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Monopole-antimonopole chains and vortex rings
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We consider static axially symmetric solutions of SU(2) Yang-Mills-Higgs theory. The simplest such
solutions represent monopoles, multimonopoles and monopole-antimonopole pairs. In general such
solutions are characterized by two integers, the winding number m of their polar angle, and the winding
number n of their azimuthal angle. For solutions with n � 1 and n � 2, the Higgs field vanishes at m
isolated points along the symmetry axis, which are associated with the locations of m monopoles and
antimonopoles of charge n. These solutions represent chains of m monopoles and antimonopoles in
static equilibrium. For larger values of n, totally different configurations arise, where the Higgs field
vanishes on one or more rings, centered around the symmetry axis. We discuss the properties of such
monopole-antimonopole chains and vortex rings, in particular, their energies and magnetic dipole
moments, and we study the influence of a finite Higgs self-coupling constant on these solutions.
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I. INTRODUCTION

Magnetic monopoles arise as pointlike defects in spon-
taneously broken gauge theories, when a semisimple
gauge group is broken down to a subgroup containing
an explicit U(1) factor. Thus magnetic monopoles repre-
sent generic predictions of grand unified theories with
relevance to particle physics and cosmology. The mag-
netic charge of magnetic monopoles is proportional to
their topological charge. The simplest monopole solution
is the spherically symmetric ’t Hooft-Polyakov monopole
of SU(2) Yang-Mills-Higgs (YMH) theory [1,2], which
has unit topological charge. SU(2) multimonopoles car-
rying higher topological charge cannot be spherically
symmetric [3]. They possess at most axial symmetry
[4–8], or no rotational symmetry at all [9,10].

In the Bogomol’nyi-Prasad-Sommerfield (BPS) limit
of vanishing Higgs potential, the monopole and multi-
monopole solutions satisfy the first order Bogomol’nyi
equations [11]. The spherically symmetric BPS monopole
solution [12] and the axially symmetric BPS multimono-
pole solutions are known analytically [5–7]. For these
solutions all nodes of the Higgs field are superimposed at
a single point. BPS multimonopole solutions with only
discrete symmetries have recently been constructed nu-
merically [10]. In these solutions the nodes of the Higgs
field can be located at several isolated points.

The energy of the BPS solutions satisfies exactly the
lower energy bound given by the topological charge.
Moreover, since in the BPS limit the repulsive and attrac-
tive forces between monopoles exactly compensate, BPS
monopoles experience no net interaction [13].

The configuration space of YMH theory consists of
topological sectors characterized by the topological
charge of the Higgs field. As shown by Taubes, each
topological sector contains besides the BPS monopole
solutions further smooth, finite energy solutions. These
do not satisfy the Bogomol’nyi equations, however, but
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only the second order field equations [14,15].
Consequently, the energy of these solutions exceeds the
Bogomol’nyi bound. The simplest such solution resides in
the topologically trivial sector and forms a saddle point
of the energy functional [14]. It possesses axial symme-
try, and the two nodes of its Higgs field are located
symmetrically on the positive and negative z-axis. This
solution corresponds to a monopole-antimonopole pair in
static equilibrium [16,17].

Recently we have constructed new axially symmetric
saddle point solutions, where the Higgs field vanishes at
m> 2 isolated points on the symmetry axis [18]. These
solutions represent chains of single monopoles and anti-
monopoles in alternating order. For an equal number of
monopoles and antimonopoles, the chains reside in the
topologically trivial sector. When the number of mono-
poles exceeds the number of antimonopoles by one, the
chains reside in the sector with topological charge one.

These chains can be generalized by considering
not single monopoles and antimonopoles but multimono-
poles and antimonopoles, carrying each charge n > 1.
In chains of charge 2-monopoles and charge 2-
antimonopoles the Higgs field still vanishes at isolated
points on the symmetry axis [19,20]. Surprisingly, how-
ever, for monopoles of charge n > 2 we have encountered
a new phenomenon [20]. Here the Higgs field vanishes on
rings centered around the symmetry axis, instead of
vanishing only at isolated points on the symmetry axis.

In this paper we study both types of solutions, repre-
senting monopole-antimonopole chains and vortex rings,
in detail. We discuss the electromagnetic properties of
these solutions, such as their magnetic fields and their
magnetic dipole moments, and we study the influence of a
finite Higgs self-coupling constant on these solutions.
Brief discussions of such solutions in the BPS limit
were given in [18,20].

In Section II we review SU(2) YMH theory and the
topological charge of the configurations. We present the
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static axially symmetric Ansätze, the boundary condi-
tions, and discuss the electromagnetic properties of the
configurations. In Section III we discuss our numerical
results for monopole-antimonopole chains and for solu-
tions with vortex rings. We give our conclusions in
Section IV.
II. SU(2) YANG-MILLS-HIGGS ACTION AND
ANSÄTZE

We here briefly review the SU(2) YMH action and the
topological charge. We then discuss the static axially
symmetric Ansätze for the fields, the boundary condi-
tions for finite energy solutions, and the electromagnetic
properties of solutions.

A. Lagrangian

The Lagrangian density of SU(2) Yang-Mills-Higgs
theory is given by

�L �
1

2
Tr�F�	F

�	� �
1

4
Tr�D��D���

�
�
8

Tr
�
��2 � �2�2

�
; (1)

with su�2� field strength tensor

F�	 � @�A	 � @	A� � ie�A�; A	�; (2)

gauge potential A� � Aa
��a=2, and covariant derivative

of the Higgs field � � �a�a in the adjoint representation

D�� � @�� � ie�A�;��: (3)

Here e denotes the gauge coupling constant,� the vacuum
expectation value of the Higgs field and � the strength of
the Higgs self-coupling.

Under SU(2) gauge transformations U, the gauge po-
tentials transform as

A0
� � UA�U

y �
i
e
�@�U�Uy; (4)

and the Higgs field transforms as

�0 � U�Uy: (5)

The nonzero vacuum expectation value of the Higgs
field breaks the non-Abelian SU(2) gauge symmetry to
the Abelian U(1) symmetry. The particle spectrum of the
theory then consists of a massless photon, two massive
vector bosons of mass Mv � e�, and a massive scalar
field Ms �

������
2�

p
�. In the BPS limit the scalar field also

becomes massless, since � � 0, i.e., the Higgs potential
vanishes.

The general set of field equations is derived from the
Lagrangian by variation with respect to the gauge poten-
tial and the Higgs field,
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D�F�	 �
1

4
ie��; D	�� � 0; (6)

D�D
�� � ���2 � �2�� � 0: (7)
B. Topological charge

Static finite energy configurations of the theory are
characterized by a topological charge Q,

Q �
1

2!4�

Z
S2

�abc�̂
ad�̂b ^ �̂c

� �
i

16�

Z
S2

Tr��̂d�̂ ^ d�̂�; (8)

where �̂ is the normalized Higgs field, j�̂j �

�1=2�Tr�̂2 �
P

a��̂
a�2 � 1. The topological charge is

thus the topological mapping index for the map from
the 2-sphere of spatial infinity S2 to the 2-sphere of
internal space Sint

2 , representing the vacuum manifold.
Static finite energy configurations therefore fall into to-
pological sectors. The vacuum sector has Q � 0.

The topological charge is associated with the con-
served topological current k�,

k� �
1

8�
��	"#�abc@	�̂a@"�̂b@#�̂c; (9)

i.e.,

Q �
Z
k0d3r: (10)

In the BPS limit the energy of static field configurations
takes the form

E �
Z 1

4
�Fa

ij  "ijkDk�
a�2d3r�

Z 1

2
"ijkF

a
ijDk�

ad3r:

(11)

In the BPS limit the energy E of configurations with
topological charge Q is thus bounded from below

E �
4��Q
e

: (12)

Monopole and multimonopole solutions satisfying the
first order Bogomol’nyi equations

Fij � �
1

2
"ijkDk� (13)

precisely saturate the lower energy bound (12).
We here consider solutions which, even in the limit of

vanishing Higgs self-coupling, � � 0, do not saturate the
Bogomol’nyi bound.

