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Quantization in a general light-front frame
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In this paper, we study the question of quantization of quantum field theories in a general light-front
frame. We quantize scalar and fermion as well as gauge field theories in a systematic manner carrying
out the Hamiltonian analysis carefully. The decomposition of the fields into positive and negative
frequency terms needs to be done carefully after which we show that the (anti) commutation relations
for the quantum operators become frame independent. The frame dependence is completely contained
in the functions multiplying these operators in the field decomposition. We derive the propagators from
the vacuum expectation values of the time ordered products of the fields.
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I. INTRODUCTION

Light-front field theories [1] have been studied vigo-
rously in the past. The conventional light-front frame
where one defines

�x � � �x�; xi; x��; x� � x0 � x3; i � 1; 2; (1)

also describes the infinite momentum frame where many
physical results simplify considerably [2]. The quantiza-
tion of quantum field theories on the light-front in the
conventional light-front frame (1) has been studied in
detail in [3–6]. One of the many advantages of using a
light-front quantization is that a larger number of gen-
erators of the Poincare algebra become kinematical [1]
leading to a trivial structure for the vacuum state [7].
This, in principle, allows for the possibility of carrying
out nonperturbative studies in a simple manner.

More recently, it has been observed [8–10] that descrip-
tion of statistical mechanics for field theories quantized
on the light-front prefers an oblique coordinate frame

�x � � �x�; xi; x3�; (2)

with x� defined in (1). The advantage of this frame lies in
the fact that the associated temperature can be identified
with that for the theory in Minkowski space quantized on
an equal time surface. In general, a frame defined by

�x � � � �x0; xi; �x3�; �x0 � x0 � x3; �x3 � Ax0 � Bx3;

(3)

where A;B are real constants [11], does allow for a de-
scription of statistical mechanics as long as A� B � 0. In
this case, the temperature cannot be identified with the
temperature associated with the theory in Minkowski
space (quantized on an equal time surface), although
they will be related by a multiplicative factor.

Since one of the goals of light-front field theories is to
study nonperturbative phenomena using the simplicity of
the vacuum structure, it is best carried out in the operator
formalism. Similarly, questions such as the zero modes
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and spontaneous symmetry breaking play an important
role in light-front field theories and can be systematically
studied in an operatorial formalism. To carry out such
studies at finite temperature one would need to use the
formalism of thermo-field dynamics where one defines a
thermal vacuum starting from a doubled Hilbert space of
the original theory through a Bogoliubov transformation
[12,13]. It is essential, therefore, that one understands the
questions of operator quantization to construct the ther-
mal vacuum in such theories. It is with this goal that we
have chosen to study systematically the quantization of
theories in a general light-front frame in this paper.

The paper is organized as follows. In Sec. II, we give
some details on the properties of various quantities of
interest in the general light-front frame. In Sec. III, we
carry out the classical Hamiltonian analysis for a scalar
field theory in such a general frame and subsequently
quantize this theory. The field decomposition into positive
and negative frequency parts needs to be done carefully
which we discuss. We derive all the necessary relations
and derive the Feynman propagator from the vacuum
expectation value of the time ordered product of fields.
In Sec. IV, we introduce various properties of the Dirac
matrices as well as projection operators in this general
frame and carry out the Hamiltonian analysis. The
Hamiltonian analysis can be carried out both in the full
spinor space or in the projected subspaces and lead to the
same results. We only discuss the analysis in the projected
space for simplicity. To quantize such a theory, we also
solve the Dirac equation in this general frame and obtain
the positive and negative energy spinors. The field decom-
position can then be carried out into positive and negative
frequency states much like in the scalar case. We obtain
the quantization conditions and derive the Feynman
propagator from the vacuum expectation value of the
time ordered product of fields. In Sec. V, we quantize the
non-Abelian gauge field theory in the light-cone gauge
and derive the Feynman propagator. We show that it is
doubly transverse as is the case [6] in the conventional
06-1  2004 The American Physical Society
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light-front quantization using (1). We conclude with a
brief summary in Sec. VI.
II. GENERAL LIGHT-FRONT FRAME

As discussed in (3) in the introduction, we define the
general light-front frame as the frame where the coordi-
nates have the form

�x 0 � x0 � x3; �x3 � Ax0 � Bx3; �xi � xi; i � 1; 2;

(4)

with A;B real constants. Here �xi � xi; i � 1; 2 are known
as transverse coordinates. For B � �A � �1, we have
the conventional light-front frame (1) whereas for A �
0; B � 1, we have the oblique light-front frame (2) used
in the statistical description of light-front theories [8–10].
The new coordinates in (4) are related to the old
Minkowski coordinates through a linear transformation,

�x � � L�	x	; x	 � L	� �x�; (5)

where

L�	 �

1 0 0 1

0 1 0 0

0 0 1 0

A 0 0 B

0BBBB@
1CCCCA;

L	� �

� B
A�B 0 0 1

A�B

0 1 0 0

0 0 1 0
A

A�B 0 0 � 1
A�B

0BBBBB@

1CCCCCA:
(6)

From definition (5), it is easy to see that

L�	L	� � ��� ; L	�L
�
 � �	; (7)

which can also be explicitly checked from the represen-
tation in (6).

