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and its relation to k-string tensions
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In d � 3 SU�N� gauge theory, we study a scalar-field theory model of center vortices, and their
monopolelike companions called nexuses, that furnishes an approach to the determination of so-called
k-string tensions. This model is constructed from stringlike quantum solitons introduced previously,
and exploits the well-known relation between string partition functions and scalar-field theories in
d � 3. A basic feature of the model is that center vortices corresponding to magnetic flux J (in units of
2�=N) are composites of J elementary J � 1 constituent vortices that come in N � 1 types, with
repulsion between like constituents and attraction between unlike constituents. The scalar-field theory
is of a somewhat unusual type, involving N scalar fields �i (one of which is eliminated) that can merge,
dissociate, and recombine while conserving flux modN. The properties of these fields are deduced
directly from the corresponding gauge-theory quantum solitons. Every vacuum Feynman graph of the
theory corresponds to a real-space configuration of center vortices. We use qualitative features of this
theory based on the vortex action to study the problem of k-string tensions (explicitly at large N,
although large N is in no way a restriction on the model in general), whose solution is far from obvious
in center-vortex language. We construct a simplified dynamical picture of constituent-vortex merging,
dissociation, and recombination, which allows in principle for the determination of vortex areal
densities and k-string tensions. This picture involves pointlike molecules made of constituent atoms
in d � 2 which combine and disassociate dynamically. These molecules and atoms are cross sections of
vortices piercing a test plane; the vortices evolve in a Euclidean ‘‘time’’ which is the location of the test
plane along an axis perpendicular to the plane. A simple approximation to the molecular dynamics is
compatible with k-string tensions that are linear in k for k � N, as naively expected.
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I. INTRODUCTION

A. General remarks

Center vortices have been intensively studied since
their introduction more than 25 years ago [1–6]. There
are now many lattice studies (for a modern review, see
[7]), which confirm the basic topological mechanism for
confinement in center-vortex theory.

In this paper we present a model for center vortices and
nexuses in d � 3, based on the well-known connection
[8] between closed-string partition functions and (scalar)
field theories in three dimensions. This model is appli-
cable, in principle, for all SU�N� gauge theories. In d � 4
there is an analogous model, not explored here, which
would be a closed-string theory of unusual type. In both
d � 3 and d � 4 we would find exactly the same picture
described below of ‘‘atoms’’ and ‘‘molecules’’ interacting
in a plane, as a description of center-vortex areal den-
sities. These densities are essential to our understanding
of confinement.

While it is desirable in general to have a good model
for center vortices that is simpler than directly solving the
full gauge theory, the real point of the model is the extent
to which it can clarify the full theory. We have in mind
here applying the model to the question of string tensions
with nontrivial N-ality, which has presented some
ress: Cornwall@physics.ucla.edu
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difficulties in center-vortex theory. This remains one of
the outstanding first-principle problems of confining
gauge theories in the center-vortex picture.

The primary focus of the present paper is the model
itself, but before presenting the model we will make some
remarks on the problem of the so-called k-string tension,
which is the string tension 	�k� that arises between a test
particle [in SU�N� gauge theory] whose group represen-
tation is described by a Young tableau of a single column
of k < N boxes, and its antiparticle, described by N � k
boxes. This test particle and its antiparticle form a singlet
and are confined. The k-string problem exists only for
N � 4, since for N � 2; 3 the k representations consist
only of the fundamental and antifundamental represen-
tations. But for larger N one expects to have different
string tensions for different k.

Various simple arguments, for example, standard
large-N considerations, suggest (at least if k � N) that
	�k� � k. Or one could say that a k representation is the
totally antisymmetric product of k fundamental represen-
tations (quarks), so that in terms of the mesonic string
tension 	�1� the k-string tension ought to be composed of
k quark-antiquark strings and hence k times as big.

Unfortunately, it has not proven to be so easy to derive
	�k� � k in the center-vortex picture of confinement. The
reason is that in the center-vortex picture confinement
arises from the topological linking of center vortices with
Wilson loops, and it is not easy to envisage the k separate
05-1  2004 The American Physical Society
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quark-antiquark strings mentioned above. In the center-
vortex picture, a quantity from which 	�k� can be found is
the discrete Fourier transform of the areal (two-
dimensional) density of center vortices with different
values L of magnetic flux, measured in units of
2�=N, and one needs to find these areal densities as a
function of L.

With no compelling picture of vortex areal densities,
the result so far has been that theoretical approaches to
	�k� in the center-vortex picture have been largely phe-
nomenological. Workers often take Casimir scaling of
	�k� or analogs to M theory as the two possible standard
forms for the k-string tensions. These forms are

	Cas�k� � 	1
k�N � k�
N � 1

; 	Mth�k� � 	1
sin��k=N�

sin��=N�
:

(1)

Both of these lead to 	�k� � k for k � N, but they have
different terms at nonleading order for large N. There are
arguments [9] that nonleading terms exclude Casimir
scaling, but in fact which of these two forms, or some
other form, actually holds is not known now. In any case,
we will not study nonleading terms here. Both forms
above also obey the necessary group-theoretic conjuga-
tion symmetry 	�k� � 	�N � k�. Certain works that ad-
dress 	�k� in the center-vortex picture depend on some
form of quadratic approximation that inevitably leads to
Casimir scaling [10]; others are phenomenological, and
ask what density of vortices is needed to produce 	�k� as
given by the above choices [11,12] or other related forms.
Using the dilute gas approximation (DGA), Ref. [11] finds
unphysical areal densities amounting to the unchecked
pileup of center vortices at a single point. Reference [12]
(hereafter GO) supplies a relation between k-string ten-
sion and areal densities which is usable in principle where
the DGA is not, and we will make use of this relation in
the present paper.

In addition to these theoretical works, there are lattice
simulations [13–16] for N � 4; 5; 6. Most of this lattice
work supports the M-theory form of the k-string tension,
but it does not seem possible to draw unassailable con-
clusions from the present data. A very recent work [17]
concludes that lattice data lie somewhere between M-
theory and Casimir scaling.

So far (to the author’s knowledge) there has been no
discussion from the fundamental principles of center-
vortex theory of the areal densities needed to find the
k-string tension. While we do not claim to solve the
k-string tension problem here, we do offer a path toward
solution in the present paper.

B. Outline of the paper

The main purpose of the paper is to present the d � 3
scalar-field theory that models the gauge theory. [There
are other models of center vortices; see [18] for SU�2� and
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[19] for SU�3�. But there is no k-string problem for these
gauge theories.] A secondary purpose is to introduce the
possibility of exploiting the scalar-field theory to dis-
cover something about k-string tensions, although we do
not go very far in this direction, and restrict our consid-
erations to large N. [It is not yet known whether center
vortices become unimportant at large N, although it is
very possible [20] that they survive in this limit.] After a
quick review of the gauge-theory form of center vortices
in Sec. II, we show how to express these gauge-theoretic
results via a scalar-field theory in Sec. III. This field
theory is constructed directly from the gauge-theory
picture of the quantum solitons constituting center vor-
tices and nexuses [20]. The basic principles of equating a
theory of closed strings, such as center vortices, to a
scalar-field theory have long been known [8], but the
theory we find is considerably more complex than envis-
aged in these pioneering references. The scalar theory
transcribes the properties of vortices (strings in d � 3)
and nexuses (points in d � 3) into Euclidean world lines
for the particles of the scalar-field theory. These strings,
with nexuses and antinexuses sitting on them, undergo
processes whose essential features we will incorporate
into the scalar-field theory. Specifically, every vacuum
graph of this scalar-field theory is in one-to-one corre-
spondence with a process of physical vortex strings merg-
ing, dissociating, and recombining. Every center vortex
of flux J > 1 is describable as a composite of J constitu-
ents, each of unit flux.

Section IV goes into some kinematical simplifications
which are important for our specific implementation of
the model in determining k-string tensions, but it is better
to outline first some more general features of the relation
of the scalar-field theory model to string tensions, as put
forth in Sec. V. These general relations will survive the
simplifications of Sec. VI. To describe string tensions,
which involve the piercing of d � 2 surfaces (Wilson
loops) by center vortices, we introduce certain probabil-
ities p�L�, where p�L� is the probability that a center
vortex of flux L intersects a large but finite planar surface,
which we call the test plane. These probabilities are
converted to areal densities by dividing by a squared
correlation length �2, as GO describe. We construct a
continuous series of cross sections of d � 3 vortex pro-
cesses by rigidly translating the test plane along its
normal (say, the z axis). The cross section of a vortex in
the plane is pointlike, and we refer to composite vortices
as molecules and the unit-flux constituents as atoms.
Because of the underlying random-walk nature of the
vortices, these atoms and molecules appear to diffuse in
the test plane as z changes, from time to time colliding
and interacting with each other. Under the assumption
that such processes are ergodic, averaging over z should
yield the same results for areal densities as averaging over
many gauge configurations. We construct a simple master
-2
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rate equation in z, in an attempt to describe these merg-
ing, recombination, and dissociation interactions. Which
processes are allowed and which are forbidden is gov-
erned by a set of force and action rules derived directly
from the actions of the vortices in the process. The master
rate equation yields (in principle, at least) the vortex areal
densities as densities of atoms and molecules in the test
plane.

