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Gravitational waves from a chaotic dynamical system

Kenta Kiuchi1,* and Kei-ichi Maeda1,2,3,†

1Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
2Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan

3Waseda Institute for Astrophysics, Waseda University, Shinjuku, Tokyo 169-8555, Japan
(Received 29 April 2004; published 22 September 2004)
*Electronic
†Electronic

0556-2821=20
To investigate how chaos affects gravitational waves, we study the gravitational waves from a
spinning test particle moving around a Kerr black hole, which is a typical chaotic system. To compare
the result with those in a nonchaotic dynamical system, we also analyze a spinless test particle, whose
orbit can be complicated in the Kerr back ground although the system is integrable. We estimate the
emitted gravitational waves by the multipole expansion of a gravitational field. We find a striking
difference in the energy spectra of the gravitational waves. The spectrum for a chaotic orbit of a
spinning particle contains various frequencies, while some characteristic frequencies appear in the case
of a spinless particle.
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I. INTRODUCTION

The current ground base gravitational wave detectors
such as LIGO, TAMA300, GEO600 and VIRGO [1–4]
are now starting the ‘‘science run’’ and the laser space
antenna for gravitational waves (LISA) [5] may operate in
the near future. Gravitational waves will bring us various
new information about relativistic astrophysical objects.
If we can detect gravitational waves and compare them
with theoretical templates, we may be able to determine a
variety of astrophysical parameters of the sources such as
their direction, distance, masses, spin, and so on. The
direct observation of gravitational waves could resolve
strong gravitational phenomena such as a black hole for-
mation. Furthermore, we may be able not only to verify
the theory of gravity, but also to find new information or
to discover new physics at a high density or a high energy
region. Therefore, we need to make theoretical templates
of gravitational waves from various astrophysical objects
and phenomena to extract useful information from gravi-
tational waves.

There are a lot of astrophysical objects and phenomena
as gravitational wave sources, e.g., a closed binary system
or a supernova explosion. There have been many attempts
to study their templates so far. In this paper, we particu-
larly focus on gravitational waves from a chaotic dynami-
cal system. It is motivated as follows. Chaos appears
universally in nature and it is expected to explain various
nonlinear phenomena. Because chaos indicates unpredict-
ability of motion of objects, it comes into question
whether or not it is possible to extract useful information
from a chaotic system. Many studies have been made on
chaos in mechanics and astrophysics since the research on
the three-body problem by Poncaré. It is also important to
study chaos in general relativity because the Einstein
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equations are nonlinear. Many authors have reported
chaos in general relativity [6–24]. As for a realistic
astrophysical object, there has been discussion on whether
or not chaos occurs in a compact binary system [22–24].
It seems that there is not enough time in a compact binary
for chaos to occur even in a nonintegrable system [24].We
may not yet have any concrete examples of general rela-
tivistic chaos for a realistic situation; however, we believe
that it is necessary to study chaos in general relativity
because chaos will occur in a realistic strong gravita-
tional field described by general relativity.

In this paper, we study some observational features of
chaos in a general relativistic dynamical system. We focus
on gravitational waves from a chaotic dynamical system.
As a model of a chaotic dynamical system, we adopt a
spinning test particle around a rotating black hole. It
mimics a model of compact objects orbiting around a
supermassive black hole. Recent observations support
the existence of such massive black holes and LISA will
be sensitive to the gravitational waves from such systems.
As for a background spacetime, we assume the Kerr
metric since such a supermassive black hole is usually
rotating.

The previous works [17,19–21] revealed that orbits of a
spinning test particle around a black hole can be chaotic
due to the spin orbit coupling. In [17], Suzuki and one of
the present authors first showed such a possibility in the
Schwarzschild black hole background. Subsequently they
analyzed gravitational waves from such a system by using
the quadrupole formula [19]. They showed some charac-
teristic properties of gravitational waves from a chaotic
orbit.