Under a change of frame (5), it is clear from (7) that
scalars remain invariant while vectors and tensors trans-
form. In particular, the metric tensor transforms as

�g�� � L�	�	L� �

0 0 0 �A� B�

0 �1 0 0

0 0 �1 0

�A� B� 0 0 �A2 � B2�

0BBBB@
1CCCCA;

�g�� � L	��	L

� ��

� A�B
A�B 0 0 1

A�B

0 �1 0 0

0 0 �1 0
1

A�B 0 0 0

0BBBBB@

1CCCCCA;
(8)

where �	; �	 represent the usual Minkowski space
metric (with signatures ��;�;�;��). Since the trans-
formation does not necessarily represent a Lorentz trans-
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formation, the metric transforms in general. It follows
from this that

det�� �g��� � �� �g� �
1

�A� B�2
> 0;

�������
� �g

p
�

1

jA� Bj
;

�������
� �g

p
�A� B� � sgn�A� B�: (9)

We note that for �x0 to represent the time coordinate in the
transformed frame, we must have [9]

�g 00 � 0; ) jBj � jAj: (10)

Let us next note that a covariant vector transforms
under such a change of frame as

�V � � L	�V	; (11)

which leads to the transformation of the energy-
momentum four vector as

�p0 �
1

�A� B�
��Bp0 � Ap3�;

�p3 �
1

�A� B�
�p0 � p3�; �pi � pi:

(12)

The Einstein relation,

�p 2 � �g�� �p� �p� � m2;

in this case, leads to

2�A� B� �p0 �p3 � �p2
i � �B2 � A2� �p2

3 �m2 or;

�p0 �
!2

�p

2�A� B� �p3
;

(13)

where we have defined

!2
�p � �p2

i � �B2 � A2� �p2
3 �m2: (14)

It is easily seen using (10) that this quantity is positive
definite and reduces to the corresponding definition in the
conventional light-front frame [3,4] as well as the oblique
light-front frame [10] for particular values of A;B noted
earlier.

We note that the invariant volumes in the coordinate
and momentum spaces are given byZ

d4 �x
�������
� �g

p
�
Z

d4x;
Z

d4 �p�
�������
� �g

p
��1 �

Z
d4p: (15)

Note also from (8) that

�g 00 � �
A� B
A� B

; (16)

which vanishes for the conventional light-front frame (1)
making a statistical description impossible while for the
oblique light-front coordinates in (2) �g00 � 1 leading to a
statistical description where the temperature can be iden-
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tified with that of the original Minkowski frame [9]. We
note that for any A;B such that A� B � 0 (namely, �g00 �

0 or divergent), a statistical description is possible with
a nontrivial scaling of the temperature. In the follow-
ing sections, we will quantize scalar, fermion and gauge
field theories in a general light-front frame with arbitrary
A;B.

Finally, for completeness, we note that under a Lorentz
boost along the z-axis,

~x0 � ��x0 � x3�; ~x3 � ��x3 � x0�;

� � cosh�; � � sinh�;

so that we have

~�x 0 � e� �x0; ~�x3 � e�� �x3 � �A� B� sinh� �x0: (17)

We see that such a boost acts as a scale transformation for
�x0, but not for �x3 in general, unless A� B � 0 corre-
sponding to the conventional light-front frame (1).
However, the quantization surface �x0 � 0 remains invari-
ant under such a transformation. Similarly, it can be seen
that the generators J3; E1 � �K1 � J2; E2 � �K2 � J1,
where Ji and Ki correspond to angular momentum and
boost operators, respectively, also leave the surface of
quantization invariant. Consequently, J3; K3; E1; E2 cor-
respond to kinematical generators much like in the con-
ventional light-front frame [14]. In addition, it is clear
that translations along the xi; �x0 � x3� leave the quanti-
zation surface invariant leading to the fact that Pi; �P0 �
P3� are kinematical generators as well [7].

III. SCALAR FIELDS

In this section, we will carry out the Hamiltonian
analysis for the scalar field and quantize it in the general
light-front frame. Using the transformation laws dis-
cussed in the previous section, it is easily seen that the
action for a free scalar field can be written as

S �
Z

d4 �x
�������
� �g

p
L; (18)

where

L �
1

2
� �g�� �@�� �@���m2�2�

� �A� B� �@0� �@3��
1

2
� �@i��2

�
1

2
�B2 � A2�� �@3��

2 �
m2

2
�2: (19)

The conjugate momentum density can now be defined in
the standard manner as

� �
@�

�������
� �g

p
L�

@ �@0�
�

�������
� �g

p
�A� B� �@3� � sgn�A� B� �@3�;

(20)
065006
where we have used (9). This leads to the only primary
constraint of the theory of the form [1]

� � �� sgn�A� B� �@3� � 0: (21)

The Hamiltonian density together with the primary
constraint takes the form

H �

�������
� �g

p

2
�� �@i��

2 � �B2 � A2�� �@3��
2 �m2�2 �  �;