At this point we do not have enough quantitative in-
formation about the scalar-field theory model (couplings
and masses) to justify a thoroughgoing study of the
master rate equation. Instead, we will make a few sug-
gestive remarks, based on some kinematic simplifications
which are motivated by large-N considerations. These
simplifications lead to a modified form of the DGA,
which is free from the objectionable features of the phe-
nomenological probabilities p�L� found in [11] using the
standard DGA approach.

The kinematic issues are set out in Sec. IV B, following
GO. These authors formulate the k-string question in a
way that is not subject to the low-density restrictions of
the DGA. They go on to give purely phenomenological
areal densities which both fit a linear rise of 	�k� and are
well behaved in the large-N limit. They define p�L� as the
probability that a square of side � is pierced by a vortex of
flux L, where � is the correlation length of vortices. [The
probability p�0� is the probability that the square has no
vortex in it at all.] They then argue that

exp��	�k��2	 �
XN�1

0

p�L� exp
�
2�ikL

N

�
: (2)

The inverse discrete Fourier transform yields p�L� in
terms of 	�k� as

p�L� �
1

N

XN�1

k�0

exp
�
�2�ikL

N

�
exp��	�k��2	: (3)

Conjugation symmetry applied to this inverse transform
then yields p�L� � p�N � L� for the areal densities, and
then Eq. (2) yields 	�k� � 	��k�. In fact, as is well
known, a vortex of flux N � L is actually an antivortex
of flux �L, so we should also have p�L� � p��L�. All
these conjugation-symmetry relations will hold in our
basic model for center vortices.

We are interested in large N, and in Sec. IV B we
explore the consequences of replacing discrete variables
and sums over these variables by continuous variables and
integrals over these variables. In so doing, we lose track
to some extent of conjugation symmetry, but recover
enough of it for our purposes in the evenness of p�L�
and 	�k�. First, note that Eq. (3) suggests a scaling
symmetry, in which p�L� is replaced by a continuous
function:

p�L;N� !
1

N
~p�x�; x �

L
N

; (4)
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whereby the sum in the fundamental GO Eq. (2) is re-
placed by an integral from 0 to 1 over x. Conjugation
symmetry for ~p�x� is retained in the form

~p�x� � ~p�1� x� � ~p��x�: (5)
However, at this point we have lost (see Sec. IV B) con-
jugation symmetry for 	�k�, and subsequent results for
this quantity apply only for k � N. By the usual rules of
Fourier transforms this replacement of a sum by an
integral requires us to turn the sum over k of the inverse
transform in Eq. (3) into a sum with infinitely many
terms. This, as we will see from explicit GO results, leads
to dropping nonscaling terms in ~p�x� which are exponen-
tially small in N and is harmless.

Then we go further and replace the infinite sum over k
by an integral over k. We will see in Sec. IV B that for any
given form of 	�k� we must modify ~p�x� to a new
function p̂�x�, while at the same time changing the in-
tegral over x that expresses 	�k� by an integral with
infinite limits. The modified function p̂�x� does not
obey p̂�x� � p̂�1� x�, but is still even in x, which is
enough of conjugation symmetry for our purposes. We
see by studying GO’s explicit results that p̂�x� is a certain
limiting form of ~p�x�, valid when the parameter

� �
	�1��2

2�
(6)
is small compared to unity. We show in Sec. IV C that the
smallness of � is a form of the DGA that is useful, since it
is compatible with the scaling of p�L� as given in Eq. (4).
It turns out that requiring � � 1 is appropriate for justi-
fying the use of Fourier integrals rather than sums.
Taking the usual fundamental string tension, and ��1 ’
M ’ 600 MeV, we find that � is about 0.08.

Having made the kinematic simplifications alluded to
above, we explore crudely the behavior of the scaling
density p̂�x� in the limits of small and large x. This
behavior is compatible with, but does not necessarily
imply, a linearly growing string tension. In fact, the
behavior at large flux is precisely that found in [11] using
the DGA, but our result is compatible with scaling
[Eq. (4)].

Section VI summarizes the paper, and in addition there
are two appendices covering details of center-vortex
actions.

In future works we will make more extensive studies,
both numerical and analytic, of the master rate equation
that determines the p�L�. But even at this primitive stage
of development, we hope to convince the reader that it is
plausible that the center-vortex picture leads to 	�k� � k
for small k.
-3
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II. DESCRIPTION OF CENTER VORTICES AND
NEXUSES IN THE GAUGE THEORY

Throughout this paper we use gauge potentials that are
anti-Hermitian matrices constructed from the canonical
potentials and multiplied by the gauge coupling g. As
discussed in the Introduction, we write explicit formulas
in d � 3 Euclidean space, but the transcription to d � 4
is straightforward; it leads to an unconventional string
theory rather than a field theory.

Center vortices are (quantum) solitons of the effective
action, and they are essentially Abelian objects that can
be superposed. An elementary center vortex is described
by specifying a closed curve and a group matrix. The
group matrices must be chosen so that the magnetic flux
F, defined through the Wilson loop as

1

Dk
Trk exp

�I
�
dziAi

�
� exp�ikF	; (7)

is an element of the center. Here Trk indicates a trace in
the k representation, of dimension Dk. (Of course, k � 1
is the fundamental representation.) If the Wilson loop � is
linked exactly once in a positive sense with the vortex
curve, then F is the flux associated with the vortex. It
must have the form F � 2�J=N, where J is an integer
from 1 to N, in which case we speak of a J vortex.

The idea behind our picture [2] of center vortices is that
infrared slavery requires the generation of a dynamical
gluon mass [21]. This, as seen in Schwinger-Dyson equa-
tions for the gluons, induces a gauge-invariant mass term
that is simply a gauged nonlinear sigma model. The
effective action for the gauge theory is then

Ieff �
1

g2

Z
d3x

�
�

1

2
TrG2

ij �M2Tr�U�1DiU�2
�
; (8)

where U is an N  N matrix in the fundamental repre-
sentation, transforming as U ! VU when Ai !
VAiV

�1 � V@iV
�1, and g2 is the square of the coupling

constant. This matrix U is to be eliminated by minimiz-
ing the action in which it appears. If the mass M were
considered as a fundamental object, surviving unchanged
into the ultraviolet, this effective action would not be
renormalizable. In fact, one knows [22] that the mass is
a function of momentum q decreasing at large q2 as

M2�q� !
consthG2

iji

q2 : (9)

Some such decrease is required for the Schwinger-Dyson
equations to be solvable. We will only use the effective
action in the infrared, so this complication of the ultra-
violet behavior of the mass term is irrelevant for us. There
is one exception: if the mass M is wrongly taken to be
constant, the mass term in Ieff has a logarithmic diver-
gence. Of course, this is not real, and we will ignore it.
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An elementary unit-flux center vortex, a solution to the
equations of motion of the effective action, has a form
essentially equivalent to a Nielsen-Olesen vortex:

A�r	
i �x� �

2�Qr

i
�ijk@j

I
"
dzi�!M�z� x� �!0�x� z�	:

(10)

Here Qr is one of a set of N matrices defined below,
whose properties are detailed in Appendix A, and
!M�0� is the free Euclidean propagator of mass M�0�.
Provided that the curve " is closed, the !0 term is pure
gauge, and corresponds to the contribution of the U
matrix. (If the curve were not closed, long-range mono-
poles would sit at the ends of the curve.) The field strength
of the vortex decreases exponentially away from the
vortex curve ".

The matrices Qr are

Qr � diag
�
1

N
;
1

N
; . . .

1

N
;�1�

1

N
;
1

N
; . . .

�

r � 1; 2; . . .N (11)

with the �1 in the rth position. Each of these matrices
obeys

exp�2�iQr	 � exp�2�i=N	 (12)

and so has unit flux. Since each Qr can be transformed
into any other by an element of the permutation group,
one may think of the index r as a label for group collec-
tive coordinates of the vortex. These matrices have the
property (see Appendix A) that the sum of all N of them
vanishes.

One may immediately generalize this by adding any
number of solitons of the form of Eq. (10). In particular, if
for a given curve " we use the flux matrix

FfJg � Qi1 � � � �QiJ (13)

with all Q indices distinct, we find that the flux of FfJg is
J. We can construct a conjugate vortex with flux matrix
FfN�Jg by adding together the N � J distinct Q matrices
with indices different from all those in FfJg of Eq. (13).
Because the sum of the Q’s is zero, it follows that

FfJg � FfN�Jg � 0; Ff�Jg � �FfJg � FfN�Jg: (14)

So antivortices of flux �J are entirely equivalent to
vortices of flux N � J, illustrating the modN nature of
flux addition. As before, the matrix indices on FfJg can be
shuffled by permutations, which yield group collective
coordinates (see Appendix A). A vortex of flux J is
identical in form to that of the unit vortex in Eq. (10)
except that Qj is replaced by FfJg. In what follows we
suppress the collective coordinate index �r	 in Eq. (10)
and similar equations.
-4



1

2

3

FIG. 1. Center vortices merging and dissociating. A J � 1
vortex (labeled 1 for Q1) meets a J � 2 vortex (Q2 �Q3) at the
bottom vertex to form a J � 3 vortex, which later dissociates at
the top vertex.