C. Static axially symmetric Ansätze

To obtain static axially symmetric solutions, we pa-
rametrize the gauge potential and the Higgs field by the
-2
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Ansätze

A�dx
� �

�

K1

r
dr� �1 � K2�d*

�

��n�’

2e

� n sin*
�

K3
��n;m�
r

2e
� �1 � K4�

��n;m�
*

2e

�

d’; (14)

� � �1�
�n;m�
r � �2�

�n;m�
* : (15)

where the su�2� matrices ��n;m�
r , ��n;m�

* , and ��n�’ are defined
as products of the spatial unit vectors

ê �n;m�
r � � sin�m*� cos�n’�; sin�m*� sin�n’�; cos�m*��;

(16)

ê �n;m�
* � � cos�m*� cos�n’�; cos�m*� sin�n’�;� sin�m*��;

(17)

ê �n�
’ � �� sin�n’�; cos�n’�; 0�; (18)

with the Pauli matrices �a � ��x; �y; �z�, i.e.,

��n;m�
r � sin�m*���n�" � cos�m*��z;

��n;m�
* � cos�m*���n�" � sin�m*��z;

��n�’ � � sin�n’��x � cos�n’��y;

with ��n�" � cos�n’��x � sin�n’��y. We refer to the inte-
gers n and m in (14), (15), and (18) as the ’ winding
number [4] and the * winding number [16] respectively.
As the azimuthal angle ’ covers the circle once, the fields
given by the Ansatz (14) and (15) wind n times around the
z-axis [4].

The functions K1 � K4 and �1, �2 depend on the
coordinates r and * only. Thus, this ansatz is axially
symmetric since a spatial rotation around the z-axis can
be compensated by a gauge transformation.

The gauge transformation

U � expfi��r; *���n�’ =2g (19)

leaves the ansatz form-invariant [21]. To construct regu-
lar solutions we have to fix the gauge [8]. Here we impose
the gauge condition

r@rK1 � @*K2 � 0: (20)

The above Ansätze [20,21] generalize both the Ansätze
employed in [16–19] for the monopole-antimonopole
pairs and chains, as well as the axially symmetric multi-
monopole Ansätze [4,8]. We do not consider dyonic solu-
tions here [22].
065010
D. Boundary conditions

To obtain regular solutions with finite energy density
and appropriate asymptotic behavior we need to impose
certain boundary conditions. Regularity at the origin
requires

K1�0; *� � K3�0; *� � 0; K2�0; *� � K4�0; *� � 1;

(21)

sin�m*��1�0; *� � cos�m*��2�0; *� � 0; (22)

@r�cos�m*��1�r; *� � sin�m*��2�r; *��jr�0 � 0; (23)

i.e., �"�0; *� � 0, @r�z�0; *� � 0.
To obtain the boundary conditions at infinity we re-

quire that solutions in the vacuum sector Q � 0, where
m � 2k, tend to a gauge transformed trivial solution,

� ���! �U�zU
y; A� ���! i

e
�@�U�Uy;

and that solutions in the topological charge Q � n sector,
where m � 2k� 1, tend to

� ���! U��1;n�
1 Uy; A� ���! UA�1;n�

�1 Uy �
i
e
�@�U�Uy;

where

��1;n�
1 � ���1;n�r ;

A�1;n�
�1 dx� �

��n�’

2e
d*� n sin*

��1;n�*

2e
d’

is the asymptotic solution of a charge n multimonopole,
and U � expf�ik*��n�’ g, both for even and odd m.

In terms of the functions K1 � K4, �1, �2 these bound-
ary conditions read

K1 ���! 0; K2 ���! 1 �m; (24)

K3 ���! cos*� cos�m*�
sin*

m odd;

K3 ���! 1 � cos�m*�
sin*

m even;
(25)

K4 ���! 1 �
sin�m*�

sin*
; (26)

�1 ���! 1; �2 ���! 0: (27)

Regularity on the z-axis, finally, requires

K1 � K3 � �2 � 0; @*K2 � @*K4 � @*�1 � 0;

(28)

for * � 0 and * � �.
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E. Electromagnetic properties

A gauge-invariant definition of the electromagnetic
field strength tensor is given by the ’t Hooft tensor [1]

F �	 � Tr
�
�̂F�	 �

i
2e

�̂D��̂D	�̂
�

� �̂aFa
�	 �

1

e
�abc�̂

aD��̂bD	�̂c: (29)

The ’t Hooft tensor then yields the electric current j	el

@�F
�	 � 4�j	el; (30)

and the magnetic current j	mag

@�
�F �	 � 4�j	mag: (31)

Since the magnetic current is proportional to the topo-
logical current, ej	mag � k	, the magnetic charge g is
given by

g �
Q
e
�

Z k0

e
d3r �

1

4�

Z
~r � ~Bd3r; (32)

with magnetic field Bi �
1
2 �ijkF

jk. Alternatively, the
magnetic charge can also be obtained from

g �
1

4��

Z 1

2
Tr�FijDk��"ijkd

3r: (33)

Evaluation of the ’t Hooft tensor Eq. (29) with the
above Ansatz yields

F *’ � @*A’; F ’r � �@rA’; F r* � 0;

(34)

with

A’ �
n
e

�

� �̂1�K3 sin*� cos�m*��

� �̂2��K4 � 1� sin*� sin�m*��
�
; (35)

and �̂1 � �1=
�������������������
�2

1 � �2
2

q
, �̂2 � �2=

�������������������
�2

1 � �2
2

q
.

As seen from Eqs. (34)–(35), contour lines of the
vector potential component A’, correspond to the field

lines of the magnetic field ~B. We therefore use A’ when

illustrating the magnetic field ~B.
Evaluation of the magnetic charge then yields

g �
1

4�

Z
S2

F *’d*d’

� �
n
2e

Z
@*�K3jr�1 sin*� cos�m*��d*

�
n
2e

�1 � ��1�m�; (36)

i.e.,

eg �

�
n odd m
0 even m

: (37)
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The magnetic charge thus vanishes for even * winding
number m, and it is proportional to the ’winding number
n for odd * winding number m.

The magnetic dipole moment � can be obtained di-
rectly from the asymptotic form of the gauge field.
Making an asymptotic expansion, we then obtain for
solutions with even m,

K3 !
1 � cos�m*�

sin�*�
� C3

sin*
r

; (38)

and the gauge potential assumes the form

A ’ � �
n
e
�
n
e
C3

sin2*
r

�O



1

r2

�
; (39)

from which we read off the magnetic dipole moment ~� �
�~ez with � � �nC3=e for solutions with even m.
Solutions with odd m have vanishing magnetic dipole
moment, since in this case the function K3 is odd under
the transformation z $ �z. Consequently, the asymptotic
form of the gauge potential cannot contain terms like the
second term on the r. h. s. of Eq. (39), and

e� �

�
0 odd m

�nC3 even m
: (40)

The magnetic dipole moment ~� can also be obtained
from the asymptotic form of the non-Abelian gauge field,
after transforming to a gauge where the Higgs field is
constant at infinity, � � �z. For solutions with even m,
the non-Abelian gauge field assumes the asymptotic form

A�dx� � �nC3
sin2*
r

�z
2e

d’: (41)

yielding � � �nC3=e.
Alternatively, the magnetic dipole moment can be ob-

tained from the magnetic charge density k0=e and the
electric current density ~jel [23],

~� � ��charge ��current� ~ez �
Z 


~r
k0

e
�

1

2
~r� ~jel

�
d3r:

(42)

Thus, the physical picture of the source of the dipole
moment is that it originates both from a distribution of
magnetic charges and electric currents. Because of axial
symmetry of the configurations, ~� � �~ez.