Here we extend their work to the case of the Kerr black
hole by using multipole expansion of a gravitational field
[25–27]. Carter showed [28] that the equations of motion
for a spinless particle are integrable. After his work,
however, Johnston discovered that for some initial pa-
rameters, particle motions can be complicated as if chaos
36-1  2004 The American Physical Society
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occurred, although the system is integrable[29]. Then we
also analyze such nonchaotic but complicated orbital
motion to clarify whether or not chaos is essential in
our results. We compare the wave forms and the energy
spectra of the gravitational waves from both chaotic and
nonchaotic systems and analyze the effects of chaos on
gravitational waves. Then, we will clarify the difference
between gravitational waves from a chaotic orbit and
those from a nonchaotic orbit.

We should refer to a spin of a test particle. The value of
a spin magnitude that we adopt in the present work is
much larger than the typical value of any astrophysical
objects. In fact, it was shown that chaos does not occur in
the system with a realistic spin [17,20]. However, in this
paper, we are interested in characteristic properties of
gravitational waves from a chaotic orbit. We then adopt
the present system as one example of chaotic dynamical
systems.

This paper is organized as follows. In Sec. II we shall
briefly review the basic equations of both a spinless
particle and a spinning particle in relativistic spacetime,
a supplementary condition, and some constants of mo-
tion. Specifying the background spacetime to be the Kerr
metric, we show our results in Sec. III. Summary and
some remarks follow in Sec. IV. Throughout this paper
we use units c � G � 1. Our notation including the
signature of the metric follows that of Misner Thorne
and Wheeler (MTW) [30].
II. BASIC EQUATIONS FOR A TEST PARTICLE

First we explain our system more precisely.

A. Background spacetime

We consider the Kerr metric as a background space-
time. In the Boyer-Lindquest coordinates, given by

ds2 � �

�
1�

2Mr
�

�
dt2 �

4Marsin2

�

dtd��
�

�
dr2

��d
2 � sin2

�
r2 � a2 �

2Ma2rsin2

�

�
d�2;

(2.1)

where

� � r2 � a2cos2
; (2.2)

� � r2 � 2Mr� a2; (2.3)

and M and a are the mass of a black hole and its angular
momentum, respectively.

B. A spinless test particle

In this subsection, we summarize the equations of
motion for a spinless test particle. It is well known that
a spinless test particle moves along a geodesic
064036
d2x�

d�2
� ����

dx�

d�
dx�

d�
� 0; (2.4)

where � is an affine parameter of the orbit. In a stationary
axisymmetric spacetime, a spinless particle has two con-
stants of motion; the Energy E and the z-component of the
angular momentum Lz. The particle’s rest mass � is also
constant. Carter discovered the third constant of motion
and showed that the system is integrable [28].
Equation (2.4) is reduced to a set of the differential
equations as

�
d

d�

� �
�����


p
; (2.5)

�
dr
d�

� �
����
R

p
; (2.6)

�
d�
d�

� �

�
aE�

Lz
sin2


�
�
a
�
P; (2.7)

�
dt
d�

� �a�aEsin2
� Lz� �
r2 � a2

�
P; (2.8)

where

�
� � C� cos2

�
a2�1� E2� �

L2
z

sin2


�
; (2.9)

P�r� � E�r2 � a2� � aLz; (2.10)

R�r� � P2 � �fr2 � �Lz � aE�2 � Cg; (2.11)

and C is a constant discovered by Carter and called the
Carter constant. Note that because of the presence of the
Carter constant, the orbits of a particle will never be
chaotic.

C. A spinning test particle

The equations of motion for a spinning test particle in
a relativistic spacetime were first derived by Papapetrou
[31] and then reformulated by Dixon [32]. They used the
pole-dipole approximation, in which multipole moments
of an object higher than a mass monopole and a spin
dipole are ignored in the limit of a point particle. The set
of equations is given as

dx�

d�
� v�; (2.12)

Dp�

d�
� �

1

2
R����v�S��; (2.13)

DS��

d�
� 2p; (2.14)

where �; v�; p� and S�� are an affine parameter of the
orbit, the four-velocity of a particle, the momentum, and
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the spin tensor, respectively. p� deviates from a geodesic
due to the coupling of the Riemann tensor with the spin
tensor. We also need an additional condition which gives a
relation between p� and v�. We adopt the condition
formulated by Dixon [32]

p�S�� � 0: (2.15)