1       2    3             4        5  . . .N

FIG. 2. Center vortices of total flux J � N can be annihilated
or created from zero flux. The labels 1, 2, . . . correspond to the
labels of Q matrices.
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Note that whatever the flux J is, vortex strings always
have the same thickness of M�1.

It is important for the physical model discussed later to
recognize that center vortices can merge and dissociate.
We describe this by a vortex soliton of the form

Ai �
2�
i

�ijk@j

X
a

I
a
dz�a�kFfJagf!M�z�a� � x	

�!0�z�a� � x	g (15)

where the closed curves labeled by a can have segments in
common, as illustrated in Fig. 1.

Note that flux is conserved in processes of merging and
dissociation as shown in Fig. 1. There is another type of
merging allowed, in which flux is only conserved modN.
We begin by writing a partial expression for the associ-
ated soliton:

Ai�x� �
2�
i

�ijk@j

XN
a�1

Z
0
dz�a�kQaf!M�z�a� � x	

� !0�z�a� � x	g (16)

where the sum now is over curves a which all begin at the
origin. Because the sum of all Qa is zero, there are no
long-range monopole fields associated with this termina-
tion of the curves.

It is still necessary to close the curves somewhere away
from the origin. One way is simply to repeat the process in
Eq. (16) at some other point x � u. This is illustrated
graphically in Fig. 2. Note that this is topologically
precisely the same as a baryonic Wilson loop in SU�N�.
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There is one other major type of configuration remain-
ing; it involves nexuses [20]. An elementary nexus is a
pointlike region on an elementary (unit flux) vortex string
where the flux matrix changes smoothly (on the scale set
by the mass M) from Qi to Qj. It is truly a non-Abelian
object, with an explicit description too complex for us to
record here; it will be enough to know that the nexus is
essentially a point on a vortex string which changes the
Qi around. A nexus (or antinexus) conserves the flux
JmodN but changes the matrices Qi which make up
this flux. The flux difference Qi �Qj is essentially a
root vector of SU�N�; it has one diagonal element of 1,
one element of �1, and the rest are 0. This is the Pauli
matrix 	3 for some embedded SU�2� of SU�N�, and con-
stitutes the flux matrix for what is basically a ’t Hooft–
Polyakov monopole whose field lines are deformed into
the strings of the center vortices on either side of the
nexus. Since every vortex string is closed, every nexus
must be accompanied by an antinexus somewhere else on
the vortex string. In d � 4 the linking of nexus world
lines to vortex surfaces leads to topological charge occur-
ring in localized lumps of charge 1=N, but globally of
integral total charge. This is not of concern to us in three
dimensions. But nexuses do lead to a simple description of
important recombination processes, a little different from
the simple merging and dissociation of Fig. 1. An example
is shown in Fig. 3, showing a Q1 vortex exchanging with a
Q2 vortex during merging and dissociation.
-5
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1
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2

FIG. 3. A recombination event, in which vortex 2 (that is, of
flux matrix Q2) combines with vortex f13g at the bottom, and
dissociates into vortex 1 plus vortex f23g at the top. Black
circles are nexuses or antinexuses which change 1 into 2 or
vice versa.
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III. A THREE-DIMENSIONAL SCALAR-FIELD
MODEL OF NEXUSES AND CENTER VORTICES

It has long been known [8] that the partition function
of simple closed strings in d � 3 can be described by the
partition function of a scalar-field theory. The essential
ingredient is that the Feynman-Schwinger proper-time
representation of the (trace of the logarithm of the) free
scalar propagator has an interpretation in the language of
closed strings:

T r ln�!M	 �
Z 1

0

ds
s

I
�dz� exp

�
�
Z s

0
d&

�
M1

2
_z2 �

M2

2

�	
:

(17)

As a stringy object, in the above integral the parameters
s; & are not proper times but rather physical lengths along
the string, and �dz� is an integral over all closed-string
paths. The masses M1;2 are mass parameters derived from
some underlying theory; they are related to the physical
mass by M2 � M1M2.

For oriented strings, the string partition function is an
integral over all closed random walks and lengths:

Zstring �
X 1

N!

�Z 1

0

ds
s

I
�dz� exp

�
�

Z s

0
d&

�
M1

2
_z2

�
M2

2

��	
N
: (18)

Here the _z2 term is the familiar action for random walks
of length s. It involves a mass factor M1 related to the
diffusion rate of the random walks. The other mass M2

gets positive contributions from string self-energy per
unit length and negative contributions from entropy, so
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it is possible that M2 and M2 are negative, and the field is
tachyonic, signaling the formation of a string condensate.
In that case, the free theory does not make sense, but
stabilizing interactions, such as a four-point term in the
field theory, must be added. Then the scalar fields pick up
vacuum expectation values, and their masses are physical.
It turns out that our scalar-field theory has no continuous
global symmetry, so there are no Goldstone bosons.

The factor 1=s in the ‘‘proper-time’’ integral corrects
for overcounting strings with different starting points on
the closed curves. For unoriented strings, this factor is
1=�2s�. The sum over N gives the usual free-field scalar
partition function for oriented strings:

Zfield � expfTr ln�!M	g: (19)

To represent the particulars of the gauge solitons of
Sec. II we introduce N scalar fields �i, i � 1; 2; . . .N.
There are relations among these fields, following from the
properties of the Q matrices. The first relation is conju-
gation:

�y
i � �N�i: (20)

For N even, the field �N=2 is self-conjugate. The other
relation is that one of the fields, say �N , can be expressed
in terms of the others, which corresponds to the vanishing
of the sum of the N Q matrices. In the scalar-field lan-
guage, this amounts to writing a vertex in the action of
the form

G
Z

d3x
YN
i�1

�i (21)

that corresponds to the vertices in Fig. 2.
It is possible in principle to calculate the properties of

the scalar-field action directly from the gauge theory. For
example, the contribution of one unit-flux vortex soliton,
as displayed in Eq. (10), to the free scalar-field action I0 is
found by calculating the gauge action of Eq. (8) based on
the solitonic potential of Eq. (10). We record here only the
B2

i part; the mass term gives a similar term.

I0 �
M3�

2g2 Tr�Q2�
Z

d&
Z

d&0 _zi�&� _zi�&
0� expf�Mjz�&�

� z�&0�jg: (22)

(We do not need to indicate an index on Q; all Q’s give the
same result.) The exponential term comes from the inte-
gral over all space of the square of the magnetic field
strength Bi, which is [up to constants already absorbed in
Eq. (22)]

Bi�x� �
I

dziM
2!M�z� x�: (23)

In the infrared regime, where all length scales are
large compared to M�1, one can make contact with
-6
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canonical field theory by making the large-M approxi-
mations

_z i�&� _zi�&
0� ’ _zi�&�

2; jz�&� � z�&0�j ’ j _z�&�jj&� &0j:

(24)

The integral over &0 can now be done, and (omitting
exponentially small terms) results in

I0 � Tr�Q2�
�M2

g2

Z
d&e�1�&� _zi�&�2 (25)

where the einbein e is just j _z�&�j. This contribution to the
free action is reparametrization invariant; the form
quoted in Eq. (17) is the special case j _z�&�j � 1. One
can add to this kinetic action a term representing energy
or entropy per unit length, of the reparametrization-
invariant form

R
d&e�&�M2=2. By comparison of

Eqs. (17) and (25) one sees that the mass M1 is
2�Tr�Q2�M2=g2. As is well known, in d � 3 all dynami-
cal masses are linear in g2, and therefore so is M1.

One must be careful to understand that the large-M or
infrared form of the action in Eq. (24) is not appropriate
to study the ultraviolet behavior of the scalar theory. The
contribution of one closed vortex, of whatever shape or
length, to the free scalar propagator !0� is the integral of
exp��I0 � �M2s=2�	 over all curves and lengths:

!0��x� �
Z 1

0
dse�M2s=2

Z x

0
�dz� exp�

�
M1

2


Z s

0
d&

Z s

0
d&0 _zi�&� _zi�&0� exp��Mjz�&�

� z�&0�j	
	

(26)

before any approximations are made. By writing the
integrals over & and &0 in the exponent as the limit of a
sum of terms one can check that no terms singular at s �
0 arise from the path integrals. Normally, the path inte-
grals lead to a factor s�3=2 in the s integral, which is
responsible for ultraviolet divergences in the propagator.
But no such terms arise in our case, because the scalar-
field theory is built on solitons, rather than on pointlike
fields. The scalar propagator behaves at least as well as
M2k�4 for large k, which means that even the N-point
vertices discussed below lead to convergent Feynman
graphs.