(22)

where  represents the Lagrange multiplier to be deter-
mined. Requiring the primary constraint to be stationary,
we obtain

_�� �x� � f�� �x�; Hg

�
�������
� �g

p
� �@2i �� �B2 � A2� �@23��m2�

�2�A� B� �@3� � 0; (23)

where a ‘‘dot’’ denotes derivative with respect to �x0 and in
evaluating the Poisson bracket above, we have used the
canonical Poisson brackets between variables (for equal
�x0 coordinates), namely,

f�� �x�; �� �y�g � 0 � f�� �x�;�� �y�g;

f�� �x�;�� �y�g � �3� �x� �y�: (24)

Equation (23) determines the Lagrange multiplier  
and shows that there are no further constraints in the
theory except for the primary constraint. The equal
‘‘time’’ ( �x0) Poisson bracket between the primary con-
straint leads to the matrix

f�� �x�; �� �y�g � C� �x; �y�

� �2sgn�A� B� �@� �x�3 �
2� �x? � �y?��� �x3 � �y3�;

(25)

where we have identified collectively �x? � � �xi�. The in-
verse of this matrix of constraints is easily obtained to be

C�1� �x; �y� � �
sgn�A� B�

2
�2� �x? � �y?�$� �x

3 � �y3�; (26)

and we have defined the alternating step function as

$�x� �
1

2
�%�x� � %��x�; (27)

such that

@$�x� � ��x�: (28)

With this the Dirac brackets between the variables can
be calculated. The independent (equal time) bracket takes
the form

f�� �x�; �� �y�gD � �
sgn�A� B�

2
�2� �x? � �y?�$� �x

3 � �y3�:

(29)
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Since the constraints can be set strongly equal to zero in
the Dirac brackets, the brackets between other variables
can be easily obtained from this using the primary con-
straint (21). Furthermore, in going to the quantum theory,
we can obtain the basic, independent (equal time) com-
mutation relation between fields from (29) to be

��� �x�; �� �y� � �
isgn�A� B�

2
�2� �x? � �y?�$� �x3 � �y3�;

(30)

where we have assumed �h � 1 (which we will assume
throughout this paper).

In the general light-front frame, the decomposition of
the fields into positive and negative energy parts has to be
done carefully and since it is essential for the subsequent
discussions, we discuss this in some detail. We note that
since the scalar field satisfies the equation

� �g�� �@� �@� �m2��� �x� � 0;

the field decomposition takes the form

�� �x� �
1

�2'�3=2

Z
d4 �k�

�������
�g

p
��1�� �k2 �m2�e�i �k� �x�̂� �k�

�
1

�2'�3=2

Z
d4 �k�

�������
� �g

p
��1

���2�A� B� �k0 �k3 �!2
�k
e�i �k� �x�̂� �k�; (31)

where! �k is defined in (14).We note that the delta function
constraint leads to

�k 0 �
!2

�k

2�A� B� �k3
:

As a result, the sign of the energy depends on the sign of
�A� B� and if we integrate out �k0, we cannot obtain a
clean separation into positive and negative energy terms
in the usual manner. Let us, therefore, scale and define

� �ki; �k3� ! sgn�A� B�� �ki; �k3�;

~�k � � �k0; sgn�A� B� �ki; sgn�A� B� �k3;
(32)

so that the field decomposition (31) can be written as

�� �x� �
1

�2'�3=2

Z
d2 �k?

Z 1

�1
d �k3

�
�������
� �g

p
��1

2jA� Bjj �k3j
e�i

~�k� �x�̂�~�k�

�
1

�2'�3=2

Z
d2 �k?

Z 1

0

d �k3
2 �k3

�e�i
~�k� �xa� �k� � ei

~�k� �xay� �k�;

(33)

where we have used (9) and have identified

�k0 � �! �
!2

�k

2jA� Bj �k3
> 0;

a� �k� � �̂�~�k�; ay� �k� � �̂��~�k�:

(34)
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With this, the decomposition of the field into positive and
negative energy parts is now complete and, consequently,
we can identify a� �k� and ay� �k� with annihilation and
creation operators, respectively.

Requiring the field variables to satisfy the commuta-
tion relation (30), it can be easily determined that the
basic nonvanishing commutation relation of the operators
a; ay takes the form

�a� �k�; ay� �k0� � 2 �k3�3� �k� �k0�: (35)

This shows that the basic commutation relation between
the operators a� �k�; ay� �k� remains the same in any general
light-front frame (when the decomposition into positive
and negative energy parts has been properly carried out)
and the frame dependence is really contained in the
spatial part of the plane wave solutions. We would like
to emphasize here that had we not carefully carried out
the decomposition into positive and negative frequency
parts through the use of (32) and (34), the commutation
relation (35) would involve a factor of sgn�A� B�. For
bosonic theories, this is not a problem and would simply
imply that depending on the sign of �A� B�, the roles of
a; ay have to be interchanged. However, the problem is
more serious for theories involving fermions where one
cannot use an expansion involving positive and negative
spinors until a careful separation into positive and nega-
tive energy parts has been carried out.