This condition consistently determines the center of mass
in the present system. Using Eq. (2.15), we can determine
the relation between p� and v� explicitly as

v� � N
�
u� �

1

2�2 
R�!��S��u!S��

�
; (2.16)

where

 � 1�
1

4�2 R"#$�S
"#S$�; (2.17)

and N is a normalization constant, which is fixed by a
choice of the affine parameter � as we will explicitly show
later. u� 
 p�=� is a unit vector parallel to the four-
momentum p�, where the mass of the particle � is
defined by

�2 � �p�p
�: (2.18)

To make clear the freedom of this system, we have to
check the conserved quantities. Regardless of the sym-
metry of the background spacetime, it is easy to show that
� and the magnitude of spin S defined by

S2 

1

2
S��S

��; (2.19)

are constants of motion. If a background spacetime pos-
sesses some symmetry described by a Killing vector %�,

C% 
 %�p� �
1

2
%�;�S�� (2.20)

is also conserved [32]. For a spacetime with both axial
and timelike Killing vectors such as Kerr spacetime, we
have two conserved quantities, i.e., the Energy E and the
z-component of the total angular momentum Jz of a
spinning particle.

For numerical reasons, we rewrite our basic equations
as follows. Following the appendix in [17], we write the
equations using a spin vector

S� 
 �
1

2
'����u

�S��; (2.21)

where '���� is the Levi-Civita tensor. The basic equations
are now

dx�

d�
� v�; (2.22)

Dp�

d�
�

1

�
R��
���v�S�p�; (2.23)
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DS�

d�
�

1

�3 p
�R�

���$S�v�S�p$; (2.24)

where

R�
���� 


1

2
R"#��'"#��: (2.25)

Equation (2.15) is also rewritten

p�S
� � 0: (2.26)

By this condition, the relation between p� and v� is
determined as follows:

v� � u� �
1

�2
�R��

���S�S�u�; (2.27)

where

�R�
���� 


1

2
'��"#R

�"#
�� : (2.28)

We fix the affine parameter � using the condition v�u� �

� . This gives N as

N � 1�
1

�4
�R�

"#��S
"p#S�p�; (2.29)

Our conserved quantities are also rewritten as

S2 � S�S
�; (2.30)

C% � %�p� �
1

2�
%�;�'

����p�S�: (2.31)
III. NUMERICAL RESULTS

In this section, we show our numerical results for the
orbital motion of a test particle, and the wave forms and
the energy spectra of the emitted gravitational waves. To
analyze chaotic behavior of a test particle, we use the
Poincaré map and the Lyapunov exponent. To draw the
Poincaré map, we adopt the equatorial plane (
 � (=2)
as a Poincaré section and plot the point (r, vr) when the
particle crosses the Poincaré section with v
 < 0. If the
motion is not chaotic, the plotted points will form a
closed curve in the two-dimensional r-vr plane, because
a regular orbit will move on a torus in the phase space and
the curve is a cross section of the torus. If the orbit is
chaotic, some of these tori will be broken and the
Poincaré map does not consist of a set of closed curves
but the points will be distributed randomly in the allowed
region. From the distribution of the points, we can judge
whether or not the motion is chaotic.

A. Motion of a test particle

1. A spinless particle

As we see in Sec. II B, the equations of motion of a
spinless particle are integrable because of the existence of
-3



FIG. 1. The orbit of a spinless particle with E � 0:968�,
Jz � 2:0 �M, C � 10�2M2, and a � 1=

���
2

p
. We choose the

initial position and velocity as �r; 
;�� � �10M;(=2; 0� and
�vr; v
; v�� � �0:14; 0:03; 0:02�. This is called the orbit (a) in
this paper. This orbit looks very complicated as if chaos
occurred.
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the Carter constant. That is chaos does not occur. But
Johnston found that the orbits of a spinless particle can be
complicated as if chaos occurred [29]. Integrating nu-
merically the equations of motion (2.5), (2.6), (2.7), and
(2.8), we show a typical complicated orbit in Fig. 1.