The nonlocal (in proper time) corrections following
from Eq. (26) to the standard local propagator of Eq. (17)
can be expressed as a power series in the deviation of the
trajectory z�&� from a straight line. These are not easy to
characterize, because even for a simple circular orbit the
nonlocal terms lead to a divergent series that is not Borel-
summable. If we specify the orbit as part of a circle

z�&� � R
�
cos

�
&
R

�
; sin

�
&
R

�
; 0
�

(27)
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the double proper-time integral becomes

Z
d&

Z
d&0 cos

�
&� &0

R

�
exp

�
�2MR sin

�
j&� &0j

2R

�	
:

(28)

The expansion of this integral in powers of 1=�MR� is a
factorially divergent series with all terms of one sign.
This expansion is closely related to the asymptotic ex-
pansion of the Bessel function I0�2MR�. We will not
explore this subject further in this paper.

We next discuss the ‘‘baryonic’’ vertex of Fig. 2 and
Eq. (21). Let us calculate the contribution IB to the loga-
rithm of the scalar partition function Z� coming from the
solitonic configuration of Fig. 2 [see Eq. (16)], in the
infrared or local approximation. We assume the strings
in Fig. 2 are well separated on the scale of M�1, except for
the two regions of size M�1 where they all meet. Using
the same techniques as for the propagator of a single
scalar field we find

lnZ� � e�IN
Z

d3x
Z

d3y�!0��x� y�	N � � � � (29)

where IN is the contribution to the action coming from the
regions of size �M�1 near the points x; y where all N
strings come together. The factor exp��IN	 is a factor of
G2, where G is the N-coupling constant in Eq. (21).

Evidently the Feynman graph represented by Eq. (29)
is exactly the same as the graph of the solitonic strings in
Fig. 2. And this is true generally: Every graph of solitonic
strings has a counterpart Feynman graph in the scalar-
field theory. The sum of all connected Feynman graphs
represents the logarithm of the solitonic-string partition
function.

In particular, nexuses amount to a quadratic term in the
action. The most general quadratic term is

Inex �
Z

d3x
X

�y
i Vij�j: (30)

The diagonal terms represent single-string energy and
entropy per unit length, which is the same for all vortices,
and the off-diagonal terms represent the nexus-mediated
flipping of Qi to Qj. The nexus action is the same what-
ever the values of i; j. As a result, the matrix V has one
element m2

d on the diagonal and one element m2
n for every

off-diagonal entry. Such a matrix is easily diagonalized,
and has N � 1 eigenvalues m2

d �m2
n, and one eigenvalue

of m2
d � �N � 1�m2

n. The N � 1 eigenvectors of the first
eigenvalue are of the form

P
xi�i with

P
xi � 0, and for

the second eigenvalue the eigenvector is
P

�i. In the
large-N limit this eigenvector does not propagate, because
its eigenvalue is of order N. This is consistent with the fact
that in the gauge theory there are only N � 1 unit-flux
solitons.

Finally, it is worth noting that the complete lack of
ultraviolet divergences, plus the fact that all masses are
-7
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linear in the gauge coupling g2, is all that is needed to
prove the exact result of [23], which is that the full
quantum effective action �, as a function of the zero-
momentum condensate hG2

iji, has a minimum correspond-
ing to a nonzero value for this condensate.

Before going on to the rate equation derivable from this
scalar-field theory, we first discuss the relation of the
Wilson-loop Vacuum Expectation Value (VEV) to proba-
bility densities for vortices piercing the loop.
IV. WILSON LOOP EXPECTATION VALUE AND
AREAL DENSITIES

We use the GO formulation of Greensite and Olejnı́k
[12], with some minor additions. This formulation goes
beyond the usual DGA formula for relating 	�k� to the
discrete Fourier transform of the areal densities and
avoids the problem, mentioned both by [11] and GO,
that if the standard DGA formula is used to relate a string
tension linear in k to the vortex areal densities, these
densities are singular and do not show correct large-N
065005
behavior. We will find a modified approach to the DGA
based on GO’s work which avoids this difficulty.

A. Areal densities and the Wilson loop VEV

Consider a large planar Wilson loop of area A, divided
into many squares whose size is given by the vortex
correlation length �. We expect � ’ 1=M. Let p�L� be
the probability that a vortex of flux L exists on any square,
so that the areal density of vortices is p�L�=�2.We assume
that only one vortex can sit on any one square, since (as
discussed in the next section) two vortices attempting to
occupy the same square will either repel each other or
attract each other to form a new single composite vortex.
On the average there are as many antivortices as vortices,
and so the antivortex probability p��L� � p�N � L� is
precisely equal to p�L�. (So on the average the net flux
through any Wilson loop is zero. The area law of confine-
ment arises from fluctuations in the total vortex flux.)

The Wilson loop contains B � A=�2 squares, and we
calculate the VEV in terms of the probabilities in the k
representation as

D�1

k Trk exp
�I

dxiAi

��
� p�0�B � Bp�0�B�12p�1� cos

�
2�k
N

�
�

B�B� 1�

2
p�0�B�2

�
2p�1� cos

�
2�k
N

��
2

� Bp�0�B�12p�2� cos
�
2 2�k

N

�
� � � � (31)
where Dk is the dimension of the representation k, and we
have used the equality of vortex and antivortex probabil-
ities. The presence of the term B�B� 1�=2 rather than B2

multiplying p�1�2 says that if two vortices are present
they must occupy different sites, for reasons given above.

The sum in Eq. (31) is

�XN�1

L�0

p�L� exp
�
2�ikL

N

�	
B
�

�
p�0� � 2

X0

L�1

p�L�

 cos
�
2�kL
N

�	
B

(32)

where the prime on the sum indicates that it goes from 1 to
�N � 1�=2 if N is odd. If N is even, the sum goes to
�N=2� � 1 and one must also add p�N=2� cos��k� to the
sum. This sum is supposed to equal the area-law result
exp��	�k�A	, where 	�k� is the string tension in the k
representation. Since B � A=�2 this leads to, as in GO and
Eq. (2)

exp��	�k��2	 � p�0� � 2
X0

L�1

p�L� cos
�
2�kL
N

�

�
XN�1

0

p�L� exp
�
2�ikL

N

�
: (33)

The behavior of 	�k� is constrained by conjugation sym-
metry [p�L� � p�N � L� � p��L�]. For k restricted to
integer values we find
	�k� � 	��k� � 	�N � k�: (34)

This furnishes an extension of 	�k� to negative integers.
A simple change of variables, using conjugation symme-
try, shows that Eq. (33) can be written as

exp��	�k��2	 �
XN=2

�N=2

p�L� cos
�
2�kL
N

�
: (35)

[Here the limits �N=2 are nominal but apply for large N;
the real limits can be worked out from the definition of
the primed sum in Eq. (32).]

B. The large-N limit and conjugation symmetry

We will be interested in the large-N limit, which has
certain subtleties that we explore next.

The inverse transform corresponding to Eq. (33) is
[Eq. (4)]:

p�L� �
1

N

XN�1

k�0

exp
�
�2�ikL

N

�
exp��	�k��2	: (36)

As long as L is an integer it is straightforward, using
conjugation symmetry as in Eq. (34), to show that the
inverse transform can also be written

p�L� �
1

N

XN=2

�N=2

exp��	�k��2	 cos
�
2�kL
N

�
: (37)
-8
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[As before, the limits on the sum are nominal.] From
either of these equations it is very reasonable to expect
that the p�L� have the large-N scaling property [already
noted in the Introduction]

p�L;N� �
1

N
~p
�
L
N

�
!

1

N
~p�x�; x �

L
N

(38)

with conjugation symmetry implying ~p�x� � ~p�1� x� �
~p��x�. If so, then it is a good approximation to replace the
sum in Eq. (33) by an integral:

exp��	�k��2	 �
Z 1

0
dx~p�x�e2�ikx: (39)

The error made is at least as small as O�1=N�, and
in certain cases of physical interest is exponentially small
in N.

Note that we have lost conjugation symmetry for 	�k�,
but the property 	�k� � 	��k� which follows from
Eq. (39) and conjugation symmetry for ~p�x� replaces it
for all practical purposes. As long as k is a positive or
negative integer, conjugation symmetry for ~p�x� allows us
to write this equation in the alternative form:

exp��	�k��2	 �
Z 1=2

�1=2
dx~p�x� cos�2�kx	: (40)

At this point we will use Eq. (40) to define 	�k� for
general nonintegral k, when we need to do so.

