarded) fermion self-energy.
Equation (18) can be inverted to yield [9,10]

S�!;k� �
i
2

�
�0 
 � � k̂
���!; k�

�
�0 � � � k̂
�
�!; k�

�
; (19)

where

���!; k� � !� k� 	��!; k�; (20)

with

	��!; k� � 	�0��!; k� �	�1��!; k�: (21)

The analytic continuation of the fermion propagator to
complex frequency features the following singularities:
(i) I
-5
solated poles. Isolated real poles of the fermion
propagator correspond to stable quasiparticle ex-
citations, whereas complex poles to unstable exci-
tations (resonances) with finite widths.
(ii) B
ranch cuts. Branch cuts of the fermion propagator
correspond to multiparticle states.
As we are interested in the collective excitation in the
medium, we will consider isolated poles in the rest of this
section.

Write ! � E
 i� with E and � real. In the narrow
width approximation for which � � E, the equations that
determine the position of the complex poles are given by
[22]

E� k� Re	��E; k� � 0;

�� sgn���Z��k� Im	��E; k� � 0;
(22)

where Z��k� in the second equation are the residues at the
poles (wave function renormalizations)

Z��k� �
�
1�

@Re	��!; k�
@!

�

1

!�E
: (23)

If the product of the residue at the pole and the imaginary
part of the self-energy on the quasiparticle mass shell
Z��k� Im	��E; k� is negative, there are two complex
poles that conjugate to each other in the physical sheet
corresponding to a growing and a decaying solution, i.e.,
an instability. On the other hand, if the product is positive
there is no complex pole in the physical sheet; the pole has
moved off into the unphysical (second or higher) sheet. In
this case the spectral function features a Breit-Wigner
shape resonance with a width given by the damping rates
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��k� � Z��k� Im	��E; k�; (24)

which in general determines an exponential falloff e
��k�t

of the fermion propagator in real time. It is worth noting
that numerical results reveal that at next-to-leading order
the product Z��k� Im	��E; k� is positive in the Feynman
gauge.

From the one-loop fermion self-energy calculated
above, we recover at leading order in T [i.e., O�T2�] the
celebrated HTL results [3,5,6,9,10]. There are two
branches of stable fermion collective excitations (fermi-
ons and the so-called plasminos [9,10]) with positive and
negative helicity to chirality ratios, respectively. Their
dispersion relations are manifestly gauge independent
and given by (for positive energy solutions)

E�k� �
�
!��k� fermion
!
�k� plasmino:

(25)

A plot of the HTL dispersion relations !��k� can be
found in the literature (see, e.g., Refs. [9,10]). One of the
main features is that the two branches of collective ex-
citations develop a gap m � eT=





8

p
, corresponding to an

effective thermal mass that respects both gauge invari-
ance and chiral symmetry [3,5,6,9,10].

The gauge dependence of the quasiparticle poles at
next-to-leading order must be studied with care because
the O�T� terms in Re	�!; k� become subleading in the
limit k � ! � T as remarked above.

Anticipating that the next-to-leading order correction
will not dramatically change the leading order HTL
dispersion relations !��k� which have a gap of order
eT, we will first consider the case for which k� eT. As
is clear from the above results, for generic k;!� eT the
next-to-leading order correction to Re	�!; k� is of order
T and gauge independent. Upon substituting Re	 at this
order into (20), we find that for the collective excitations
of momenta k� eT the one-loop dispersion relations at
next-to-leading order in T [i.e., O�T�] are manifestly
gauge independent. This is one of the novel contributions
of this article. Numerical analysis shows that the disper-
sion relations at next-to-leading order have similar fea-
tures but move slightly above the leading order HTL
results in the same momentum region. The differences
increase with increasing gauge coupling constant, in
agreement with the full numerical result found in
Ref. [17].

The next-to-leading order correction to Im	 in the
momentum region k� eT is again of order T but gauge
dependent. Whereas at next-to-leading order Im	 has
support above the light cone which presumably suggests
finite damping rates �� e2T (up to the logarithm of the
gauge coupling constant) for the collective excitations at
one-loop order, nevertheless the gauge-dependent contri-
bution to Im	 that first appears at this order makes such
interpretations doubtful. This result is not unexpected, as
it is well known that in high-temperature gauge theories a
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consistent, gauge-independent calculation of the quasi-
particle damping rates requires a resummation of pertur-
bation theory such as, e.g., the Braaten-Pisarski HTL
resummation program [1].