For even m, the magnetic charge density contributes to
the magnetic moment for monopole-antimonopole
chains. This contribution is given by

�charge �
Xm
i�1

n
e
ziPi (43)

where zi denotes the location of the i-th magnetic pole on
the symmetry axis and Pi denotes the sign of its charge,
i.e., Pi � 1 for monopoles and Pi � �1 for antimono-
poles, respectively. The contribution of the electric cur-
-4
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rent density to the magnetic moment is obtained from

�current � �
1

2

Z
j’r

2 sin*drd*d’

� �
1

4

Z
drd*

�
r2 sin*@2

rA’

� sin2*@*
1

sin*
@*A’

�
(44)

for even m. Integration by parts then yields

�current � �
Xm
i�1

n
e
ziPi �

n
e
C3; (45)

where the first term is obtained, when monopoles and
antimonopoles are located on the symmetry axis. For
monopole-antimonopole chains, the contribution from
the magnetic charge density and the first contribution
from the electric current density cancel, yielding the
dimensionless magnetic moment Eq. (40).
III. MONOPOLE-ANTIMONOPOLE CHAINS
AND VORTEX RINGS

We consider solutions which are essentially non-BPS
solutions. This is clearly seen in the limit � � 0, where
their mass is given by (11)

E �
Z �

1

4
Tr��"ijkFij �Dk��2�

1

2
"ijkTr�FijDk��

�
d3r:

The first term is just the integral of the square of the
Bogolmol’nyi equations, and the second term is propor-
tional to the topological charge. Since self-dual solutions
precisely saturate the Bogomol’nyi bound, the deviation
of the energy of the solutions from this bound is a mea-
sure for the deviation of the solutions from self-duality.

We have constructed such non-BPS solutions numeri-
cally, subject of the above boundary conditions, for *
winding number 1 � m � 6, and ’ winding number
1 � n � 6.

We here first briefly address the numerical procedure.
We then present our results for the chainlike solutions and
the vortexlike solutions. We discuss their physical prop-
erties in detail, and we consider the dependence of
the solutions on the value of the Higgs self-coupling
constant �.

A. Numerical procedure

Let us change to dimensionless coordinates by rescal-
ing

r ! r=�e��; � ! ��:

To construct solutions subject to the above boundary
conditions, we map the infinite interval of the variable r
onto the unit interval of the compactified radial variable
�x 2 �0:1�,
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�x �
r

1 � r
;

i.e., the partial derivative with respect to the radial coor-
dinate changes according to

@r ! �1 � �x�2@ �x:

The numerical calculations are performed with the
help of the FIDISOL package based on the Newton-
Raphson iterative procedure [24]. It is therefore essential
for the numerical procedure to have a reasonably good
initial configuration. (For details see description and re-
lated documentation [24].) The equations are discretized
on a nonequidistant grid in �x and *. Typical grids
used have sizes 70 � 60 covering the integration region
0 � �x � 1, 0 � * � �. The estimates of the relative error
for the functions are of the order of 10�4, 10�3 and 10�2

for solutions with m � 2, m � 3, 4 and m � 5, 6,
respectively.

B. Monopole-antimonopole chains

We here report our numerical results for monopole-
antimonopole chains (MACs), considering first MACs
with ’ winding number n � 1 and then MACs with
n � 2. A brief presentation of monopole-antimonopole
chains in the BPS limit � � 0 was given in [18,20].

Let us consider monopole-antimonopole chains with ’
winding number n � 1 first. These MACs possess m
nodes of the Higgs field on the z-axis. Because of reflec-
tion symmetry, each node on the negative z-axis corre-
sponds to a node on the positive z-axis. The nodes of the
Higgs field are associated with the location of the mag-
netic charges [17]. Thus these MACs possess a total of m
magnetic poles, representing singly charged monopoles
and antimonopoles, located in alternating order on the
symmetry axis.

The topological charge of these MACs is either unity
(for odd m) or zero (for even m). Indeed, for odd m (m �
2k� 1) the Higgs field possesses k nodes on the positive
z-axis and one node at the origin. The node at the origin
corresponds to a monopole when k is even and to an
antimonopole when k is odd. For even m (m � 2k) the
Higgs field does not have a node at the origin.

The m � 1 solution is the well-known ’t Hooft-
Polyakov monopole [1,2]. The m � 3 (M-A-M) and m �
5 (M-A-M-A-M) chains represent saddle points with unit
topological charge. The m � 2 (M-A) chain is identical
to the monopole-antimonopole pair (MAP) discussed
before [16,17].

The energy density of these MACs possesses m max-
ima on the z-axis, and is monotonically decreasing with
increasing ". The locations of the maxima are close to the
nodes of the Higgs field. For a given MAC the maxima
are of similar magnitude. The height of the maxima
decreases when the number of nodes of the MACs in-
creases. The modulus of the Higgs field of these MACs
-5
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possesses m nodes on the z-axis, and is monotonically
increasing with increasing ". The maxima in between the
nodes are still far from the vacuum expectation value of
the Higgs field for these MACs in the BPS limit.

To demonstrate the influence of the self-coupling of the
Higgs field, we exhibit in Fig. 1 and Fig. 2 the dimen-
sionless energy density and modulus of the Higgs field
along the symmetry axis for these MACs at Higgs self-
coupling � � 0 and � � 0:5. Note that the energy density
of the � � 0 MACs has been scaled up by a factor of 10.
An increase of � makes the maxima of the energy density
higher and sharper. At the same time, the modulus of the
FIG. 1. The dimensionless energy density along the symmetry ax
with m � 1; . . . ; 6, n � 1, in the BPS limit (� � 0) and for � � 0

065010
Higgs field tends faster and further towards its vacuum
expectation value in between the locations of the
monopoles.

We present the energy of the MACs with m � 1; . . . ; 6,
n � 1 in Table I for several values of the Higgs self-
coupling constant �. The energy E�m� of a chain consisting
of m monopoles and antimonopoles is always smaller
than the energy of m single monopoles or antimonopoles
with infinite separation between them, i.e., E�m� <E1 �

4��m. On the other hand E�m� exceeds the minimal
energy bound given by the Bogolmol’nyi limit Emin � 0
for even m, and Emin � 4�� for odd m. This suggests that
is is shown as function of z for monopole-antimonopole chains
:5. Note the scale factor of 10 for � � 0.

-6



FIG. 2. The dimensionless modulus of the Higgs field along the symmetry axis is shown as function of z for monopole-
antimonopole chains with m � 1; . . . ; 6, n � 1, in the BPS limit (� � 0) and for � � 0:5.

TABLE I. The dimensionless energy and the dimensionless dipole moment per winding number �=n of the monopole-
antimonopole chains with m � 1; . . . ; 6, n � 1 and n � 2 for several values of �.

n � 1 n � 2
E 4��� � �=n 1=e� � E 4��� � �=n 1=e� �

m=� 0 0.01 0.5 1 0 0.01 0.5 1 0 0.01 0.5 1 0 0.01 0.5 1
1 1.00 1.10 1.35 1.41 0.0 0.0 0.0 0.0 2.00 2.34 3.14 3.34 0.0 0.0 0.0 0.0
2 1.70 1.95 2.48 2.60 4.72 3.83 3.35 3.25 2.96 3.64 5.23 5.60 4.74 3.42 2.44 2.45
3 2.44 2.91 3.74 3.92 0.0 0.0 0.0 0.0 4.17 5.40 7.99 8.53 0.0 0.0 0.0 0.0
4 3.10 3.78 4.91 5.15 9.86 7.55 6.90 6.68 5.07 6.78 10.25 10.97 9.86 6.25 4.83 4.82
5 3.78 4.71 6.14 6.41 0.0 0.0 0.0 0.0 6.11 8.44 12.91 13.79 0.0 0.0 0.0 0.0
6 4.40 5.61 7.31 7.64 15.80 11.20 9.86 9.7 6.95 9.86 15.23 16.28 13.8 9.04 7.33 7.45
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a monopole-antimonopole chain is a static equilibrium
state of m monopoles and antimonopoles, which is un-
stable because it exceeds the minimal energy bound.