So far we have replaced one of the discrete Fourier
transforms, Eq. (35), by an integral over a finite domain,
Eq. (40). This means, of course, that the inverse Fourier
transform, Eq. (36), remains a sum over integral values of
k, but the sum extends to k � �1:

~p�x� �
X1

k��1

exp��2�ikx	 exp��	�k��2	: (41)

One might now ask whether it is legitimate to replace
the sum in Eq. (37) by an integral with limits �1,
provided that the sum over k is well behaved. This inte-
gral form would explicitly exhibit scaling symmetry. But
Eq. (40) and this integral would not, in general, form a
Fourier transform pair. This means that for a given 	�k�
the result of replacing the sum in Eq. (37) by an integral
defines not, as one might hope, ~p�x�, but another function
p̂�x�, which we hope is closely related:

p̂�x� �
Z 1

�1
dke�	�k��2

e�2�ikx: (42)

The general principles of Fourier integrals tell us that the
true Fourier inverse that expresses exp��	�k��2	 is found
from replacing the limits �1=2 in Eq. (40) by �1 and
~p�x� by p̂�x�:

exp��	�k��2	 �
Z 1

�1
dxp̂�x� cos�2�kx	: (43)

Now both 	�k� and p̂�x� are defined for certain complex
065005
domains of their arguments, and both are even functions.
The original conjugation symmetry for both of these
functions has been lost; there is no reason, for example,
to believe that p̂�x� � p̂�1� x�. But it is manifest that
p̂�x� � p̂��x�.

Is there much of a relation between ~p�x� and p̂�x�? The
answer is that there can be, if in Eq. (40) the integration
over x receives dominant contributions only from jxj �
1=2, in which case �1=2 is almost as good as �1 [the
new limits in Eq. (43)]. As we will now see, the explicit
formulas of GO furnish an illustration of this point, in
which smallness of the parameter � introduced in Eq. (6)
is equivalent to effective domination of the integrals in
Eqs. (40) and (43) by small values of x. We will also see
that smallness of � is a form of the DGA.

The explicit phenomenological example of GO is

	�k� � k	�1�; k <
N
2
;

� �N � k�	�1�; k >
N
2
: (44)

They then calculate the corresponding p�L�, which has
terms exponentially small at large N. Such terms are
automatically dropped by using the discrete Fourier
transform of Eq. (41) with infinite limits, and we find

~p�x� �
1� "2

�1� "�2 � 2"�1� cos�2�kx�	
(45)

where

" � e�	�1��2
� e�2��: (46)

Consider now what happens to GO’s ~p�x� [Eq. (45)]
when both � and jxj are small. The result we will identify
with p̂�x�:

~p�x� !
�

���2 � x2�
� p̂�x�: (47)

The probability p�L� corresponding to p̂ above is

p�L� �
N�

��N2�2 � L2�
: (48)

This p̂�x�, used in the Fourier integral of Eq. (43), yields a
string tension

exp��	�k��2	 � exp��2��jkj	 (49)

which is the GO input string tension [Eq. (44)], provided
that k � N=2. And if the string tension is defined by
Eq. (49) for all k, the Fourier integral of Eq. (43) yields,
as it must, p̂�x�. The importance of small � is that the
poles of the integrand of Eq. (43) are at x � �i� and thus
far from �1=2.
-9
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FIG. 4. A test plane perpendicular to the z axis is moved
along that axis, revealing a continuous picture of merging and
dissociating vortices piercing that plane. Shown are two vorti-
ces recombining and another vortex dissociating as seen with z
as the ‘‘time.’’
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C. The DGA

Let us close this section by relating the smallness of �
to the DGA. GO have observed that scaling makes it very
difficult to understand how the DGA could be applicable,
since p�0�, the probability of no vortex in a � square, is of
order 1=N and so there must be vortices almost every-
where. In the formal large-N sense this is certainly true,
but for fixed N, however large, it is always possible to
choose � � 1=��N� so that p�0� from Eq. (47) is close to
unity while the next-largest probability, which is p�1�, is
an order of magnitude smaller. [One might also note that
the formal � ! 0 limit of ~p�x� in Eq. (47) is 0�x�.] Of
course, in the real world of physics we cannot choose �,
and in any case we would not expect the real world to be
describable in DGA terms. Nevertheless, it is possible to
envisage a DGA that both accommodates scaling and
allows for the areal densities of vortices to be fairly small.

The usual form of the DGA comes from subtracting
unity from each side of the basic GO result in Eq. (33),
and using the normalization of probabilities to eliminate
p�0�:

1� exp��	�k��2	 � 2
X0

L�1

p�L�
�
1� cos

�
2�kL
N

��
: (50)

At least formally, the DGA follows from assuming
	�k��2 is small and from saving only the linear term in
this quantity on the left-hand side of Eq. (50). Since in our
example 	�k��2 � 2��jkj, this would require 2�� (and
2�k�) to be small. As mentioned in the introduction,
Ref. [11] uses this conventional DGA to study what prob-
abilities p�L� are needed to reproduce various forms of
	�k�. If 	�k� � k for N � k, Ref. [11] finds [in effect by
linearizing the left-hand side of Eq. (50)] that for L � 1

p�L� �
N

L2 : (51)

But, as [11,12] note, it is hard to understand this formula
for general L � 1, because an areal density proportional
to N at small (i.e., nonscaling) values of L would indicate
a pileup of many vortices on a single square. The simple
change from the denominator L2 of Eq. (51) to L2 � N2�2

in our Eq. (48) yields a well-behaved scaling form for
p�L� at all L, including 0, while maintaining the behavior
L�2 in the regime �N � L � N=2.

The basic point for us is that the simple form of p�L� in
Eq. (47) (1) scales as it should; (2) leads to p�0� � 1=N;
and (3) has an asymptotic behavior L�2 which is compat-
ible with a k-string tension rising linearly in k for small
enough k. This form was discovered by replacing the
limit N or N=2 on certain flux sums by 1, and it is just
this replacement we will make below in our approximate
rate equation. It will then be seen that this rate equation
has a solution with all three properties listed above. This
is not to say that the solution of the rate equation is
exactly as shown in Eq. (47), as discussed later on. But
065005
our present limited investigation of the rate equation
reveals no obvious imcompatibilities with Eq. (47).

V. THE MASTER EQUATION

The master equation for vortex dynamics describes the
evolution of vortex areal densities as a function of a
variable z, which can be thought of as giving the intercept
of a test plane (essentially a planar Wilson loop), perpen-
dicular to the z axis, with that axis. For a given configu-
ration of branched vortices in three-space, as z varies
different cross sections of the configuration are seen
(see Fig. 4). These cross sections look like a gas of d �
2 molecules merging, dissociating, and recombining; the
molecules are made of atoms that are the cross sections of
unit-flux vortices, and they attract and repel according to
laws given below. All such processes strictly conserve flux
number LmodN. A flux matrix FfLg is a sum of distinct Qi

matrices [see Eq. (13)], so we may think of any vortex of
flux L as made of constituents, which we call atoms, that
have unit flux and are labeled by the indices on the Qi. A
center vortex of flux L � 1 is a molecule, made of those
atoms which appear in the flux matrix F_L FffLgg. We can
always take flux values to lie in the range 1 � L � N � 1,
and vortices with L > N=2 are antivortices. On the aver-
age, as many vortices of flux L as of flux N � L pierce any
sufficiently large plane, so the net flux is equivalent to
zero.We assume ergodic behavior, so that averaging over z
is the same as averaging over many different vortex-
nexus configurations.
-10
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The atoms’ and molecules’ motion is essentially diffu-
sive, because they are cross sections of random walks.
Every center vortex, of whatever flux, has the same size,
roughly equal to the correlation length � of the vortices,
so we can imagine the test plane divided into squares of
area �2. Each square can hold one vortex of any flux L,
with probability p�L� as described above. The probability
p�0� is the probability that there is no vortex at all in a
square.

We are interested in large N, first because in any case N
must be greater than three or there is no k-string problem,
and second because we would like to be able to enter the
scaling regime, defined in Eq. (38), that contains vortices
whose flux L scales with N as N grows. As we have
already mentioned, even with scaling it is possible to
adjust parameters so that the probability of no vortex,
p�0�, is considerably greater than the probability p�1� of
one vortex. The scaling regime is separated from this
regime of sharply varying p�L� at a flux L ’ �N, where
� � 1 is 	�1��2=�2��, as before. The discussion in the
previous section tells us that replacing flux sums by
integrals and taking certain limits of these integrals to
be infinite is qualitatively appropriate, provided that � is
fairly small.

We will use the flux dependence of the semiclassical
actions of various vortices to decide whether processes
involving an action change is allowed or not. That we can
use the semiclassical actions of center vortices at large N
is certainly an assumption which can be challenged, on
the grounds that the actions in question diverge as N gets
large [see Eqs. (22) and (A12)]. But one knows [24] that
the group entropy for center vortices can completely
cancel the action at leading order in N, and that if this
happens, the leading large-N corrections preserve the
functional form of the action except that this action is
multiplied by const=N2. The resulting effective action
then scales at large N. However, the fate of nonleading
large-N corrections has not been studied, and we have
nothing to say about them. In any case, we must and do
assume that some such phenomenon of cancellation of
action and entropy takes place, or else center vortices
do not survive the large-N limit at all [25].