We next consider the case for which k � eT.
Expanding the fermion self-energy obtained above in
the high-temperature limit [see (13) and (15)–(17)] in
powers of k=! and keeping terms leading in k=! and
up to next-to-leading order in T, we obtain (k � !� eT)

Re	�0��!; k� ’ 

e2T2

8!

 �

e2!

8�2 ln
T
j!j

;

Re	�1��!; k� ’
k
!

�
e2T2

24!
� �

e2!

8�2 ln
T
j!j

�
;

(26)

and

Im	�0��!; k� ’
e2T
8�

� ��
 1�
3e2T
16�

;

Im	�1��!; k� ’ 

k
!

�
e2T
6�

� ��
 1�
e2T
12�

�
:

(27)

In the above expressions, we have combined the gauge-
independent and -dependent contributions. The next-to-
leading order corrections to Re	 and Im	 are of order
lnT and T, respectively, and manifestly gauge dependent.
Upon substituting the above results into (20), we find that
for the collective excitations of momenta k � eT the
one-loop dispersion relations and damping rates at next-
to-leading order in T are gauge dependent.

The effective fermion mass m as well as the damping
rate of collective excitations at rest ��0� at next-to-
leading order can be extracted by taking the long-
wavelength limit k ! 0. The effective mass is deter-
mined by the following equation (m> 0):

m2 �
e2T2

8
� �

e2m2

8�2 ln
T
m
; (28)

which agrees with the result found in the real-time for-
malism [18]. Equation (28) indicates that the one-loop
effective mass at next-to-leading order in T is gauge
dependent and that the gauge-dependent correction to m
is of order e4T2 ln�1=e�. The damping rate of collective
excitations at rest is of order e2T but with a gauge-
dependent contribution of the same order.

Before ending this section, we discuss briefly possible
cancellation of the leading gauge dependence of the qua-
siparticle poles at two-loop order. For simplicity, we will
consider the k � 0 case in QED. At two-loop order, there
are three one-particle-irreducible (1PI) diagrams that
contribute to the fermion self-energy, corresponding to
corrections of the vertex, fermion self-energy, and gauge
boson polarization. However, because of theWard identity
for the gauge boson polarization only the first two will
give rise to gauge-dependent contributions. For the
purpose of our discussion here, we only need the two-
-6
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loop gauge-dependent contributions linear in ��
 1�.
Presumably, the gauge-dependent contributions quadratic
in ��
 1� will be subleading in T.

To extract the leading gauge-dependent contribution at
two-loop order, we focus on diagrams at the level of the
propagator rather than the 1PI self-energy diagrams.
Specifically, we consider the one-particle-reducible
(1PR) two-loop self-energy diagram. Using 	�0� given
in (26) and (27), in the k ! 0 limit we find for the real
part (i) the leading gauge-independent contribution is of
order e4T4=!3 corresponding to what will be resummed
by the HTLs at two-loop order, and (ii) the leading
gauge-dependent contribution is of order �e4T2=!�
ln�T=!� arising from taking the gauge-dependent con-
tribution in one of the two loops. Similarly, for the
imaginary part we find both the leading gauge-
independent and -dependent contributions are of order
e4T3=!2.

Assuming that the leading gauge-dependent contribu-
tions from the 1PI diagrams have the same behavior as
those from the 1PR one, we obtain in the k ! 0 limit

m2 �
e2T2

8
� �

e2m2

8�2 ln
T
m
� a���e4T2 ln

T
m
;

��0� � Z�0�
�
e2T
8�

� ��
 1�
3e2T
16�

� b���
e4T3

m2

�
;

(29)

where a��� and b��� are �-dependent coefficients yet to be
determined by explicit calculations. To solve for m and
��0� at two-loop order, one can substitute into terms on
the right-hand side in (29) the leading order result m�
O�eT�. If a��� and b��� are such that the gauge-dependent
contributions in (29) cancel, one finds the following
gauge-independent results:

m2 ’
e2T2

8

�
1�O

�
e2 ln

1

e

��
; ��0� ’ O�e2T�: (30)

The above discussion seems to suggest that cancellation
of the leading gauge dependence in m and ��0� at two-
loop order and next-to-leading order in T is plausible.
This situation is reminiscent of the recent proof that the
truncated on-shell 2PI effective action has a controlled
gauge dependence, with the explicit gauge-dependent
terms always appearing at higher order [11–13].
IV. CONCLUSIONS

In this article we have studied the gauge dependence of
the fermion quasiparticle poles in hot gauge theories at
one-loop order and next-to-leading order in T. We focus
on the quasiparticle poles corresponding to soft collective
excitations of momenta k & eT � T, with a view to-
wards going beyond the leading order HTL results and
resummations thereof.