We observe an (almost) linear dependence of the en-
ergy E�m� on m, independent of �. In the BPS limit, such a
dependence is readily obtained by taking into account
only the energy of m single (infinitely separated) mono-
poles and the next-neighbor interactions between mono-
poles and antimonopoles on the chain [18]. Defining the
interaction energy as the binding energy of the monopole-
antimonopole pair,

$E � 2E�1� � E�2�; (46)

one obtains as energy estimate for the MACs

E�m�
est � mE�1� � �m� 1�$E: (47)

This energy estimate agrees well with the energies of
MACs in the BPS limit � � 0 [18]. It is less accurate
for finite values of �, where poles with like charges
experience repulsive forces, which are not present in the
BPS limit. These additional repulsive forces decrease the
binding energy of monopoles within a monopole-
antimonopole chain with respect to the binding energy
of monopoles in a monopole-antimonopole pair.We there-
fore propose a new energy estimate, where the binding
energy $E of a MAP is replaced by an average binding
energy $ ~E of the MACs. For a given � this average
binding energy $ ~E is extracted by a least square fit. The
new energy estimate

~E �m�
est � mE�1� � �m� 1�$ ~E; (48)

agrees well with the energies of all chains, except for the
monopole-antimonopole pairs at finite �, of course. The
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FIG. 3. The estimate for the dimensionless energies is shown as
1; . . . ; 6, n � 1 (left) and n � 2 (right), in the BPS limit (� � 0) an
symbols.
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new energy estimate is illustrated in Fig. 3. The deviation
of the estimated energies from the exact energies is indeed
very small.

Let us now take a closer look at the location of the
nodes of the Higgs field, shown in Table II for MACs with
m � 1; . . . ; 6, n � 1, and several values of �. In the BPS
limit, the distances between the nodes do not vary much
within a chain, and the average distance between the
nodes shows a slight increase with m. For instance, for
the MAC with m � 5, n � 1, the distances between the
nodes are 4.8, while for the MAC with m � 6, n � 1, the
distances are jz1 � z2j � 5:06, jz2 � z3j � 5:11 and jz3 �
z4j � 4:92, (where the location of the nodes is denoted by
zi in decreasing order), with an average distance of 5.05.

As we increase � from zero, we observe a decrease in
the average distances. For � � 0:01 the distances between
the nodes are almost constant within a chain, and (al-
most) independent of m, and correspond to an average
distance of about 3.65. A further increase of � yields
again more variation in the distances between the nodes.
On the one hand, we observe a further decrease of the
average distance between nodes, and we find back a slight
dependence of the average distance between nodes on m.
On the other hand, for a given MAC the nodes start to
form pairs, such that the distance between the nodes of a
pair is less than the distance to the neighboring nodes.

Turning next to the electromagnetic properties of the
monopole-antimonopole chains, we exhibit in Fig. 4 the
magnetic field lines of MACs with m � 1; . . . ; 6, n � 1,
and � � 0. Clearly, MACs with odd m give rise to an
asymptotic magnetic monopole field, whereas MACs with
even m give rise to an asymptotic magnetic dipole field.
The magnetic field of the monopole-antimonopole pair, in
particular, corresponds to the field of a physical magnetic
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TABLE II. The location of the nodes of the Higgs field of the monopole-antimonopole chains with m � 1; . . . ; 6, n � 1 and n � 2
for several values of �.

n � 1 n � 2
x�i�0 � �"i;�zi� x�i�0 � �"i;�zi�

m=� 0 0.01 0.5 1 0 0.01 0.5 1
1 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
2 (0,2.1) (0,1.72) (0,1.60) (0,1.55) (0,0.88) (0,0.67) (0,0.95) (0,1.05)
3 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

(0,4.67) (0,3.73) (0,3.61) (0,3.50) (0,3.24) (0,2.26) (0,2.42) (0,2.46)
4 (0,2.4) (0,1.90) (0,1.97) (0,1.90) (0,2.02) (0,1.39) (0,1.31) (0,1.28)

(0,7.0) (0,5.46) (0,5.35) (0,5.17) (0,4.92) (0,3.35) (0,3.39) (0,3.50)
5 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

(0,4.8) (0,3.69) (0,3.56) (0,3.67) (0,4.1) (0,2.68) (0,2.58) (0,2.60)
(0,9.6) (0,7.30) (0,6.85) (0,7.06) (0,7.3) (0,4.83) (0,4.87) (0,4.98)

6 (0,2.46) (0,1.77) (0,1.61) (0,1.59) (0,1.87) (0,1.22) (0,1.11) (0,1.16)
(0,7.57) (0,5.46) (0,5.05) (0,4.99) (0,6.08) (0,3.93) (0,3.70) (0,3.76)
(0,12.63) (0,9.01) (0,8.21) (0,8.09) (0,9.2) (0,5.95) (0,5.86) (0,6.06)
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dipole, consisting of magnetic charges, and represents
therefore the counterpart of a physical electric dipole
field.

The magnetic dipole moment of the monopole-
antimonopole chains vanishes for odd m. For even m it
increases almost linearly with increasing m, as can be
seen from Table I. We obtain an estimate for the dipole
moment by considering only the magnetic charges as
sources for the magnetic field. With the charges located
at the nodes of the Higgs field, the estimate becomes [18]

�est�m� �
Xm
i�1

1

e
ziPi; (49)

with charges Pi � 1 for monopoles and Pi � �1 for
antimonopoles, respectively. The deviation of these esti-
mated magnetic dipole moments from the exact values is
within � 10%. Indeed, the estimate simply corresponds
to Eq. (43), leaving out the current contribution Eq. (45).
Thus we see, that the current contribution is only small,
with the two terms in the current contribution almost
cancelling each other.

Considering the � dependence, we observe that the
magnetic moments decrease with increasing �. In par-
ticular, they show already a considerable decrease at
� � 0:01.

Let us now consider chains consisting of multimono-
poles with ’ winding number n � 2. These chains also
possess m nodes of the Higgs field on the z-axis, but these
are now associated with the location of double magnetic
charges. Thus these MACs are composed of charge 2-
monopoles and charge 2-antimonopoles, located in alter-
nating order on the symmetry axis.

The topological charge of these MACs is either two
(for odd m) or zero (for evenm). The m � 1 solution is the
axially symmetric multimonopole with charge two [4–8].
The m � 3 and m � 5 chains represent saddle points with
065010
topological charge two. The m � 2 chain, first obtained
in a modified model [19], as well as the m � 4 and m � 6
chains represent saddle points in the vacuum sector.

The energy density of axially symmetric multimono-
pole solutions has a toruslike shape. Consequently, the
energy density of these MACs composed of charge 2-
monopoles and charge 2-antimonopoles represents a su-
perposition of m tori, located symmetrically with respect
to the nodes of the Higgs field. In particular, the rings
formed by the maxima of the energy density lie in planes
parallel to the xy-plane, intersecting the symmetry axis
close to the nodes of the Higgs field. As for the chains
composed of singly charged monopoles and antimono-
poles, the maxima of the energy density of these MACs
composed of doubly charged monopoles and antimono-
poles are of similar magnitude for a given MAC, while
their height decreases when the number of nodes of the
MACs increases. We exhibit in Fig. 5 the dimensionless
energy density, the modulus of the Higgs field, and the
magnetic field of the MACs with m � 4, n � 2 and � � 0
and � � 0:5.

An increase of the Higgs self-coupling constant �
makes the maxima of the energy density higher and
sharper, and at the same time, the modulus of the Higgs
field tends faster and further towards its vacuum expec-
tation value in between the locations of the monopoles.

We exhibit the energies of MACs with m � 1; . . . ; 6
and n � 2 in Table I for several values of the Higgs self-
coupling constant �. As for the n � 1 MACs, the energies
of these n � 2 MACs also increase (almost) linearly with
m, and can be modeled well with the energy estimate
Eq. (48), as seen in Fig. 3. Likewise, with increasing � the
energies of these MACs also increase.

The locations of the nodes of the Higgs field of the
monopole-antimonopole chains with m � 1; . . . ; 6, n � 2
are shown in Table II for several values of �. When each
-9



FIG. 4. The field lines of the magnetic field are shown as function of " and z for monopole-antimonopole chains with m �
1; . . . ; 6, n � 1, in the BPS limit (� � 0). Note the different scaling of the "- and z-axis.
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pole carries charge two, the monopoles and antimono-
poles experience a higher mutual attraction, which results
in an overall smaller equilibrium distance between the
poles, and thus a shorter length of the chains (as mea-
sured by the largest nodes).