This orbit is called the orbit (a) in this paper. The
behavior of the orbit (a) looks complicated. However,
FIG. 2 (color online). The Poincaré map of the orbit (a). The
plot points form a closed curve in the two-dimensional r-vr

plane. We also plot the Poincaré map of the other two orbits
with the same conserved quantities as those of the orbit (a).
This confirms that the system is integrable.

064036
showing the Poincaré map in Fig. 2, we find a closed
curve, which confirms that the orbit (a) is not chaotic.

2. A spinning particle

In the previous work [18,19], the parameter region for a
spinning test particle in which a particle will show cha-
otic behavior was discussed. We adopt such parameters,
e.g., the energy E, the angular momentum Jz, and the spin
parameter S of a test particle. Using the Bulirsch-Store
method [33], we integrate the equations of motion
Eqs. (2.22), (2.23), and (2.24) and use the constraint
equations Eqs. (2.18), (2.26), (2.30), and (2.31) to check
the accuracy of our numerical integration.We find that the
relative errors are smaller than 10�11 for each constraint.
We show the orbits of the spinning particle in Fig. 3 and
call it the orbit (b). Comparing Fig. 1 with Fig. 3, we
cannot distinguish two orbits. However, the difference
between a chaotic orbit and a nonchaotic one will be
apparent when we draw the Poincaré maps. In Fig. 4,
we show the Poincaré map of the orbit (b). The plot points
distribute randomly in Fig. 4. We also calculate the
Lyapunov exponent ! to evaluate the strength of chaos.
The result is depicted in Fig. 5. As shown in Fig. 5, the
Lyapunov exponent ! is positive, which means that the
orbit (b) is chaotic. The typical time scale for chaos is
given by !�1 � 18M . Since the average of orbital
period is 74:3M, the orbit (b) becomes chaotic after just a
few revolutions around a black hole.

B. Gravitational wave forms and energy spectra

Based on the previous calculation of the orbits, we
show the wave forms and their energy spectra and analyze
the effect of chaos on the emitted gravitational waves. To
estimate the gravitational waves, we use the multipole
FIG. 3. The orbits of a spinning particle with E � 0:9328�,
Jz � 2:8�M, and S � 1:0�M. We set a � 0:8M and choose the
initial position and velocity as �r; 
; �� � �6:0M;(=2; 0� and
�vr; v
; v�� � �0:18; 0:05; 0:07�. This is called the orbit (b),
which is. complicated just as the orbit (a).
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FIG. 4 (color online). The Poincaré maps of the orbits (b) and
(c). The plot points for the orbit (b) distribute randomly, which
confirms that it is a chaotic system. The orbit (c), will be
discussed later.

FIG. 5 (color online). The maximal Lyapunov exponent ! for
the orbit (b). The typical time scale for chaos is given by !�1 �
18M, while the average orbital period is 74:3M.
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expansion of a gravitational field [26,27]. Here we briefly
summarize the multipole expansion method. According
to [26,27], the gravitational waves are represented in TT
gauge as

hTTij �
X1
l�2

Xl
m��l

1

r

"
dl

dtl
Ilm�t� r�flmij �

dl

dtl
Slm�t� r�dlmij

#
;

(3.1)

where

flm �
r2���������������������

4nl�l� 1�
p

0B@ 0 0 0
0 Wlm Xlm
0 � �sin2
Wlm

1CA;

dlm �
r2���������������������

4nl�l� 1�
p

0
B@ 0 0 0
0 �Xlm= sin
 sin
Wlm

0 � sin
Xlm

1
CA;

(3.2)

with

n �
l�l� 2�

2
� 1; (3.3)

Xlm � 2
@
@�

�
@
@


� cot

�
Ylm;

Wlm �

�
@2

@
2
� cot


@
@


�
1

sin2


@2

@�2

�
Ylm:

(3.4)

(r, 
) is a position of an observer. dlm and flm are an odd-
parity and even-parity mode, respectively. Ilm is a multi-
pole of the mass distribution and Slm is that of the angular
momentum. If a gravitational wave source moves slowly,
we can write down Ilm and Slm as
064036
Ilm �
16(

�2l� 1�!!