Given the basic commutation relations (35), the two
point function can now be calculated easily and leads to

h0j�� �x��� �y�j0i �
1

�2'�3
Z

d2 �k?
Z 1

0

d �k3
2 �k3

e�i
~�k�� �x� �y�: (36)

Using the integral representation for the step function

%� �x0� �
1

2'i

Z 1

�1
d!0 ei!

0 �x0

!0 � i$
; (37)

it can be shown with some algebra that the Feynman
Green’s function of the theory has the form

iGF� �x� �y� �


0jT��� �x��� �y�j0

�
� %� �x0 � �y0�



0j�� �x��� �y�j0

�
� %� �y0 � �x0�

�



0j�� �y��� �x�j0

�

�
Z d4 �k�

�������
�g

p
��1

�2'�4
i

�k2 �m2 � i$
e�i �k�� �x� �y�:

(38)

Consequently, we can identify the momentum space
Feynman propagator as

iGF� �k� �
i

�k2 �m2 � i$
�

i

2�A� B� �k0 �k3 �!2
�k
� i$

:

(39)
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This coincides with the conventional light-front propa-
gator [4] when B � �A � �1 as well as with the propa-
gator in the oblique coordinates [8,10] when
A � 0; B � 1.
IV. FERMION FIELDS

In dealing with fermion theories, we note that the
Dirac matrices, ��, would transform like coordinate
vectors [10] so that in the new frame we have

��� � L�	�	: (40)

Explicitly, this leads to

�� 0 � �0 � �3; ��3 � A�0 � B�3; ��i � �i: (41)

The transformed matrices satisfy the Clifford algebra

f ���; ���g � 2 �g��; (42)

and from the form of the metric in (8), this leads to

� ��0�2 � 0;

f ��0; ��3g � 2�A� B�;

� ��3�2 � A2 � B2 < 0;

f ��i; ��jg � 2�ij; i; j � 1; 2;

f ��i; ��0g � 0 � f ��i; ��3g;

(43)

where we have used (10).
Given the transformed Dirac matrices, let us define two

projection operators,

P� �
1

2�A� B�
��3 ��0; P� �

1

2�A� B�
��0 ��3: (44)

It is easy to check that these satisfy

�P��2 � P�; �P��2 � P�; P�P� � 0;

P� � P� � 1:
(45)

Thus, these define orthogonal projection operators for any
value of the constants A;B. The transformed Dirac ma-
trices do not have very simple Hermiticity properties. For
example,

� ��0�y �
1

A� B
���A� B� ��0 � 2 ��3;

� ��3�y �
1

A� B
��2AB ��0 � �A� B� ��3;

� ��i�y � � ��i:

(46)

In spite of this, the projection operators can be easily
checked to be Hermitian, namely,

�P��y � P�; �P��y � P�: (47)

The projection operators can also be seen to satisfy vari-
ous useful relations,
065006
P� ��0 � 0 � ��0P�; ��3P� � P� ��3;

��0P� � P� ��0; ��3P� � P� ��3;

��iP� � P� ��i;

(48)

and so on.
For completeness, we note here that if we use the

Bjorken-Drell representation [15] for the original Dirac
matrices, then the transformed ones will have the explicit
forms (we do not write the form of ��i which remains the
same)

�� 0 �
1 /3

�/3 �1

� 
; ��3 �

A1 B/3

�B/3 �A1

� 
;

P� �
1

2

1 �/3

�/3 1

 !
:

(49)

Here each of the elements represents a 2� 2 matrix. The
important thing to note here is that the projection opera-
tors, P�, are independent of the values of the constants
A;B.

With these basics, we note that the action for a free,
massive fermion can be written as

S �
Z

d4xL �
Z

d4x �i�	@	 �m� 

�
Z

d4 �x
�������
� �g

p
 yf2iP� �@0 � i��A� B�P�

��A� B�P� �@3 � i	i �@i

�
m

A� B
��B ��0 � ��3�g ; (50)

where we have defined as usual

	i � �0�i: (51)

Let us define the projected fermions

 � � P� : (52)

The Hamiltonian analysis for the Dirac theory can be
carried out either in terms of the projected spinor fields or
in terms of the original spinor field and they lead to the
same result. (We have carried out both of these analyses.)
However, for simplicity, we will only describe here the
Hamiltonian analysis in terms of the projected spinor
fields.

In terms of the projected spinor fields, the action for the
free fermion field (50) can be written as

S �
Z

d4 �x
�������
� �g

p �
 y
��2i �@0 � i�A� B� �@3 �

�i�A� B� y
�
�@3 � � i y

�	i �@i � � i y
�	i �@i �

�
m

A� B
 y
� ��3 � �

m
2
 y
� ��0 �

�
: (53)

Using (46) it can be checked that the action is Hermitian.
The canonical momentum densities can now be deter-

mined from the action and lead to (we use a left derivative
-5
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for the fermions)

�y
� �

@�
�������
� �g

p
L�

@ �@0 �

� �2i
�������
� �g

p
 y
�;

�� �
@�

�������
� �g

p
L�

@ �@0 
y
�

� 0; �y
� �

@�
�������
� �g

p
L�

@ �@0 �

� 0;

