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Vacuum fluctuations and Brownian motion of a charged test particle near a reflecting boundary
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We study the Brownian motion of a charged test particle coupled to electromagnetic vacuum
fluctuations near a perfectly reflecting plane boundary. The presence of the boundary modifies the
quantum fluctuations of the electric field, which in turn modifies the motion of the test particle. We
calculate the resulting mean squared fluctuations in the velocity and position of the test particle. In the
case of directions transverse to the boundary, the results are negative. This can be interpreted as
reducing the quantum uncertainty which would otherwise be present.
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L. INTRODUCTION

In quantum electrodynamics, the effects of electro-
magnetic vacuum fluctuations upon an electron in empty
space are usually regarded as unobservable. The divergent
parts of the electron self-energy are absorbed by mass
and wave function renormalizations, and the finite self-
energy function can be taken to vanish for real (as op-
posed to virtual) electrons. However, changes in the
vacuum fluctuations can produce observable effects.
The Lamb shift and the Casimir effect are two examples
of this.

In the present paper, we wish to discuss a very simple
situation, the Brownian motion of a charged particle
coupled to the quantized electromagnetic field. Just as a
classical stochastic field will cause random motion of a
test particle, one might also expect Brownian motion to
be caused by quantum fluctuations. It is unclear whether
this motion can be observable in the Minkowski vacuum
state, although Gour and Sriramkumar [1] argue that it
might be. Jaekel and Reynaud [2] have also discussed this
issue in the context of mirrors coupled to vacuum
fluctuations. Here we will be concerned with shifts due
to the quantum state of the field being other than the
Minkowski vacuum. One simple way to cause a nontrivial
shift in the vacuum fluctuations is to introduce a reflect-
ing boundary. In this paper, we will discuss the case of a
single, perfectly reflecting plate, and calculate the effects
of the modified electromagnetic vacuum fluctuations
upon the motion of a charged test particle. The analogous
calculations for the case of an uncharged, polarizable test
particle were reported in Ref. [3]. The present problem
bears some analogy to the problem of light cone fluctua-
tions, where photons undergo Brownian motion due to
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modified quantum fluctuations of the quantized gravita-
tional field [4-6].

IL. THE LANGEVIN EQUATION AND ITS
SOLUTIONS

We treat the particle as a point particle of mass m and
electric charge e. In the limit of low velocities, the
velocity v satisfies the nonrelativistic equation of motion
with only an electric force term:

KA T (1)
dt m

We will restrict our attention to the case where the parti-
cle does not move significantly, so we can assume the
position x to be constant. We also assume that dissipation
can be ignored. If the particle starts at rest at time ¢t = 0,
then at time ¢ the velocity is

v=2 f "E(x, 1)d1, )
m jo

and the mean squared speed in the i-direction is (no sum
on i)

2 t t
oy =5 1 [ KE S E X )~ Ex )
X(E(x, 1))]d1,db. 3)

In general, there may be a classical, nonfluctuating field in
addition to the fluctuating quantum field. However, in this
case the electric field correlation function which appears
in Eq. (3) is just the quantum field two-point function. Let
the electric field be expressed as a sum of a classical and a
quantum part: E = E. + E_, where (E) = E.. Then

(E(x, 1))E(X, 15)) — (E(x, 1)XE(X, 1))
= <Eq(X, tl)Eq(X: t2)>- (4)

Thus Eq. (3) describes the velocity fluctuations around the
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mean trajectory caused by the classical field. Hence-
forth, we will drop the ¢ subscript and understand
(E(x, t;)E(x, 1)) to be the quantum two-point function.

In the presence of a boundary, this two-point function
can be expressed as a sum of the Minkowski vacuum term
and a correction term due to the boundary:

(EMWEWX)) =(E@EX)) + (EQEX)z (5

where the correction term is finite in the coincidence limit
x' = x, so long as the point is not actually on the bound-
ary. The Minkowski vacuum term would produce a for-
mally divergent contribution to (Av?). However, as dis-
cussed above, this contribution is not expected to produce
any observable consequences. Thus, we will keep only the
boundary-dependent contribution, and write

2 t t
opy =& [ [ E&E& Dd ©)
m 0J0

In the case of a single, perfectly reflecting plate,
(E(x)E(x'))g can be obtained by images [7]. Let the plate
be located in the z = 0 plane. At a point a distance z from
the plate, the components of (E(x, 1;)E(x, 1,))x are'

(E(x, 1)E,(x,1")) = (E,(x, ) E,(x, 1))
A + 472

R

and

1

(E.(x, E.(x,1")) = AL —a2p

®)