In any case, we make the assumption that the proba-
bilities for particular merger and dissociation processes
are large or small according to the semiclassical action
difference associated with the initial and final states of
merger or dissociation. One might expect, as in the chemi-
cal law of mass action for rates, that rates depend on
exp��!I	 where !I is a difference of actions. The ration-
ale for this can be seen in, for example, Eq. (29), where
the ‘‘baryon’’ vertex coupling G is of the form exp��I	.
But the law of mass action strictly holds only for dilute
systems, and we take a different approach. In fact, we will
drastically simplify the rate equation by allowing flux-
conserving processes for which the action difference is
065005
favorable, and forbidding those for which it is not.
The actions involved depend on quantities such as
Tr�FfJgFfKg�, and comparing these actions for initial and
final states of vortex processes yields a set of rules for
probabilities of these processes, plus force laws which
predict whether particular vortices will attract or repel
each other. Next we summarize allowed and forbidden
processes in a set of rules for action and for forces
between vortices.

A. Force and action rules

A matter of notation: From now on, when we refer to
an action, we mean (unless the context makes clear oth-
erwise) a trace quadratic in flux matrices, without factors
of 4�M=g2, etc. So we define

IfLg � TrF2
fLg: (52)

Given the assumption that it is meaningful to compare
the semiclassical actions, and the traces (see Appendix B)
in question, we will now see that center vortices of flux L
can be understood as a composite of L unit-flux vortices
which have certain laws of attraction and repulsion.
Generally, a vortex of flux matrix Qi is repelled by
another vortex of the same type, and attracted to vortices
of different type but by an attraction smaller by a factor of
1=N. (This is to be expected for some sort of rough force
balance, since there are roughly N times as many ways for
a vortex to see another of different type as ways to see one
of its own type.)

In merger processes it is possible to form flux matrices
where some Qi appear more than once. If some indices are
repeated, we say that there is an overlap. As in
Appendix B and Eq. (13), we use the notation FfLg for
the sum of L matrices Qi with no indices repeated. If R of
the indices are each repeated once and only once, we
indicate this by FfL;Rg. Of course, this is an incomplete
notation, since in general the precise content of the set fRg
of repeated indices must be specified. Furthermore, one
could imagine that some indices are repeated once, others
repeated twice, etc. We restrict ourselves to single repeats
because the more Q matrices of like type in a flux matrix,
the higher the action and the less likely this is to occur.

The actions IfL;Rg calculated as a trace in Appendix A,
Eq. (A13), are exactly reproduced by the following rules
for calculating the self and mutual actions of unit-flux
constituents:
(1) E
-11
ach constituent (unit-flux vortex) has self-action
�N � 1�=N.
(2) U
nlike constituents have action �2=N per inter-
acting pair.
(3) L
ike constituents have action �2 per pair.

Such rules of attraction and repulsion automatically lead
to a stable system, since every action in the system is the
trace of a real matrix squared.
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As an example, the action IfLg of a vortex of flux L is
L�N � L�=N if there is no overlap. We interpret it as
follows. Each of the L constituents has self-action
�N � 1�=N, and is attracted to unlike constituents with
an action contribution �2=N. As a result, the action of a
vortex with no overlap is

IfLg �
L�N � 1�

N
�

1

2
L�L� 1�

�
�2

N

�
�

L�N � L�
N

: (53)

If there is overlap R, one must add 2R to this action,
according to Appendix B, Eq. (A13). This positive addi-
tion indicates that like constituents repel.

We can transcribe the action and action difference
associated with various processes into rules for attractive
and repulsive forces between vortex atoms. Consider the
sum of two vortices in the form given in Eq. (15), and
suppose that the string for vortex a � 1 is a straight line
along the z axis. The string for vortex a � 2 is the same,
except that it is displaced in the xy plane by a distance r.
Up to factors irrelevant for the present discussion, the
action of the pair is easily found [using Eq. (A11)] to have
the form

I � IfK1g
� IfK2g

� 2e�Mr
�
�

K1K2

N
� R

�
(54)

where R is the overlap between fK1g and fK2g. Evidently,
if the overlap is small enough the third term on the right is
attractive, but otherwise it is repulsive. We will use this
force rule and the action rules in the master equation.

B. Qualitative aspects of the master equation
and its solution

As discussed above, the master equation is a rate equa-
tion in the variable z, where z is the point on the z axis
where a test plane of fixed contour and area A, perpen-
dicular to this axis, intersects it (see Fig. 4).

In general, there are a large number of many-vortex
interactions. To keep things manageable, we concentrate
on a limited number of these, for which we furnish
simple go/no go rules. They are
(1) M
erger of two vortices into one

(2) R
ecombination of two vortices into two other

vortices

(3) D
ecay of one vortex into two vortices
The rules for these processes are based on the action and
force rules of the previous subsection. In implementing
the rules we will replace sums by integrals and set some
upper limits in these integrals to 1 rather than to N, in
much the spirit of Sec. IV B.

The most important action or force rule is that two
vortices with zero overlap tend to attract, and that the
state of lowest action is the single vortex which combines
all the constituents. Furthermore, if they have finite over-
lap but still attract, they will, in whatever recombination
of constituents occurs, prefer to separate the overlapped
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constituents entirely. That is, suppose vortices with fJg �
f123456g and fKg � f12789g merge to form the virtual
vortex fJ � K;Rg with fRg � f12g. Lower-action states
are available, so this virtual vortex will decay quickly.
The decay state that conserves constituents and has the
lowest action is the sum of vortices f123456789g and f12g.

Consider now a merger process in the scaling regime,
in which vortices with fluxes fK1g and fK2g meet at a point
(that is, they occupy the same correlation-length square
in the test plane). Neither vortex has any internal overlap
(otherwise it would dissociate, as said above), but when
merged there is an overlap. The probability distribution of
overlap is described in Appendix B. The average overlap
of the configuration is hRi � K1K2=N, and it is in the
scaling regime if K1; K2 are. The merged configuration
fK1 � K2;Rg has action [in the sense of Eq. (52)]

IfK1�K2;Rg � IfK1g
� IfK2g

� 2
�
R�

K1K2

N

�
: (55)

On the average, the overlap repulsion just cancels the
attraction between the two vortices, so the merger is
action and force neutral. However, by recombining con-
stituents, the action can be lowered. The general rule is
that the most favorable state is a single vortex with the
combined flux of the two original vortices, as one sees
from Eq. (A12). However, if there is overlap, one must
arrange it so that Qi of the same type go to different
vortices.

If the initial configuration is rearranged into fLg �
fK1 � K2 � Lg in such a way that neither fLg nor its
partner has internal overlap, the action of this recombined
configuration, once the two vortices have separated sev-
eral correlation lengths, is

IfLg � IfK1�K2�Lg � IfK1g
� IfK2g

�
2

N
�L� K1��L� K2�:

(56)

The go/no go rule is that if the product �L� K1��L� K2�
multiplying 2=N in this equation is positive, the recom-
bination process is allowed, otherwise disallowed. One
easily sees that the conditions favoring the recombination
are

L <min�K1; K2� or L >max�K1; K2�: (57)

In addition, for a process to be allowed we require that
there be no overlap in either the fLg vortex or the fK1 �
K2 � Lg vortex, so that

L >
K1K2

N
; K1 � K2 � L >

K1K2

N
: (58)

It is important to note that the constraints of Eqs. (57) and
(58) are conjugation symmetric. Conjugation symmetry
requires invariance under the exchanges
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L ! N � L; K1 ! N � K1; K2 ! N � K2:

(59)

Clearly, the conditions of Eq. (57) are invariant under
conjugation symmetry, since they derive from the
conjugation-invariant combination �L� K1��L� K2� of
Eq. (56). And we note that the second inequality of
Eq. (58), stemming from no overlap, can be written as
the conjugation of the first inequality:

K1 � K2 � L >
K1K2

N
! �N � L�>

�N � K1��N � K2�

N
:

(60)

Now we write down the master rate equation for the
probabilities p�L; z�. We assume that it is a good approxi-
mation at large N to replace sums by integrals, and write

_p�L; z� �
Z

dK1

Z
dK2G�K1; K2jL�p�K1; z�p�K2; z�

� p�L; z�
Z

C�L;K�p�K; z� (61)

where the dot indicates differentiation with respect to z.
The first term on the right-hand side of this equation gives
the growth rate of L vortices from recombination pro-
cesses as just described, and the second term reflects the
loss of vortices by two-vortex interactions. The functions
C;G are, in principle, to be determined from consider-
ations of the full set of couplings in the scalar-field theory
of Sec. III.