�� �
@�

�������
� �g

p
L�

@ �@0 
y
�

� 0;

(54)

where we have suppressed the spinor indices for simplic-
ity. We note that there are four primary constraints in the
theory, namely,

�y
1 � �y

� � 2i
�������
� �g

p
 y
� � 0; �2 � �� � 0;

�y
3 � �y

� � 0; �4 � �� � 0:
(55)

Consequently, adding the primary constraints, we can
write the Hamiltonian density for the theory to be

H �
�������
� �g

p
��i�A� B� y

�
�@3 � � i�A� B� y

�
�@3 �

�i y
�	i �@i � � i y

�	i �@i � �
m

A� B
 y
� ��3 �

�
m
2
 y
� ��0 � � �y

1 1 �  y2�2

��y
3 3 �  y

4�4: (56)

Here  1;  
y
2 ;  3;  

y
4 represent the Lagrange multipliers

with obvious projections.
The Hamiltonian analysis can now be carried out using

the canonical equal time (equal �x0 � �y0) Poisson brackets

f �;a� �x�;�
y
�;b� �y�g � ��P��ab�

3� �x� �y�;

f y
�;a� �x�;��;b� �y�g � ��P��ba�

3� �x� �y�;

a; b � 1; 2; 3; 4;

(57)

with all others vanishing. Requiring the primary con-
straints (55) to be stationary determines the Lagrange
multipliers  1;  

y
2 and leads to two secondary constraints

�y
5 � i�A� B� �@3 y

� � i �@i 
y
�	i �

m
A� B

 y
� ��3 � 0;

�6 � i�A� B� �@3 � � i	i �@i � �
m
2
��0 � � 0:

(58)

Requiring these to be stationary determines the remain-
ing two Lagrange multipliers  3;  

y
4 and the chain of

constraints terminates. Thus, there are six constraints
(55) and (58) and it can be easily verified that they are
all second class. The Dirac brackets can now be obtained
iteratively in a systematic manner and we note the final
form of the nontrivial (equal time) Dirac brackets involv-
ing the field variables,
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f �;a� �x�;  
y
�;b� �x�gD � �

i
2
�������
� �g

p �P��ab�3� �x� �y�;

f �;a� �x�;  
y
�;b� �y�gD �

sgn�A� B�
2

��P��i	i �@i �
m
2
��0�P�ab

��2� �x? � �y?�$� �x3 � �y3�;

f �;a� �x�;  
y
�;b� �y�gD �

sgn�A� B�
2

��P��i	i �@i �
m

A� B
��3�P�ab

��2� �x? � �y?�$� �x3 � �y3�;

f �;a� �x�;  
y
�;b� �y�gD �

i
2jA� Bj

�P��i	i �@i �
m
2
��0�

��i	j �@j �
m

A� B
��3�P�ab

��2� �x? � �y?� �
Z

d�z3

�$� �x3 � �z3�$��z3 � �y3�:

(59)

For B � �A � �1, these can be seen to coincide with the
Dirac brackets [16] derived in the conventional light-front
frame (1). Since the constraints can now be set equal to
zero strongly and  � is a constrained field (see (58)), only
the first of these relations is independent. Every other
bracket can be derived from this using the constraint
relations. In going over to the quantum theory, we can
take over the Dirac brackets to anticommutation relations
and the nontrivial equal time anticommutation relation
takes the form

� �;a� �x�;  
y
�;b� �y�� �

1

2
�������
� �g

p �P��ab�3� �x� �y�: (60)

The spinor solutions for the theory can be worked out
in the projected space quite easily (we have worked these
out in the full theory as well and they are completely
equivalent).We note that in the plane wave basis, the Dirac
equation takes the form

�2 �k0 � �A� B� �k3u�� �k� � �	i �ki �
m

A� B
��3�u�� �k� � 0;

�A� B� �k3u�� �k� � �	i �ki �
m
2
��0�u�� �k� � 0:

(61)

The spinors can be easily checked to satisfy the Einstein
relation (13). Here by definition, the projected spinors
u� � P�u� have to have the forms

u� �
u1
/3u1

� 
; u� �

u2
�/3u2

� 
; (62)

which can be seen from the definitions in (49). Here u1; u2
are two component spinors. Substituting these into (61), it
-6
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can be determined that, for positive energy,

u�� �k� �

���������������������
�A� B� �k3

2

s
u1
/3u1

 !
;

u�� �k� �
1������������������������

2�A� B� �k3
q �m� /i �ki/3�u1

�/3�m� /i �ki/3�u1

 !
:

(63)

The spinors are normalized such that the positive energy
spinor u � u� � u� satisfies the conventional normaliza-
tion

�u� �k�u� �k� � 2m: (64)