The velocity dispersion in the x-direction is given by

2
(Av2) = (Av2) = < f ’ / NEL(x, )E,(x, "))dt'dt"
m 0Jo

2 A + 472
=T jzftft A2 Z23dt/dt”
m*m* Jo Jo m (A — 4z7%)
e’ ffZ([—T)(T2+4ZZ)
dr

o 2m? Jo 7272 — 472

&2 L 27 + 1\2 2
= n - .
mm? [64z3 <ZZ - t) 8z2(2 — 422)}
9)

It should be pointed out that the above expression is
singular at t = 2z. This corresponds to a time interval
equal to the round-trip light travel time between the
particle and the plane boundary. Presumably, this might
be a result of our assumption of a rigid perfectly reflect-
ing plane boundary, and would thus be smeared out in a
more realistic treatment. For ¢ > z, Eq. (9) becomes

"Lorentz-Heaviside units with ¢ = & = 1 will be used here,
except as otherwise noted.
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e 1 8e? Z?
3mm? 2 Swim?

(Avg) = (Av)) =~ — (10)
Therefore, the mean squared velocity fluctuation in the
directions parallel to plane decreases to zero as time
approaches to infinity.

The velocity dispersion in the z-direction is

2
(A2 =< f ’ f E.(x, )E.(x, f")di'di"
nm 0Jo0

ezt 27 + £1\2
= 1 . 11
mm? 3273 n<2z - t) (i
For t > z,
2 2
4 1 e 1
(Avg) =~ dm?m? 22 3mm? 2 (12)

Unlike the velocity dispersion in the transverse direc-
tions, that in the direction perpendicular to the plate
approaches a nonzero constant value at late times. The
fact it does not continue to grow in time can be under-
stood as a consequence of energy conservation. Unlike the
case of Brownian motion due to thermal noise, here no
dissipation is needed for (Av?) to be bounded at late
times.

The mean squared position fluctuation in the
x-direction can be calculated as follows

(Ax?) = fldtl ft' dr' f dt, flz dt"(E (x, t')E(x, "))
0 0 0 0
62 3 2

I t+2z\2 t
n _
(; - 2z> 2477

1t
mrm? [192z3

m
-1 m(lz ;Zj*) } (13)
Fort> 7
(Ax?) = (Ay?) ~ — 37;2’%2 In(r/22). (14)

The corresponding position fluctuation in the z direction
is

2 1 £ t+2z2\2 1
(A2) = — 2[ + ln< Z) +2
T-m

2472 9672\t —2z 6
12— 472
X1 ) 15
n( 472 ﬂ (1>

and its limiting form for > z is

2

e [ £ +1 1n<i> + 1y O(ZZ/IZ)} (16)

Az ~ i
(Az) mm?| 822 3 \2z) 9

Recall that we have assumed that the particle does not
significantly change its position, that is, (Az?) < z%. This
condition will be fulfilled so long as
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<

(mz)z. (17)

Note that mz is the ratio of the distance to the plate to the
Compton wavelength of the particle, which is typically
very large. Thus Eqgs. (15) and (16) can be valid for times
long compared to z, the light travel time to the plate.

Here we should also note that we have assumed no
dissipation. In the case of a ground state, such as a
Casimir vacuum, it would seem that there is no possibility
of dissipation. However, we are dealing with a situation
where the interaction between the charged particle and
the quantized electromagnetic field is switched on sud-
denly, and a finite time is required for the system to settle
into its steady state. During that time, dissipation of
energy suppled by the act of switching is possible. The
most likely source of dissipation here is radiation by the
particle. This can be estimated using the Larmor formula,
which gives the average power radiated by a nonrelativ-
istic particle with acceleration a to be

e, et
P=—qa =
67 61 m?
where in the second step we have used Eq. (1). After a
time ¢, a particle radiating at this rate will change in its
squared velocity by

(E?), (18)

4 4
where we used
(B2 = > 20)
16727*

The effects of radiation will be small compared the
dispersion due to vacuum fluctuations so long as Av?ad <
(Av?), that is, so long as

4
<< —7; (mz)z. (21)
e

This condition will always be fulfilled for an electron so
long as Eq. (17) holds.

IIL. INTERPRETATION OF THE RESULTS

A few comments are now in order for the above results.
First, let us notice that the Brownian motion of a test
charged particle subject to electromagnetic vacuum fluc-
tuations will be anisotropic, since the behaviors of both
the velocity and position dispersions are different in the
longitudinal and transverse directions. The most dramatic
feature is that (Av2) and (Ax?) are both negative. This is
counterintuitive and requires a physical explanation. A
negative dispersion must imply a decrease in an uncer-
tainty which would otherwise be present. One possibility
is the usual uncertainty in position and velocity of a
quantum particle. Quantum mechanically, a massive par-
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ticle is described by a wave packet which must have a
position and a momentum uncertainty. It is well estab-
lished that the wave packet spreads out as time progresses,
and so the position uncertainty will increase with time.
Consequently, even if the particle is initially in a mini-
mum uncertainty wave packet, at a later time, it will
satisfy the uncertainty principle by a wider margin. If
we recall that (Ax?) is a difference between the case with
the plane boundary and that without it, we can see that the
negative sign of (Ax?) can be understood as a reduction in
the position spreading of the wave packet in the parallel
directions as compared to what it would have been with-
out the presence of a plane boundary. In a somewhat
different context, it has been shown that dissipation can
also suppress wave packet spreading [8]. Note that the
reduction due to vacuum fluctuation is generally small as
(Ax?) is a logarithmic function of time. However, the
corresponding position dispersion in the perpendicular