Although we do not know these functions, they must
obey certain conditions. There is one relation between
them, following from conservation of total probability:

0 �
Z

dL _p�L; z�

�
Z

dK1

Z
dK2p�K1; z�p�K2; z�

�Z
dLG�K1; K2jL�

� C�K1; K2�

	
(62)

so that

Z
dLG�K1; K2jL� � C�K1; K2�: (63)

Furthermore, the essential conjugation symmetry p�L� �
p�N � L� will be satisfied if the kernel G obeys

G�K1; K2jL� � G�N � K1; N � K2jN � L� (64)

with a similar equation for C.
The probabilities we seek are those satisfying the equi-

librium equation expressing independence of z (which we
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suppress):

p�L� � "
Z

dK1

Z
dK2G�K1; K2jL�p�K1�p�K2�; "�1

�
Z

dKC�L;K�p�K�: (65)

At this point we drastically simplify the equations by
taking both G and C to be constants G0; C0 within the
regime of variables allowed by the conditions of Eqs. (57)
and (60). Because these conditions are conjugation sym-
metric, the kernels continue to obey conjugation symme-
try as in Eq. (64). For suppressed processes not obeying
these conditions we set C or G to zero. The decay function
C is not subject to any particular restriction, so setting C
to a constant means that the parameter " in the equilib-
rium Eq. (65) is independent of the p�K�, by normaliza-
tion of the probabilities. The constant C0 must be O���1�,
where � is the correlation length in z. The condition
which preserves probabilities, Eq. (63), then leads to
G0 � O��N���1	, because G is integrated over a range
scaling like N, when its variables are in the scaling
regime. This dependence of C;G on N means that the
rate equation can be written solely in terms of the scaled
probabilities ~p�x� defined in Eq. (38), and we will do this
below.

The result is the approximate master equation

p�L� �
G0

C0

Z N

0
dK1

Z N

0
dK2

�
3
�
�N � L�

�
�N � K1��N � K2�

N

�
� 3

�
L�

K1K2

N

�	
3��L

� K1��L� K2�	p�K1�p�K2�: (66)

The scaling form of this equation is

~p�x� � ~p�0�
Z 1

0
dx1

Z 1

0
dx2f3�1� x� �1� x1��1� x2�	

� 3�x� x1x2�g3��x� x1��x� x2�	~p�x1�~p�x2�

(67)

where we have made the replacement

G0

C0
�

~p�0�
N

: (68)

That this is correct follows from Eq. (67) by setting x � 0
in the rate equation, which yields Eq. (68).

It is not our purpose in the present paper to study the
rate equations in any great detail, largely because details
of the solution will depend on details of the kernels C;G,
which we do not know. However, there are certain fea-
tures of the rate equations that we believe are robust: The
behavior near zero, which is consistent with scaling, as
we have already seen, and the behavior for flux L which is
large compared to unity but still small compared to N=2.
This is the regime of the modified DGA, already studied
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in Sec. IV B, in which limits such as N or N=2 were
replaced by 1, equivalent to replacing limits in the scal-
ing variable x of �1=2 by �1. So in Eq. (66), one sets the
explicit N’s inside the integral to infinity (but not the N in
the factor G0=C0), and in the scaling Eq. (68) one replaces
the limit x � 1 by x � 1. After a little algebra, in the
N ! 1 limit Eq. (66) becomes

p�L� � p�0�
Z L

0
dK1

Z L

L�K1

p�K1�p�K2� � p�0�


Z 1

L
dK1

Z 1

L
dK2p�K1�p�K2�: (69)

[In this equation there is a factor of N�1 hiding in p�0�
and therefore a factor of N hiding in p�L�.]

For large L it is elementary to find the self-consistent
behavior of the second term on the right-hand side of
Eq. (69), since in the integral only large values of K1; K2

contribute. The first term on the right has contributions
from this regime but also from the regime where one or
the other of K1; K2 is small (if both are small, they do not
contribute to large L). In this second regime we assume
that p�K� is constant and of order p�0� for K � p�0��1,
and takes on its large-K behavior for K � L. After some
analysis one finds that the self-consistent behavior at large
L of p�L� is simply that of Eq. (51) and already given in
Ref. [11], except that we can supply an overall factor:

p�L� � const
N

~p�0�L2 (70)

or equivalently

~p�x� � const
1

~p�0�x2
(71)

where the constant factor is of order unity. One need do no
analysis at all if one accepts that p�L� has a power-law
behavior at large L, since L�2 is the only possible such
behavior.

This large-L behavior is quite acceptable in the scaling
regime L� N, leading to densities uniformly of order
1=N. But there are certainly corrections for L in the
nonscaling regime, since as already pointed out ~p�0� is
finite. The simplest extrapolation that shows the asymp-
totic behavior at large L of Eq. (70) as well as the correct
qualitative behavior at L � 0 is the one already used
phenomenologically in Eq. (47):

p�L� �
�N

����N�2 � L2	
; ~p�x� �

�

���2 � x2�
: (72)

It follows that

~p�0� �
1

��
(73)

and so the normalization of the large-L or large-x behav-
ior in Eq. (70) leads to the same parametric behavior in �
as does the extrapolation formula given in Eq. (72). Of
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course, we already know from Sec. IV B, or if one accepts
the DGA from [11], that this extrapolation leads to a
string tension linear in k, at least for k � N.

It is simply not possible to argue for or against the
extrapolation formula of Eq. (72) without knowing more
than we know about the kernels C;G of the master equa-
tion. Let us, for example, modify the master Eq. (67) by
replacing G0 by a function G�L�. In principle, the idea is
that we are given G�L� and try to solve Eq. (67) for p�L�.
The solution is not obvious; it requires solving a non-
linear integral equation. But one can think of the problem
the other way around: Given p�L�, to what kernel G�L�
does it correspond? This question is answered by doing
some integrals. If we use our guessed extrapolation in
Eq. (72) we find that G�L� is a smooth and slowly varying
function approaching constant values as L ! 0;1, no
more or less plausible than assuming it is a strict constant.

One may wonder how to recover conjugation symmetry
from a non-conjugation-symmetric result such as the
extrapolation of Eq. (72). One could make the substitution

L2 !
N2

2�2

�
1� cos

�
2�L
N

��
: (74)

The right-hand side above is indeed L2 in the regime of
interest to us: L � N=2. Our extrapolation equation then
becomes

p�L� �
�
const

N

�
4�2�

�2���2 � 2� 2 cos�2�L
N �

: (75)

To no one’s surprise, this is precisely of the GO form given
earlier in Eq. (45) if one identifies

2�� � 2 sinh
�
	�1��2

2

�
; (76)

which in the small-� limit gives our previous result.
VI. SUMMARY AND CONCLUSIONS

Starting from the effective d � 3 gauge-theory action
which yields center vortices and nexuses as solitons, we
construct an N-component scalar-field theory. The com-
ponents of this field theory are the unit-flux constituents
(whose d � 2 cross sections in a test plane we call atoms)
of center vortices having higher flux J, whose d � 2 cross
sections we call molecules. Like constituents repel, and
unlike constituents attract, with an attraction 1=N times
the repulsion. This leads to a condensate of merging,
dissociating, and recombining vortices, and an approxi-
mate qualitative picture of vortex areal densities, based
on studying these processes in a test plane that is pierced
by vortices. This study leads in turn to a master rate
equation, whose general structure we can foresee but
whose detailed quantitative properties remain to be de-
termined in future work.
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We expect that the basic dynamics of the d � 2 inter-
action of our atoms and molecules is the same in d � 4
and d � 3, and the master rate equation will have only
minor quantitative differences in these two dimensions.

We also give a rough and tentative first investigation of
the rate equation, based on an approach to large-N dy-
namics which in some sense generalizes the usual imple-
mentation of the DGA. This generalization makes use of
the work of GO, who propose a relation between k-string
tensions and areal densities (or equivalently probabilities)
that is not at all restricted by the DGA. Its utility is that
we can to a large extent bypass the complications of
conjugation symmetry. At large N we replace discrete
Fourier transforms by integrals with infinite limits,
and show that the validity of this substitution defines a
modified form of the DGA. These integrals preserve the
scaling property p�L� � �1=N�~p�L=N�. Conjugation
symmetry [p�L� � p�N � L�, etc.] is violated, but re-
placed by an equivalent condition that requires both
p�L� and 	�k� to be even functions of their argument.
We argue that this replacement of sums by infinite inte-
grals violates no qualitative feature of the k-string tension
problem, provided that the scaling argument L=N is small
compared to unity, and that k � N=2.

The rate equation, using some simplified kernels, has a
solution p�L� that obeys scaling; which therefore has a
probability of no vortex p�0� that is O�1=N�; and has an
asymptotic behavior NL�2 (as proposed earlier in [11] on
phenomenological grounds). The simplest extrapolation
of our asymptotic results to all fluxes is precisely the
form taken by the GO phenomenological form when L
is large but obeys L � N=2, and when a parameter �
defining the modified DGA is small. This extrapolation
is such that the k-string tension is linear in k for k � N. In
this paper we leave entirely open the closely related
questions of the behavior which restores conjugation
symmetry (requiring understanding the behavior for k >
N=2), and of nonleading corrections to the large-N limit.