We note that with the choices

u�"�1 �

�
1
0


; u�#�1 �

�
0
1


; (65)

we can obtain the spin-up and spin-down spinor states.
Thus, for example, we have

u�"� �
1������������������������

2�A� B� �k3
q

�A� B� �k3 �m

�� �k1 � i �k2�

�A� B� �k3 �m

�� �k1 � i �k2�

0
BBBBB@

1
CCCCCA;

u�"�� �

���������������������
�A� B� �k3

2

s 1

0

1

0

0
BBBB@

1
CCCCA;

u�#� �
1������������������������

2�A� B� �k3
q

�k1 � i �k2
�A� B� �k3 �m

�� �k1 � i �k2�

��A� B� �k3 �m

0BBBBB@

1CCCCCA;

u�#�� �

���������������������
�A� B� �k3

2

s 0

1

0

�1

0BBBB@
1CCCCA:

(66)

The charge conjugate spinors are obtained from the
defining relation
065006
v � C �uT � i�2u�; (67)

which leads, for example, to

v�"� �
1������������������������

2�A� B� �k3
q

�� �k1 � i �k2�

��A� B� �k3 �m
�k1 � i �k2

�A� B� �k3 �m

0BBBBB@

1CCCCCA;

v�"�� �

���������������������
�A� B� �k3

2

s 0

�1

0

1

0BBBB@
1CCCCA;

v�#� �
1������������������������

2�A� B� �k3
q

��A� B� �k3 �m
�k1 � i �k2

��A� B� �k3 �m
�k1 � i �k2

0BBBBB@

1CCCCCA;

v�#�� �

���������������������
�A� B� �k3

2

s �1

0

�1

0

0BBBB@
1CCCCA:

(68)

It is easy to check that when B � �A � �1, these spin-
ors coincide with the ones in the conventional light-front
frame [14]. From their forms, it is also easily verified thatX

s

u�;a� �k; s�u
y
�;b�

�k; s� � �A� B� �k3P
�
ab

�
X
s

v�;a� �k; s�v
y
�;b�

�k; s�; (69)

which will be useful later.
The field decomposition for the independent field com-

ponent can now be carried out (much like in the scalar
case) as

 �;a� �x� �
1

�2'�3=2
X
s

Z
d2 �k?

Z 1

0

d �k3
2 �k3

�

�
e�i

~�k� �xb� �k; s�u�;a�
~�k; s�

� ei
~�k� �xdy� �k; s�v�;a�

~�k; s�
�
; (70)

where we have used the definitions in (32) and (34) and
note, in particular, that

�k 0 � �! �
!2

�k

2jA� Bj �k3
> 0:

This, therefore, truly leads to a separation of the fields
into positive and negative frequency terms which is quite
crucial in the use of the positive and negative energy
spinors. Requiring the fields to satisfy the anticommuta-
-7
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tion relation (60), it can be determined with the use of
(69) that the nontrivial anticommutation relation satisfied
by the operators b; d has the form

�b� �k; s�; by� �k0; s0�� � 2 �k3�ss0�
3� �k� �k0�

� �d� �k; s�; dy� �k0; s0��: (71)

Once again, we see that the basic anticommutation rela-
tions of the field variables is frame independent and the
entire frame dependence is contained in the plane wave
and the spinor solutions. It follows now from a direct
calculation that

h0j �;a� �x� 
y
�;b� �y�j0i �

jA� BjP�
ab

2�2'�3
Z

d2 �k?

�
Z 1

0
d �k3e�i

~�k�� �x� �y�;

h0j y
�;b� �y� �;a� �x�j0i �

jA� BjP�
ab

2�2'�3
Z

d2 �k?

�
Z 1

0
d �k3ei

~�k�� �x� �y�;

(72)
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where we have used (69). The fermion propagator for the
‘‘�’’ component can now be determined to be

iS����
F;ab � �x� �y� �



0jT� �;a� �x� 

y
�;b� �y�j0

�

� %� �x0 � �y0�


0j �;a� �x� 

y
�;b� �y�j0

�

�%� �y0 � �x0�


0j y

�;b� �y� �;a� �x�j0
�

�
Z d4 �k�

�������
� �g

p
��1

�2'�4
i�A� B� �k3P

�
ab

�k2 �m2 � i$
e�i �k�� �x� �y�;

(73)

where we have used the definition of the step function in
(37).

The other components of the propagator can be ob-
tained now using the constraint relations. In the momen-
tum space, all the components of the propagator can be
written in the matrix form as
iS����
F � �k� iS����

F � �k�

iS����
F � �k� iS����

F � �k�

0@ 1A �
P� 0

0 P�

 !
�A� B� �k3 ��	i �ki �

m
A�B ��3�

��	i �ki �
m
2 ��0� �2 �k0 � �A� B� �k3

0@ 1A P� 0

0 P�

 !
�

i
�k2 �m2 � i$

: (74)
For A � 0; B � 1, we note that this coincides with the
propagators derived in [10] (where the projection opera-
tors were not present because of the space in which the
propagators were defined).