The equilibrium distance of the monopole-
antimonopole pair composed of n � 2 multimonopoles
is considerably smaller than the equilibrium distance of
the monopole-antimonopole pair composed of n � 1
monopoles. Thus the higher attraction between the poles
065010
of a pair with charge n � 2 is balanced by repulsion only
at a smaller equilibrium distance.

Furthermore, when each pole carries charge n � 2, the
nodes of the Higgs field are no longer roughly equally
spaced, not even for small and vanishing Higgs self-
coupling constant �, in contrast to n � 1 MACs.
Instead the nodes form pairs (for all values of �), where
the distance between the monopole and the antimonopole
of a pair is less than the distance to the neighboring
monopole or antimonopole, belonging to the next pair.
-10



FIG. 5. The dimensionless energy density, the field lines of the magnetic fields, and dimensionless modulus of the Higgs field
along the symmetry axis are shown for monopole-antimonopole chain with m � 4, n � 2 for � � 0 and � � 0:5.
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In the BPS limit, for instance, the distances between the
nodes of the MAC with m � 5, n � 2, are 3.2 for the
outer pairs, but 4.1 between the inner nodes, and for the
MAC withm � 6, n � 2, the distances between the nodes
are 3.12 for the outer pairs, 3.74 for the inner pair, but
4.21 for the nodes between the pairs.

The effect of a finite Higgs self-coupling � on the
location of the nodes is more complicated for chains
with n � 2 than for chains with n � 1. In particular
the charge 2-monopole charge 2-antimonopole pair
shows a strong nonmonotonic � dependence of its nodes.

The magnetic moments of MACs with m � 1; . . . ; 6
and n � 2 are shown in Table I for several values of the
Higgs self-coupling constant � [25]. The magnetic mo-
ments of these MACs also increase (almost) linearly with
m for the chains with even m, and vanish of course for
chains with odd m. Also, with increasing �, the magnetic
065010
moments of these MACs decrease. The simple estimate
Eq. (49), however, no longer represents a good approxi-
mation for the magnetic moments of these n � 2 MACs.
Here the electric current contributes significantly to the
magnetic moments.

In Fig. 5 we exhibit the magnetic field lines of MACs
with m � 4, n � 2 for � � 0 and � � 0:5. The chains
with odd m give rise to an asymptotic magnetic monopole
field, whereas the chains with even m give rise to an
asymptotic magnetic dipole field.

C. Vortex rings

Let us now consider solutions with ’ winding number
n > 2. In the BPS limit, when n > 2, the solutions com-
pletely change character [20]. The Higgs field of n > 2
solutions then possesses vortex rings, instead of possess-
-11
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ing only isolated nodes on the symmetry axis, i.e., the
Higgs field vanishes on rings in the xy-plane or in planes
parallel to the xy-plane [20].

As seen above, in monopole-antimonopole chains with
n � 1 the nodes of the Higgs field, indicating the loca-
tions of the monopoles and antimonopoles, are roughly
equally spaced (with a small tendency towards forming
pairs for the larger values of the Higgs self-coupling
constant). In chains consisting of charge 2-monopoles
and charge 2-antimonopoles, however, the nodes of the
Higgs field always form pairs, when possible, and the
equilibrium distance between the poles of a pair is less
than the equilibrium distance to the neighboring poles. At
the same time the equilibrium distance between the poles
of a pair composed of n � 2 multimonopoles is less than
the equilibrium distance between the poles of an n � 1
pair, indicating that the higher attraction between the
poles of an n � 2 pair is balanced by repulsion only at a
smaller equilibrium distance.

If this trend were to continue for monopole-
antimonopole chains consisting of poles with charge
n > 2, the poles of the pairs would approach each other
still further, and settle at still smaller equilibrium dis-
tances, if possible. When constructing solutions with ’
winding number n � 3 in the BPS limit, however, we do
not find chains at all. Thus there is no longer sufficient
repulsion to balance the strong attraction between n � 3
poles within pairs, to keep the poles apart at a finite
equilibrium distance.

For n � 3 then, instead of solutions possessing only
isolated nodes on the symmetry axis, solutions with
vortex rings arise, where the Higgs field vanishes on
closed rings centered around the symmetry axis. For
even * winding number m, the solutions possess only
vortex rings and no nodes on the symmetry axis. These
solutions reside in the topologically trivial sector. For odd
* winding number m, the solutions possess vortex rings
as well as a node at the origin, where a charge
n-monopole is located. Thus these solutions reside in the
topological sector with charge n.

In the following we first consider solutions in the
topologically trivial sector, and then solutions with
charge n. We also address the influence of a finite Higgs
self-coupling constant on these solutions.

1. Vortex solutions with n > 2 and even m

Let us begin with considering the even m solutions,
since they are simpler in structure than the odd m solu-
tions. In monopole-antimonopole chains then all m � 2k
nodes are members of a pair. These k pairs in solutions
with n � 2 then give rise to k vortex rings in solutions
with n � 3 in the BPS limit. This is demonstrated below
for solutions with m � 2, 4 and 6, respectively. The
structure of the solutions may be more complicated,
when finite values of � are employed.
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We start with the simplest set of vortex solutions,
namely, solutions with m � 2 and n � 3. In order to
gain more insight, into how the solutions with vortex
rings arise, we consider unphysical intermediate configu-
rations, where we allow the ’ winding number n to vary
continuously between the physical integer values.

As observed above, the equilibrium distance of the
nodes of the monopole-antimonopole pair decreases con-
siderably, when the ’ winding number n is increased
from one to two, and we expect this trend to continue
when n increases further. Indeed, when n is (continu-
ously) increased beyond two, we observe that the nodes
of the solutions continue to approach each other, until they
merge at the origin at some critical value ~n � 2:18. Here
the pole and antipole do not annihilate, however. Instead
the node of the Higgs field changes its character. As n is
increased further, the node moves onto the "-axis and
forms a vortex ring in the xy-plane. With further increas-
ing n this vortex ring increases in size. At the physical
value n � 3, the solution thus possesses a vortex ring.
When n is increased further, the vortex ring increases
further in size. The n dependence of the node(s) of the
Higgs field in the vicinity of the critical value ~n is shown
in Fig. 6 for m � 2 solutions in the BPS limit.

In these solutions, the energy density is toruslike. The
maximum of the energy density then also forms a ring.
The height of the maximum decreases with increasing n,
and its location moves further outwards. With increasing
Higgs self-coupling constant �, the maximum becomes
higher and sharper. We exhibit in Fig. 7 the dimensionless
energy density, the modulus of the Higgs field, and the
magnetic field of the vortex solutions with m � 2, n � 4
and � � 0 and � � 0:5.
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FIG. 7. The dimensionless energy density, the dimensionless modulus of the Higgs field, and the field lines of the magnetic fields
are shown for the solution with m � 4, n � 2 for � � 0 and � � 0:5.
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With increasing n, the location of the vortex ring
moves outwards. For small Higgs self-coupling constant
� the ring size increases strongly with n, while for large �
it increases much less and (almost) linearly with n. Thus
for fixed n and increasing �, the size of the ring is getting
smaller. With increasing �, furthermore, the modulus of
the Higgs field tends faster and further towards its vac-
uum expectation value away from the vortex ring.

The location of the maximum of the energy density is
close to the location of the vortex ring of the Higgs field
for large Higgs self-coupling constant �. For small � the
maximum of the energy density is located slightly beyond
the vortex ring.

We exhibit the energies of these vortex solutions with
m � 2, n � 3; . . . ; 6, in Table III for several values of the
Higgs self-coupling constant �. With increasing �, the
energies increase. The energies of these vortex solutions
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increase (almost) linearly with n, and can be modeled
well by the estimate

~E �n�
est � E�3� � �n� 3�$ ~E; (50)

This energy estimate is illustrated in Fig. 8. The deviation
of the estimated energies from the exact energies is small
for the vortex solution. The estimate clearly deviates for
the n � 1 and n � 2 chains, also included in the figure.