Work is in progress to refine the drastic simplifications
of the present paper, by calculating (from the gauge-
theory effective action) those solitonic actions necessary
to compute the scalar-field theory coupling constants
which describe merging, dissociating, and recombining
vortices. Then one can hope to write down a more accu-
rate master rate equation, properly including such effects
as conjugation symmetry, and solve it numerically.

Even without the elaborate work of calculating all the
solitonic actions, it would be valuable to carry out com-
puter simulations of the dynamics of atoms and mole-
cules subject to the simple rules of attraction and
repulsion used in this paper, incorporating all n-body
processes of merger, dissociation, and recombination
as well as conjugation symmetry and modN flux
conservation.

It would also be of great value to study lattice simula-
tions for moderately large values of N, say, N � 4; 5; 6,
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and look for center vortices of various fluxes undergoing
merging, dissociating, and recombining. In this way one
could make a connection between direct simulations of
k-string tensions and the behavior of the vortex
condensate.
APPENDIX A: PROPERTIES OF VORTEX FLUX
MATRICES

We introduce the N  N traceless diagonal matrices

Qi � diag
�
1

N
;
1

N
; . . .

1

N
;�1�

1

N
;
1

N
; . . .

�

i � 1; 2; . . .N (A1)

with the �1 in the ith position. Although N matrices are
defined, their sum is zero, as is easily checked:

XN
1

Qi � 0: (A2)

The independent Qi are just linear combinations of the
weight vectors ~5i for the fundamental representation of
SU�N�. The Qi obey

T r�QiQj� � 0ij �
1

N
(A3)

which is twice the scalar product ~5i � ~5j.
Of course, any Qi is related to any other by a similarity

transformation Qi � S�ij	QjS�ij	
�1. The S�ij	 and their

products form a representation of the permutation group,
which means that various group orthogonality properties
hold in summing over the vortex collective coordinates
represented by the permutation group.

The flux associated with each Qi is 2�=N, in the sense
that

exp�2�iQj	 � exp�2�i=N	 (A4)

for all j. Equation (A2) simply means that flux is con-
served modN.

Next we define flux matrices for higher flux via

FfJg � Qi1 � � � �QiJ (A5)

where no two indices are the same. If R of the indices
occur at least twice each, we use the notation FfJ;Rg. Of
course, to specify the detailed structure of the overlap we
must write the index set in Eq. (A5) explicitly: fJg �
fi1 . . . iJg. For example, the set fJg � f111223334567g has
an overlap R � 3, but simply specifying R does not
specify the exact overlap. In practice (see below) vortices
with a given flux J and nonzero overlap always have
higher action than for the same flux and no overlap, so
in this paper we will restrict overlapped index sets to
those in which an index in the overlap set fRg occurs
exactly twice. The example above is not allowed, then, but
fJg � f1122334567g is; it has overlap R � 3. Obviously,
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this restriction is easy to remove, but the consequent
notation becomes cumbersome.

The collective coordinates for FfJg are permutations of
the matrix indices— the same permutation for each Qi in
the sum. In particular, if the set fJg is held fixed, and one
sums over all permutations of the indices in another set
fKg, there is orthogonality:X

permK

Tr�FfKgFfJg	 � 0: (A6)

Note that there is a close connection between center
vortices of flux fJg in the fundamental representation of
SU�N� and elementary vortices (unit flux) in the J (totally
antisymmetric) representation of this group. Every state
of the J representation can be labeled by indices running
from 1 to N as ji1 � � � iJi, with no two indices alike, and
ket vectors with the same index set but in different order
differ by the sign of the permutation required to go from
one order to the other. For any diagonal matrix D �
diag�Di; . . .DN� in the fundamental representation, the
action of D in the J representation on a ket is

Dji1 � � � iJi � �Di1 � � � �DiJ �ji1 � � � iJi: (A7)

We have the equation

1

CJDJ
TrJF

2
fLg �

1

C1D1
Tr1F

2
fLg (A8)

where CJ � J�N � J��N � 1�=�2N� is the quadratic
Casimir of the J representation, and DJ � N!=�J!�N �
J�!	 is the dimension of this representation (note that J �
1 is the fundamental representation). On the left-hand side
of Eq. (A8) traces are in the J representation; on the right-
hand side, in the fundamental representation.

So far the flux labels J are positive numbers. From
Eq. (A2) it follows that if fJg and fN � Jg have no overlap

FfJg � FfN�Jg � 0; Ff�Jg � �FfJg � FfN�Jg: (A9)

One sees that

exp�2�iFf�Jg	 � exp��2�iJN	: (A10)

The master formula from which all other quadratic
trace formulas follow is

T r�FfJgFfKg� �
�JK
N

� R (A11)

if fJg and fKg have overlap (intersection) fRg. In this
equation, both J and K are taken as positive numbers,
so that if one uses this equation for a negative flux Ff�Jg,
one replaces this by �FfJg. Or one comes to the same
thing by using FfN�Jg in place of �FfJg, but then one
must replace the overlap by *R � K � R.

The action of a center vortex fJg with no overlap is
found by setting fJg � fKg, yielding
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T rF2
fJg �

J�N � J�
N

: (A12)

When there is overlap (as restricted above) we write the
set fJ;Rg as the sum of two sets with no internal overlap,
but of course the two sets overlap each other: fJ;Rg �
fJ � Rg � fRg. One then finds the action for fJ;Rg to be

TrF2
fJ;Rg �

J�N � J�
N

� 2R: (A13)
APPENDIX B: OVERLAP PROBABILITY

Consider the temporary merger of vortices fJg and fKg,
which have no internal overlaps but which taken together
have overlap fRg. An example is fJg � f12345g, fKg �
f45678g, fRg � f45g. The composite vortex fJ � K;Rg
has higher action [Eq. (A13)] than a composite with the
same total flux but with fRg � f0g. We wish to know,
given J; K, the distribution of overlap number R.
Evidently, given a set of K numbers taken from 1 to N,
with no repeats allowed, the probability that one of an
independent set of J numbers is in the set fKg is K=N. This
suggests that ( just as in tossing coins with a probability
K=N of getting heads) the average overlap in J trials is

hRi �
JK
N

: (B1)

The complete probability distribution of R, which we
call P�RjJ; K�, is found easily. If the overlap is indeed R, it
occurs a number of times equal to the number of ways of
picking J numbers subject to the constraint that R of them
are in the set fRg, that is, the number of ways to choose
J � R out of N � K. This is to be multiplied by the
number of ways an overlap of R numbers can be imbedded
in fKg, which is the number of ways of picking R out of K,
and divided by the total number of ways of picking J out
of N. The result is

P�RjJ; K� �
J!K!�N � J�!�N � K�!

N!R!�N � J � K � R�!�K � R�!�J � R�!
:

(B2)

Using Stirling’s formula, with the assumption N �
J;K; R � 1, leads to a binomial distribution that is
equivalent to a Poisson distribution:

P�RjJ; K� �
J!

R!�J � R�!

�
K
N

�
R
�
N � K

N

�
J�R

!
1

R!

�
JK
N

�
R
e�JK=N: (B3)

Note that the probability of no overlap (R � 0) is
exp��JK=N	, which is exponentially small in the scaling
regime, and that the expectation value of R is indeed
JK=N.
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[12] J. Greensite and Š. Olejnı́k, J. High Energy Phys. 0209
(2002) 039.

[13] B. Lucini and M. Teper, Phys. Lett. B 501, 128 (2001).
[14] L. Del Debbio, H. Panagopoulos, P. Rossi, and E. Vicari,

Phys. Rev. D 65, 021501 (2002).
065005
[15] B. Lucini and M. Teper, Phys. Rev. D 66, 097502 (2002).
[16] L. Del Debbio, H. Panagopoulos, and E. Vicari, J. High

Energy Phys. 0309 (2003) 034.
[17] B. Lucini, M. Teper, and U. Wenger, J. High Energy Phys.

0406 (2004) 012.
[18] M. Engelhardt and H. Reinhardt, Nucl. Phys. B585, 591

(2000).
[19] M. Engelhardt, M. Quandt, and H. Reinhardt, Nucl. Phys.

B685, 227 (2004).
[20] J. M. Cornwall, Phys. Rev. D 58, 105028 (1998).
[21] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[22] M. Lavelle, Phys. Rev. D 44, R26 (1991).
[23] J. M. Cornwall, Nucl. Phys. B416, 335 (1994).
[24] J. M. Cornwall, Phys. Rev. D 57, 7589 (1998).
[25] A similar phenomenon has long been known to be

possible for large-N instantons; see H. Neuberger, Phys.
Lett. B 94, 199 (1980); D. Gross and A. Matytsin, Nucl.
Phys. B429, 50 (1994). Unfortunately, lowest-order cal-
culations of the possible cancellation of entropy and
action are inconclusive, as they depend on the regulari-
zation scheme, and only higher-order calculations can
settle the issue.
-17