V. GAUGE FIELD THEORY

In this section, we will quantize the Yang-Mills theory
with the gauge fields belonging to SU�N� group in the
conventional light-cone gauge in order to see if a doubly
transverse gauge propagator [6] results in the general
frame as well. The action for the theory in the general
frame has the form

S �
Z

d4 �x
�������
� �g

p
L; (75)

where the Lagrangian density is given by

L � �
1

4
�g� �g�9 �F	�� �F	 9

�
1

2
�A� B�2 �F	03 �F

	
03 � �A� B� �F	0i �F

	
3i

�
1

2
�A2 � B2� �F	3i �F

	
3i �

1

4
�F	ij �F

	
ij: (76)

Here, 	 � 1; 2; � � � ; N2 � 1 and the field strength tensors
is defined as
�F 	
�� � �@� �A	� � �@� �A

	
� � gf	� �A� �A��; (77)

with f	� representing the structure constants of the
group. The Abelian limit can be obtained simply by
setting the coupling constant g to zero. We will omit the
‘‘bars’’ on the field variables in the following for
simplicity.

The conjugate momenta are now obtained to be

�0	 �
@�

�������
� �g

p
L�

@ �@0A
	
0

� 0;

�3	 �
@�

�������
� �g

p
L�

@ �@0A
	
3

�
�������
� �g

p
�A� B�2F	03;

�i	 �
@�

�������
� �g

p
L�

@ �@0A
	
i

� sgn�A� B�F	3i:

(78)

Thus, we see that the theory has two primary constraints,

�	1 � �0	 � 0; �	2i � �i	 � sgn�A� B�F	3i � 0:

(79)

Adding these primary constraints, the starting
Hamiltonian density for the Hamiltonian analysis takes
the form
-8
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H �
1

2
�������
� �g

p
�A� B�2

�3	�3	 � A	0 � �Di�
i	 � �D3�

3	�

�

�������
� �g

p
�A2 � B2�

2
F	3iF

	
3i �

�������
� �g

p

4
F	ijF

	
ij

� 	1�
	
1 �  	2i�

	
2i; (80)

where  	1 ;  
	
2i are Lagrange multipliers and the covariant

derivative is defined as

�D��
�	 � �@���	 � gf	�A����: (81)

In writing the Hamiltonian density in this form, we have
discarded a total divergence term. We can now use the
equal time ( �x0) canonical Poisson brackets

fA	�� �x�;�
�� �y�g � �	����

3� �x� �y�; (82)

with all others vanishing. Requiring the primary con-
straints to be stationary, determines the Lagrange multi-
plier  	2i and leads to the secondary constraint

�	3 � �Di�
i	 � �D3�

3	 � 0: (83)

Furthermore, requiring the secondary constraint (83) to
be stationary, determines the Lagrange multiplier  	1 and
the chain of constraints terminates.

The complete set of constraints for the theory are given
by (79) and (83). It can be easily checked that of these
�	1 ; �

	
3 correspond to first class constraints while �	2i

represents a second class constraint. This is consistent
with the general characteristics of a light-front theory,
namely, it develops a genuine second class constraint in
addition to the ones already present in the conventional
theory. Since there are two first class constraints, we
choose two gauge fixing conditions that will make these
second class. Keeping the physical light-cone gauge in
mind, we choose the gauge fixing conditions to corre-
spond to

�	
1 � �n � A	 � 0; �	

2 � �@ � A	 � 0;

�n� � �0; 0; 0; 1�; �n2 � 0:
(84)

The Dirac brackets can now be determined iteratively and
we simply note the final result for the equal time Dirac
brackets involving the field variables,

fA	�� �x�; A

� � �y�gD �

�	sgn�A� B�
2

PT��� �n; �@� �@�1
3

��3� �x� �y�; (85)

where we have defined (all the derivatives are with re-
spect to the argument �x)

�@�1
3 �3� �x� �y� � �2� �x? � �y?�$� �x3 � �y3�; (86)

and PT��� �n; �@� represents the projection operator trans-
verse to both �n�; �@� and has the form
065006
PT��� �n; �@� � �g�� �
�n� �@� � �n� �@�

�n � �@
�

�@2

� �n � �@�2
�n� �n�: (87)

The projection operator is symmetric, homogeneous in
both �n�; �@� and it is straightforward to check that it
satisfies

�n �PT��� �n; �@� � 0 � �@�PT��� �n; �@�: (88)

The other equal time brackets can be obtained from this
since the constraints can be strongly set equal to zero in
the Dirac brackets. This also leads to the fact that in the
quantum theory, we can take the independent commuta-
tion relation involving fields to be

�A	�� �x�; A

� � �y� �

i�	sgn�A� B�
2

PT��� �n; �@�

��2� �x? � �y?�$� �x3 � �y3�: (89)

The field decomposition can now be carried out in the
standard manner as in the case of the scalar field and
takes the form

A	�� �x� �
1

�2'�3=2
X2
h�1

Z
d2 �k?