The location of the vortex ring of these vortex solutions
is shown in Table III. We observe that the radius of the
vortex ring grows roughly linearly with n, for all values
of � considered.

Turning to the electromagnetic properties of the vortex
solutions, we observe, that the magnetic moments of the
m � 2 solutions, with n � 3; . . . ; 6, shown in Table III,
also increase with n. (�=n increases almost linearly
-13



TABLE III. The dimensionless energy, the dimensionless dipole moment per winding number, and the location of the nodes of
the Higgs field of the vortex solutions with m � 2, n � 3; . . . ; 6 for several values of �.

E 4��� � �=n 1=e� � x�i�0 � �"i;�zi�

n=� 0 0.01 0.5 1 0 0.01 0.5 1 0 0.01 0.5 1
3 4.03 5.20 7.75 8.36 5.20 3.48 2.12 1.98 (3.02,0) (2.09,0) (1.69,0) (1.61,0)
4 5.01 6.68 10.0 10.79 5.75 3.67 2.29 2.14 (4.92,0) (3.26,0) (2.41,0) (2.25,0)
5 5.93 8.12 12.18 13.20 6.32 3.89 2.49 2.32 (6.59,0) (4.22,0) (3.03,0) (2.84,0)
6 6.80 9.54 14.37 15.64 6.86 4.14 2.69 2.53 (8.17,0) (5.11,0) (3.64,0) (3.43,0)
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with n). For fixed n, the magnetic moments decrease with
increasing �.

It is tempting to interpret the origin of the magnetic
dipole moment as mainly arising from the vortex ring of
the Higgs field in the xy-plane. Inspection of the magnetic
field of the solutions, as exhibited in Fig. 7, seems to
support this interpretation. Indeed, the figure seems to
suggest that the ring represents a one dimensional dipole
density of mathematical magnetic dipoles, giving rise to
the magnetic field.

For a better understanding of the physical significance
of the vortex rings, we exhibit in Fig. 9 for the m � 2,
n � 3 solution the magnetic field lines in the vicinity of
the vortex ring. The vector potential A’ is discontinuous
at the vortex ring. The vortex ring itself clearly appears as
a source of magnetic field lines.

As demonstrated in Section II, the magnetic moment of
solutions without magnetic poles arises solely from the
current j’ (see Eq. (44)). Let us introduce the magneti-
zation ~M, representing a dipole density, present inside the
core of these vortex solutions, and interpret the presence
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FIG. 8. The estimate for the dimensionless energies is shown
as function of n for vortex solutions with m � 2, n � 3; . . . ; 6,
in the BPS limit (� � 0) and for � � 0:1, 0.5 and 1. The exact
energies are exhibited by the symbols. Included are also the
energies of the chains with m � 2, n � 1, 2.
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of the current in terms of the magnetization,

~j el �
~r� ~M: (51)

The fraction ��r� of the dipole moment � of the vortex
solutions present inside a sphere of radius r (centered at
the origin) is then obtained from

��r� � ��
Z
j’r02 sin*d*dr0; (52)

with ��1� � �. The function ��r� thus gives a clear
picture, where the magnetization is localized.

We exhibit the function ��r� in Fig. 9 for the vortex
solution with m � 2, n � 3, in the BPS limit and for
� � 1. As expected, we obtain little contribution to
��r� from the central region. As the radius approaches
the size of the vortex ring, we first obtain a negative
contribution to ��r�. At the radius of the vortex ring,
��r� rises discontinuously, and continues to rise steeply
close behind the vortex ring. Then ��r� levels off towards
its asymptotic value. The biggest change of ��r� happens
clearly in the vicinity of the vortex ring.

Let us next turn to the vortex solutions with m � 4.
When n � 2, two monopole-antimonopole pairs are
located on the symmetry axis, consisting of charge 2-
monopoles and charge 2-antimonopoles. When we in-
crease the ’ winding number n beyond two, via unphys-
ical configurations with noninteger n, we observe that the
nodes of each pair get closer until they merge on the
symmetry axis at the points �0;�~z�, when n reaches the
critical value ~n. When n is increased further, these two
nodes leave the axis and form two vortex rings located
symmetrically in planes parallel to the xy-plane. At the
physical value n � 3, the solution has thus two vortex
rings. With further increasing n, the vortex rings increase
in size.

We exhibit in Fig. 10 the dimensionless energy density,
the modulus of the Higgs field, and the magnetic field of
the vortex solutions with m � 4, n � 3 and � � 0 and
� � 0:5. With each vortex ring of the Higgs field a
maximum of the energy density is associated. Thus the
energy density of these vortex solutions consists of two
tori. (This is in contrast to the four tori present in the
monopole-antimonopole chains with n � 2.) An increase
of the Higgs self-coupling constant � makes the maxima
-14
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of the energy density higher and sharper. At the same
time, the modulus of the Higgs field tends faster and
further towards its vacuum expectation value away from
the vortex rings.

We exhibit the energies of the vortex solutions with
m � 2, n � 3; . . . ; 5, in Table IV for several values of the
Higgs self-coupling constant �. Also shown are the mag-
netic moments. Again, with increasing �, the energies
increase, and the magnetic moments decrease. The ener-
gies further increase (almost) linearly with n, and can be
modeled well by the estimate Eq. (50).

The location of the two vortex rings of these solutions
is shown in Table IV. We observe that the radius of the
vortex rings grows with n, while their distance from the
xy-plane decreases with n, yielding an (almost exact)
linear growth of the distance of the vortices from the
origin with n, for all values of � considered. Furthermore,
for finite � the radius of the vortex rings is smaller, and
they are closer to the xy-plane.

Considering vortex solutions with m � 2k > 2 we now
obtain the following scenario. Starting from k pairs of
physical dipoles located on the symmetry axis, these
pairs merge to form k vortex rings, when n is increased
beyond two. The k vortex rings then move further out-
wards when n is increased further.
TABLE IV. The dimensionless energy, the dimensionless dipole m
Higgs field of the vortex solutions with m � 4, n � 3; . . . ; 5 for se

E 4��� � �=n 1=e� �

n=� 0 0.01 0.5 1 0 0.01 0.5
3 6.63 9.36 15.01 16.22 9.96 6.03 3.75
4 8.00 11.74 19.07 20.57 10.65 6.08 3.81
5 9.25 14.01 22.84 24.65 11.40 6.23 3.94
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We illustrate this scenario for the case of m � 6 in
Fig. 11, where we exhibit the dimensionless energy den-
sity, the modulus of the Higgs field, and the magnetic field
of the vortex solutions with m � 6, n � 3 and � � 0 and
� � 0:5. Clearly, these solutions possess three vortices.

The energy and magnetic moments of vortex solutions
with m � 6, n � 3 and 4 are shown in Table V, together
with the locations of the nodes of the Higgs field. Energy
and dipole moment increase with n. With increasing �,
the energies increase, the magnetic moments decrease,
and the radius of the rings is getting smaller.

The above scenario needs to be considered with cau-
tion, though, when the Higgs self-coupling constant is
finite. When � is increased, the size of the vortex rings
decreases w. r. t. their BPS size. Intriguingly, however, the
central vortex ring of the vortex solution with n � 3
decreases so strongly in size, that it shrinks to zero size
at a critical value of the Higgs self-coupling constant �,
while the outer rings retain a finite size. The new node at
the origin then splits and a charge 3-monopole charge 3-
antimonopole pair appears on the symmetry axis, as � is
increased further. The solution is then a mixed configu-
ration with two vortex rings and a monopole-
antimonopole pair. With increasing � the poles then in-
crease their distance, until they reach some maximal
oment per winding number, and the location of the nodes of the
veral values of �.

x�i�0 � �"i;�zi�

1 0 0.01 0.5 1
3.50 (3.06,3.10) (1.83,1.90) (1.63,1.68) (1.57,1.60)
3.58 (5.44,2.81) (3.16,1.59) (2.30,1.52) (2.16,1.47)
3.72 (7.45,2.62) (4.19,1.40) (2.85,1.43) (2.67,1.40)
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FIG. 10. The dimensionless energy density, the dimensionless modulus of the Higgs field, and the field lines of the magnetic field
are shown as function of " and z for solutions with m � 4, n � 3 in the BPS limit (� � 0) and for � � 0:5.
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distance. A further increase of � then decreases the
distance of the pair again, until at a second critical value
of � the poles merge again at the origin. When � is
increased still further, a central vortex ring is formed
again.