direction, /(Az?), is positive and furthermore it grows
linearly with time. Hence, the wave packet spreading in
the z direction is reinforced by electromagnetic vacuum
fluctuations and it will be larger than what it would have
been without the boundary.

Let us now discuss in more detail the wave packet
spreading due to the quantum nature of the particle and
that due to electromagnetic vacuum fluctuations. Take, as
an example, a Gaussian wave packet which represents a
particle whose position and momentum are simulta-
neously determined, as closely as the uncertainty princi-
ple permits. We will use the subscript g to denote
uncertainties due to the quantum nature of a particle, as
opposed to those due to vacuum fluctuations. Assume the
initial width of the wave packet is Az,. It can be shown
that the width of the packet at time ¢ is

Ap,)*s?
Az, = A+ %, (22)

where A p, is the width of the wave packet in momentum
space. Let Az, yAp, = 1/2, that is, choose the initial
wave packet such that the uncertainty attains its theoreti-
cal minimum value. Then

t2

Az, = _
4Az50m2

4 Azéo + = Az, (23)

The question we now want to ask is: how large the
position fluctuation due to the vacuum fluctuations could
be as compared to that due to the uncertainty principle
and the wave packet spreading? For any fixed travel time
t, we want to manipulate the initial size of the wave
packet such as at time ¢, the width of the wave packet
attains a minimum value. We find that this initial width is

Az, = (24)

2m’
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and the corresponding minimum position in any direc-
tion uncertainty is

Ax,, = Az, = \/% 25)

[(Ax?)] (26)

Let

A)Cf =

be the position uncertainty in the x-direction due to the
effects of vacuum fluctuations, and Azf be the corre-
sponding uncertainty in the z-direction. In the limit that
t > z, we have, for the case that the charged particle is an

electron,
Axy la1n(t/27)
— =2 27
Ax g 3atm @7

where « is the fine structure constant. This ratio is always
very small. The corresponding ratio for the z-direction is

Azy 1 A m
oo A sax102 0 08
Azgm 2m\mz Z

Since the initial size, Azqm, should be much less than z, in
general this ratio is much less than one.

Note that dispersion in the transverse velocity, (Av?), is
essentially a transient effect which dies off rapidly in
time. Although the dispersion in the transverse position,
(x?), grows slowly in time, it can also be understood as
consequence of the uncertainty in v, at an earlier time,
and hence also a transient effect. Such transient effects
can be due to the way in which the system is prepared.
Here we have assumed that the effect of the vacuum
fluctuations begins at ¢t = 0 without specifying the details
of how the effects are switched on. One way this might be
done is with electrons moving parallel to a finite plate and
crossing the edge of the plate at + = 0. The effect of the
switching can cause the electron to emit photons, which
can in turn contribute to uncertainties in momentum and
position. Thus, it may also be possible to interpret nega-
tive values of (Ax?) and (Av2) as arising from a suppres-
sion of photon emission effects.
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The increase in (Av?) given in Eq. (12) can be asso-
ciated with an effective temperature of

1 1 2
T = > —— = 17X 10—6<ﬂ> :
T kgmz Z

AN2
K=17X 102<&> K,
Z

(29)

where kg is Boltzmann’s constant. The approximation of a
perfect reflector holds for metal plates at frequencies
below the plasma frequency, which would require that
z= 1lum. The corresponding temperature, although
small, is within a range that has been achieved experi-
mentally. For z = 1um, the plate is no longer a perfect
reflector, but can be a partial reflector. Bragg scattering
can produce significant reflection even at x-ray
wavelengths.

Note that here we are concerned with the increase in
the mean squared normal velocity due to the presence of
the plate. Because the electron must be localized on a
scale smaller than z, there is already a larger spread in v,
due to quantum uncertainty. However, in principle this
could be canceled if one measured the change due to the
boundary. A free electron near a conducting plate will
also feel a classical image charge force, but this might be
canceled by another classical force. It is of interest to
compare Eq. (29) for an electron with the corresponding
result for an atom [3], which is of order 0.1K if z = 1 A,
and falls as 1/z% as z increases. Thus the case of an
electron seems much closer to being experimentally
accessible.
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