Z 1

0

d �k3
2 �k3

$�� �k; h�

�

�
e�i

~�k� �xa	� �k; h� � ei
~�k� �xay	� �k; h�

�
; (90)

where, as before, we have identified

�k 0 � �! �
!2

�k

2jA� Bj �k3
> 0; (91)

and have used (32). The two physical polarization vectors
are chosen to be real for simplicity and are supposed to
satisfy

�n � $� �k; h� � 0 � �k � $� �k; h�;

$� �k; h� � $� �k; h0� � ��hh0 ;

h; h0 � 1; 2:

(92)

We can choose, for example,

$�� �k; 1� �
1

�A� B� �k3
�k1; �A� B� �k3
� �

; 0; 0;

$�� �k; 2� �
1

�A� B� �k3
�k2; 0; �A� B� �k3; 0
� �

;

(93)

which satisfy the properties in (92). In addition to these
two physical polarization vectors, we can also choose two
other vectors

$�� �k; 3� � �k�; $�� �k; 4� � �n�; (94)

such that together they define a set of basis vectors. From
the completeness of these vectors, it is easy to show that
-9
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X2
h�1

$�� �k; h�$�� �k; h�

$� �k; h� � $� �k; h�
�
$�� �k; 3�$�� �k; 4� � $�� �k; 3�$�� �k; 4�

�$� �k; 3� � $� �k; 4�

�
$� �k; 3� � $� �k; 3�

�$� �k; 3� � $� �k; 4�2
$�� �k; 4�$�� �k; 4� � �g��; (95)

which leads to

X2
h�1

$�� �k; h�$�� �k; h� � �PT��� �n; �k�

� � �g�� �
�n� �k� � �n� �k�

� �n � �k�

�
�k2

� �n � �k�2
�n� �n�: (96)

This can also be constructed directly from the outer
product of the forms of the polarization vectors given in
(93).

Requiring the fields (90) to satisfy the commutation
relations in (89), we can determine that the nontrivial
commutation relation involving the operators a	; ay	 has
the form

�a	� �k; h�; ay� �k0; h0� � 2 �k3�	�hh0�3� �k� �k0�: (97)

The Feynman propagator for the theory is now straight-
forward to calculate. We note that

h0jA	�� �x�A

� � �y�j0i � �

�	

�2'�3
Z

d2 �k?
Z 1

0

d �k3
2 �k3

�PT��� �n; �k�e�i
~�k�� �x� �y�: (98)

With this we obtain,

iG	
F;��� �x� �y� �



0jT�A	�� �x�A


� � �y�j0

�
� %� �x0 � �y0�h0jA	�� �x�A


� � �y�j0i

�%� �y0 � �x0�h0jA� � �y�A	�� �x�j0i

�
Z d4 �k�

�������
� �g

p
��1

�2'�4

�
�i�	PT��� �n; �k�

�k2 � i$
e�i �k�� �x� �y�: (99)

It follows, therefore, that in momentum space, the
Feynman propagator takes the form

iG	
F;���

�k� � �

�
�g�� �

�n� �k� � �n� �k�
� �n � �k�

�
�k2

� �n � �k�2
�n� �n�



�
i�	

�k2 � i$
: (100)

We note that for any value of A;B, this propagator is
doubly transverse, namely,

�n �G	
F;���

�k� � 0 � �k�G	
F;���

�k�: (101)
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This has been observed earlier [6] in the conventional
light-front quantization. However, our analysis shows that
this is a generic feature in the general light-front frame
and is a consequence of the particular choice of gauge
fixing in (84).

We note here that the propagator (100) has poles at �n �
�k � 0 in addition to the usual pole at �k2 � 0. This neces-
sitates a prescription for handling such poles which in the
conventional equal time theories is given by the
Leibbrandt-Mandelstam prescription [17]

1

n � k
! lim

$!0�

1

n � k� i$�~n � k�
; (102)

where ~n� is a dual lightlike vector with n � ~n � 0. Since
the Leibbrandt-Mandelstam prescription involves only
scalar combinations and as we have already argued scalar
quantities do not change under a change of frame, this
prescription can be readily extended to the general light-
front frame. For our choice of the lightlike vector in (84),
we have

~�n � � �2; 0; 0; A� B�: (103)

In our analysis, we have chosen a physical gauge fixing
condition since we are interested in the Hamiltonian
quantization of the theory with physical degrees of free-
dom. However, other gauge fixing conditions may be more
useful from the path integral point of view that we have
not pursued here. Some of these have been discussed in
[10] within the path integral approach.

VI. CONCLUSION

In this paper we have studied systematically the
quantization of quantum field theories in a general
light-front frame. We have carried out the Hamiltonian
analysis for scalar, fermion as well as gauge theories.
The decomposition of the fields into positive and nega-
tive frequency parts is done carefully which leads
to frame independent (anti) commutation relations for
the annihilation and creation operators. In the case
of scalar fields and the gauge fields, the frame dependence
is contained completely in the plane wave functions
(as well as in the polarization vectors), while in
the case of the Dirac field, the spinor solutions are frame
dependent as well and we have derived these explicitly.
The propagators for the various fields have been obtained
from the vacuum expectation values of the time ordered
products and they coincide, for specific values of A;B,
with the earlier known results. In particular, we have
shown that in the light-cone gauge, the gauge propagator
is doubly transverse in any general frame much like it
was observed to be in the conventional light-front frame
[6].

We conclude by saying that all of our analysis has
been carried out with a view to constructing a thermal
-10
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Hilbert space within the formalism of thermo field
dynamics which will then allow us to study various
operatorial questions, discussed in the introduction,
at finite temperature. We hope to be able to report
on such a finite temperature analysis in a future
publication.
065006
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