2. Vortex solutions with n > 2 and odd m

Let us now turn to the solutions with odd * winding
number m, and with ’ winding number n > 2, residing in
the topological sector with charge n.

The monopole-antimonopole chains, present for n � 1
and n � 2, possess m � 4k� 1 or m � 4k� 1 nodes on
the symmetry axis, with one node always located at the
origin. When m � 4k� 1, there are 2k nodes on
the positive z-axis and 2k nodes on the negative z-axis,
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forming a total of 2k pairs. These pairs give rise to 2k
vortex rings for solutions with n � 3. This is demon-
strated below for solutions with m � 5, which possess
two vortex rings. For solutions with m � 4k� 1 the
situation is more complicated, since in addition to the
central node at the origin, there are two more unpaired
nodes on the symmetry axis. Here a new mechanism
arises, which gives rise to vortex rings. Consequently,
the odd m solutions consist of one or more vortex rings
and a multimonopole of charge n. Thus they form vortex-
monopole bound systems.

Apart from the additional node located at the origin,
the evolution of the nodes of the m � 4k� 1 solutions
with increasing n is similar to the case of solutions with
even m, discussed above. When n increases (continu-
ously), the single n-monopole located at the origin re-
-16



FIG. 11. The dimensionless energy density, the dimensionless modulus of the Higgs field, and the field lines of the magnetic field
are shown as function of " and z for solutions with m � 6, n � 3 in the BPS limit (� � 0) and for � � 0:5.
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mains an isolated pole, whereas the other nodes form
pairs, where the two poles approach each other, merge
and then form a ring, increasing in size with n.

Before the poles of the pairs merge, they represent
positive physical dipoles on the positive z-axis and nega-
TABLE V. The dimensionless energy, the dimensionless dipole m
Higgs field of the vortex solutions with m � 6, n � 3, 4 for severa

E 4��� � �=n 1=e� �

n=� 0 0.01 0.5 1 0 0.01 0.5
3 8.93 13.40 22.20 24.00 15.06 8.33 5.33

4 10.60 16.60 28.02 30.26 15.84 8.19 5.27
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tive dipoles on the negative z-axis. Thus because of their
symmetry w. r. t. reflection on the xy-plane, their dipole
moments cancel, and the total magnetic moment of the
configuration vanishes accordingly. As the poles of the
pairs merge and the nodes form rings, the magnetic mo-
oment per winding number, and the location of the nodes of the
l values of �.

x�i�0 � �"i;�zi�

1 0 0.01 0.5 1
5.00 (1.58,0) (0.49,0) (1.55,0) (1.52,0)

(3.37,6.91) (1.83,3.98) (1.63,3.33) (1.58,3.20)
4.99 (5.21,0) (2.70,0) (2.17,0) (2.05,0)

(6.00,6.33) (3.18,3.37) (2.31,3.00) (2.17,2.91)
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ment remains zero, as it must, because of the symmetry of
the ansatz. The electric current contributions, associated
with the vortices in the upper and lower hemisphere,
cancel.

A finite Higgs self-coupling does not change this pat-
tern. Only the maxima of the energy density are getting
higher and sharper, as seen in Fig. 12, for the solution
with m � 5 and n � 3, for � � 0 and � � 0:5, corre-
sponding to the first such solution (where k � 1). Shown
in the figure are also the modulus of the Higgs field and
the magnetic field.

The energy density of the m � 5 solution consists of
the three tori. The outer two of these tori are associated
with the vortex rings, while the inner torus represents the
toruslike energy density of the multimonopole at the
origin. The m � 5 solution is thus a bound system of
two vortices and a multimonopole.
FIG. 12. The dimensionless energy density, the dimensionless mo
are shown as function of " and z for vortex-monopole bound system
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The energies of the m � 5 vortex-monopole bound
systems with n � 3; . . . ; 5 are presented in Table VI for
several values of �. Their magnetic moments vanish. The
energies show again an (almost) linear dependence on n,
and are well approximated by Eq. (50). They increase
with �. The location of the vortex rings is exhibited in
TableVI. The distance of the vortex rings from the central
monopole increases (almost) linearly with n. The vortex
rings decrease in size and move closer to the xy-plane,
when � is increased.

Let us finally consider monopole-vortex bound systems
with m � 4k� 1. Here the situation is more complicated,
since in addition to the central node at the origin, there
are two more unpaired nodes, one on each side of the
symmetry axis. Clearly, a new mechanism must be in-
volved, which can give rise to vortex rings. At the very
least, one could imagine that, as n increases, the unpaired
dulus of the Higgs field, and the field lines of the magnetic field
with m � 5, n � 3 in the BPS limit (� � 0) and for � � 0:5.
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TABLE VI. The dimensionless energy and the location of the
nodes of the Higgs field of the vortex solutions with m � 5,
n � 3; . . . ; 5 for several values of �.

E 4��� � x�i�0 � �"i;�zi�

n=� 0 0.01 0.5 0 0.01 0.5
3 7.96 11.66 19.18 (0,0) (0,0) (0,0)

(3.11,5.16) (1.74,3.07) (1.64,2.68)
4 9.59 14.66 24.69 (0,0) (0,0) (0,0)

(5.69,4.73) (3.10,2.59) (2.35,2.32)
5 11.10 17.55 29.95 (0,0) (0,0) (0,0)

(7.88,4.44) (4.16,2.25) (2.93,2.09)
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nodes (corresponding to monopoles) and the central node
(corresponding to an antimonopole) merge at the origin,
and then give rise to a vortex ring in the xy-plane, while a
monopole remains at the origin. The vortex ring itself,
however, should then be of a different type, since no
magnetic moment might be associated with it.

To gain some understanding of the structure of the m �
4k� 1 solutions and of the mechanism giving rise to
vortex rings, we consider the simplest case (k � 1), and
thus solutions with m � 3. Again we treat the winding
number n as a continuous parameter and consider un-
physical intermediate configurations with noninteger n
beyond the n � 2 chain.

We start with a configuration with a monopole on the
positive z-axis, an antimonopole at the origin and another
monopole on the negative z-axis. All poles carry charge
two. Thus in the initial state there are three poles located
on the z-axis. Clearly, these cannot form a pair while
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FIG. 13. The nodes of the Higgs field are shown for solut
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respecting the symmetries. Thus a new mechanism is
required.

When n is increased beyond two, the poles approach
each other, i.e., the monopoles on the symmetry axis
move towards the antimonopole at the origin. But before
the monopoles reach the origin, a bifurcation occurs at a
critical value of n, ~n � 2:72, where vortex rings emerge
from the monopoles on the symmetry axis. The dipoles of
the vortex rings have opposite orientation and therefore
keep the magnetic moment of the solutions equal to zero.
When n is increased further, the vortex rings increase in
size and move closer to the xy-plane. At the same time,
the monopoles on the symmetry axis further approach the
origin, until they merge with the antimonopole. Thus a
single node is left on the symmetry axis, located at the
origin. For the physical value of n � 3 we thus observe a
solution with a pole at the origin and two vortex rings in
planes parallel to the xy-plane.

As n is increased further, beyond n � 3, the pole at the
origin also bifurcates at a critical value of n, and sprouts a
vortex ring. The vortex ring is of a different type, how-
ever, since no dipole field is associated with it, and it does
not contribute to the magnetic moment. This central vor-
tex ring is located in the xy-plane and grows in size with
increasing n. For n � 4 the solution then represents a
bound system composed of a pole at the origin and three
vortex rings.

As n is increased still further, beyond n � 4, the two
vortex rings above and below the xy-plane approach this
plane, and at the same time the size of the third vortex
ring, located in the xy-plane, approaches the size of these
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two vortex rings. Therefore at a further critical value ~n �
4:8, all three rings merge, leaving a single vortex ring in
the xy-plane. The n � 5 solution therefore is a bound
system composed of a pole at the origin and a single
vortex ring, located in the xy-plane. The evolution of
the nodes for integer values of n is illustrated in
Fig. 13, for � � 0.