We have calculated the one-loop fermion self-energy
(both the real and imaginary parts) in general covariant
065011
gauges up to next-to-leading order in the high-
temperature expansion for which k;! � T. We find
that, whereas the next-to-leading order contributions to
the imaginary part behaves like T, the behavior of those
to the real part depends on the range of ! as well as on
their gauge dependence. The next-to-leading order gauge-
independent contribution behaves like T for k;!� eT,
but becomes lnT for k � !� eT. Nevertheless, the cor-
responding gauge-dependent contribution always behaves
like lnT in the high-temperature limit. This analysis
allows us to study in detail the gauge dependence of the
complex quasiparticle poles corresponding to soft collec-
tive excitations.

For collective excitations of momenta k� eT, we find
that the dispersion relations at next-to-leading order in T
are gauge independent. Numerical results show that these
next-to-leading order dispersion relations have similar
features but move slightly above the leading order HTL
ones in the same momentum region. However, the corre-
sponding damping rates are gauge dependent, thus ren-
dering the complex quasiparticle poles gauge dependent.
For k � eT and in the long-wavelength limit k ! 0, both
the dispersion relations and the damping rates are gauge
dependent. The gauge dependence of the position of the
quasiparticle poles at one-loop order and next-to-leading
order in T signals the need for resummations of pertur-
bation theory.

We have discussed possible cancellation of gauge de-
pendence at two-loop order in the case of the effective
fermion mass and the damping rate for collective excita-
tions at rest in QED. Our analysis suggests that cancella-
tion of the leading gauge dependence at next-to-leading
order in T is plausible. A detailed study at two-loop order
that allows us to verify such cancellation in hot gauge
theories is the subject of further investigations.
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APPENDIX: VACUUM CONTRIBUTION TO THE
FERMION SELF-ENERGY

In this appendix, we calculate the vacuum contribution
to the one-loop fermion self-energy for the sake of com-
pleteness. As a by-product, we show that the position of
the singularities of the fermion propagator in vacuum is
gauge independent at one-loop order.

The vacuum contribution to the imaginary part of the
self-energy Im	 is extracted from (12) and (14) by ne-
-7
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glecting the thermal distribution functions. The angular
integration can be done analytically in the same manner
as that in the finite-temperature contribution, and the
remaining radial integration over momentum is elemen-
tary. We find

Im	vac
FG;��!; k� � sgn�!�

e2

16�
�!� k�'�!2 
 k2�;

Im	vac
�;��!; k� � ��
 1� sgn�!�

e2

16�
�!� k�'�!2 
 k2�;

(A1)

where 	� are defined in (21). We note that the gauge-
independent and -dependent contribution can be com-
bined together to yield a single gauge-dependent term
proportional to �. As expected, Im	 has support only
above the light cone corresponding to the usual two-
particle cuts.

The real part obtained from the imaginary one through
the dispersive representation (8) is ultraviolet divergent
and, hence, has to be regularized by an ultraviolet fre-
quency cutoff. Introducing counterterms with the renor-
malization condition Re	vac��� � 0 at some arbitrary
renormalization point �, we obtain

Re	vac
� �!; k� �

�e2

16�2 �!� k� ln
�2

j!2 
 k2j
; (A2)
065011
where the gauge-independent and -dependent contribu-
tions have been combined together.

Upon substituting the above results into (20), we find
that the putative real poles of the fermion propagator in
vacuum are determined by

�!� k�
�
1�

�e2

16�2 ln
�2

j!2 
 k2j

�
� 0: (A3)

Because of the infrared logarithmic divergence at thresh-
old associated with the emission of soft gauge boson,
! ! �k are no longer isolated poles but the end points
of logarithmic branch cuts. Nevertheless, we clearly see
that the position of the singularities (in this case loga-
rithmic branch points and branch cuts) of the fermion
propagator in vacuum is gauge independent at one-loop
order.

If one adds the vacuum and the finite-temperature
contributions, one finds that the real part of the vacuum
contribution can be exactly combined with the lnT term in
the real part of the finite-temperature contribution to
yield a single term proportional to ln�T=��. This general-
izes the k � 0 case found in Ref. [18] to the case of
k;! � T and is the fermionic counterpart of the results
found in Refs. [4,20,21]. However, no similar combina-
tion can be found in the corresponding imaginary part of
the fermion self-energy.
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