For the chain with n � 2 we observe a superposition of
three tori, each corresponding to a multimonopole. For
n � 3 the energy density still consists of a superposition
of three tori, but now only the central torus corresponds
to the energy density of a multimonopole, whereas the
FIG. 14. The dimensionless modulus of the Higgs field (with none
are shown as function of " and z for solutions with m � 3, n � 3
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outer tori represent the energy density of vortex rings. For
n � 4 the various contributions to the energy density are
no longer resolved, but form a single broad torus, which
becomes flatter and grows in size with further increasing
values of n.

We exhibit in Fig. 14 contour lines of the modulus of
the Higgs field and the field lines of the magnetic field of
the solutions with m � 3 and n � 3; . . . ; 5, in the BPS
limit (� � 0). One clearly sees the dipole patterns asso-
ciated with the upper and lower vortex rings, while no
such pattern appears for the central vortex ring, present in
the n � 4 solution. The single vortex ring of the n � 5
quidistant contour lines), and the field lines of the magnetic field
; . . . ; 5 are shown in the BPS limit (� � 0).
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solution clearly reveals its composed structure, by keep-
ing the dipole patterns from the former outer vortex rings.

The Higgs field orientation for solutions with m � 3,
n � 2; . . . ; 5, in the BPS limit is illustrated in Fig. 15.

We exhibit the energies of the solutions with m � 3,
n � 3; . . . ; 5, in Table VII for several values of the Higgs
self-coupling constant �. The magnetic moments vanish.
Again, with increasing �, the energies increase. Also the
energies of these solutions increase (almost) linearly with
n, and can thus be modeled well by the estimate Eq. (50),
even though they change their structure considerably with
n, possessing first two vortex rings, then three and finally
a single one.

The location of the nodes of these solutions, the central
node and the vortex rings, is shown in Table VII. The
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FIG. 15. Higgs field orientation in the xz-plane for the solution
m � 3, n � 4 (lower left), and m � 3, n � 5 (lower right), for � �
rings.
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radius of the vortex rings grows with n, and the distance
of the outermost vortex ring(s) from the origin again
shows an (almost) linear growth. With increasing � the
radius of the vortex rings is getting smaller, and the outer
rings move closer towards the xy-plane.

For large values of � the pattern of change of the nodes
with n starts to deviate from the pattern discussed above.
For instance, when � increases beyond 0.11 the n � 4
solution has a single vortex ring in the xy-plane, whereas
the n � 3 solution still has two vortex rings in parallel
planes. Moreover, when � increases beyond 0.77 the n � 3
solution still represents a monopole-antimonopole chain.

For large values of � the numerical accuracy of the
solutions deteriorates, resulting rather large errors for
Higgs field, which is rapidly changing in the vicinity of
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0. The asterisks indicate the location of the nodes and the vortex
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TABLE VII. The dimensionless energy and the location of
the nodes of the Higgs field of the vortex solutions with m � 3,
n � 3; . . . ; 5 for several values of �.

E 4��� � x�i�0 � �"i;�zi�

n=� 0 0.01 0.5 0 0.01 0.5
3 5.62 7.69 12.24 (0,0) (0,0) (0,0)

(2.17,1.31) (1.35,0.82) (0.66,0.58)
4 6.96 9.91 16.19 (0,0) (0,0) (0,0)

(3.63,0) (2.32,0) (1.84,0)
(4.34,0.83) (2.61,0.41)

5 8.23 12.13 20.06 (0,0) (0,0) (0,0)
(6.27,0) (3.77,0) (2.87,0)
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the nodes. The numerical calculations indicate the possi-
bility that the solutions for given values of the winding
numbers m and n and given larger values of � are not
unique, but that several solutions with different structure
concerning the nodes of the Higgs field might exist. This
possibility will be explored elsewhere.
IV. CONCLUSIONS

We have constructed new static axially symmetric
solutions of SU�2� Yang-Mills-Higgs theory, representing
monopole-antimonopole chains, vortex rings, and
vortex-monopole bound systems. The solutions are char-
acterized by two integers, their * winding number m and
their ’ winding number n. Solutions with even m carry
no magnetic charge but possess a nonvanishing magnetic
dipole moment, whereas solutions with odd m carry
unit magnetic charge but possess no magnetic dipole
moment.

For n � 1 and 2, the solutions represent monopole-
antimonopole chains, where monopoles and antimono-
poles are located in alternating order on the symmetry
axis at the nodes of the Higgs field. Each monopole or
antimonopole carries charge �n, m corresponds to the
total number of monopoles and antimonopoles. We inter-
pret these monopole-antimonopole chains as equilibrium
states of m monopoles and antimonopoles.

The force between monopoles is given by twice the
Coulomb force when the charges are unequal, and van-
ishes when the charges are equal, provided the monopoles
are at large distances [13]. Thus, monopoles and antimo-
nopoles can only be in static equilibrium, when they are
close enough to experience a repulsive force that counter-
acts the attractive Coulomb force. Monopole-
antimonopole chains are essentially non-BPS solutions.

Whereas for n � 2 the Higgs field vanishes on m dis-
crete points on the symmetry axis, for n > 2 a new
phenomenon occurs. The nodes of the Higgs field then
no longer only form a set of isolated points, located on the
symmetry axis. Instead the nodes of the Higgs field can
form vortex rings, centered around the symmetry axis.
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When m is even, i.e.,m � 2k, the monopoles and anti-
monopoles of the n � 2 monopole-antimonopole chains
form k pairs. The dipole moments from these pairs all
contribute additively to the magnetic moment of the
chain. In the BPS limit, these give rise to k vortex rings,
when n > 2. Now these vortex rings are associated with
the magnetic moment of the solutions. When the Higgs
self-coupling constant is finite, solutions with both vortex
rings and monopole-antimonopole pairs can arise.

When m is odd, we need to consider the cases m �
4k� 1 and m � 4k� 1 separately. When m � 4k� 1,
the monopoles and antimonopoles of the n � 2
monopole-antimonopole chains form 2k pairs, where a
single monopole remains at the origin. Here the contri-
butions to the dipole moment from the pairs on the upper
and lower symmetry axis cancel. These pairs give rise to
2k vortex rings, when n > 2. Again, the dipole contribu-
tions from the vortex rings cancel. The solutions represent
vortex-monopole bound systems.

When m � 4k� 1, a new mechanism arises, leading to
vortex rings. Here there are three unpaired poles on the
symmetry axis in the n � 2 monopole-antimonopole
chains, an antimonopole located at the center and two
monopoles located symmetrically w. r. t. the center. In
such solutions vortex rings are (now also) sprouted
from these two unpaired monopoles, when n > 2.
Interestingly, also the node at the origin can bifurcate
and give rise to a vortex ring. This ring, however, is
different in character, since it is not associated with a
dipole field.

As outlined in [22,26], analogous dyonic solutions can
be readily obtained from these chains, vortex solutions,
and vortex-monopole bound systems. Interestingly, such
solutions then carry electric charge even in the vacuum
sector.

When the gravitational interaction is included, we
anticipate a different behavior for solutions with finite
magnetic charge and those with vanishing magnetic
charge. For magnetically charged solutions a degenerate
horizon may form for a critical value of the gravitional
parameter, as observed for monopoles [27] and multi-
monopoles [28]. On the other hand, no formation of a
horizon was found for the gravitating monopole-
antimonopole pair [29].

We expect that solutions analogous to the chains exist
also in the Weinberg-Salam model [21,30,31], generaliz-
ing the sphaleron-antisphaleron pair [31]. The axially
symmetric Ansatz with ’ winding number n and * wind-
ing number m [21] then should allow for multisphaleron-
antimultisphaleron chains and for solutions with vortex
rings.

Rings of vanishing or small Higgs field are also present
in Alice electrodynamics, where they carry magnetic
Cheshire charge [32], while closed knotted vortices can
arise in theories, allowing for solutions with nontrivial
Hopf number [33].
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