�
�l� 1��l� 2�

2�l� 1�l

�
1=2 Z

�00Y
�
lmr

ld3x;

(3.5)

Slm � �
32(

�2l� 1�!!

�
�l� 2��2l� 1�

2�l� 1��l� 1�

�
1=2

�
Z
'jpqxp���0q�Y

l�1;lm�
j rl�1d3x; (3.6)

where Yl�1;lm�
j is called the pure orbital harmonic func-

tion

Yl
0;lm
j �
;�� �

Xl0
m0��l0

X1
m00��1

�1l0m00m0jlm�%m
00

i Yl
0m0
; (3.7)

%0i 
 �ez�i; %�i 
 �
1���
2

p �ex � iey�i: (3.8)

Given the information of a particle orbit, we can evaluate
hTTij for each l. The gravitational waves from a chaotic
orbit of a spinning particle may contain higher multipole
moments (l > 2) than the quadrupole (l � 2). This is the
reason we analyze the gravitational waves not only for
l � 2 but also for l � 3. Note that because the orbit
considered here is very relativistic, the multipole expan-
sion may not be valid and then it will provide only a
qualitative feature.

In Fig. 6 and 7, we show the gravitational wave forms
for the orbits (a) and (b), respectively. These figures
reveal two important points. One is that in the wave
forms, there looks to be some difference between two
orbits (a) and (b), but it may be difficult to distinguish
which one is chaotic. Just as a reference, we depict the
wave form for a circular orbit in Fig. 8, which is quite
regular. The second point is that the amplitudes of the
-5



FIG. 6 (color online). The gravitational wave forms of the �-
and the �-modes for the orbit (a). The observer is on the
equatorial plane. Figures (i) and (ii) show the wave forms of
l � 2 and 3, respectively.

FIG. 8 (color online). The wave forms for a circular orbit at
r � 2:45M.

KENTA KIUCHI AND KEI-ICHI MAEDA PHYSICAL REVIEW D 70 064036
octopole wave (l � 3) are smaller than those of the quad-
rupole wave (l � 2). Comparing the peak values, we find
that the ratio of the amplitude of l � 3 to that of l � 2 is
about 30%.
FIG. 7 (color online). The gravitational wave forms of the �-
and the �-modes for the orbit (b). The observer is on the
equatorial plane. Figures (i) and (ii) show the wave forms of
l � 2 and 3, respectively.

064036
In Fig. 9, we show the energy spectrum of the quadru-
pole gravitational wave (l � 2) from the orbit (a). In
Fig. 10, we show the energy spectrum of the gravitational
wave (l � 2; 3) from the spinning particle. From Fig. 9
and 10, we find that there is a clear difference in the
energy spectra of the gravitational waves between the
orbit (a) and (b).

How about the orbit of a spinning particle which looks
regular? In order to understand a role of chaotic behavior,
we also analyze the Poincaré map of orbit (c), which is
nearly a closed circle (the inner circle map in Fig. 4).
Although this map looks closed in Fig. 4, we find that it is
not really closed when we enlarge it (see Fig. 11).We show
the wave forms for the orbit (c) in Fig. 12. We also present
the spectrum in Fig. 13.
FIG. 9 (color online). An energy spectrum of the gravita-
tional wave from the orbit (a). Each value is normalized by the
maximum peak value.
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FIG. 10 (color online). The energy spectra of the gravitational
wave (l � 2; 3) from the spinning particle. (i)-(ii) The energy
spectrum of the gravitational wave (l � 2; 3). The values in
these cases are normalized by the peak value of the spectrum
l � 2.

FIG. 11 (color online). (i) The Poincaré map of the orbit (c).
We also plot the Lyapunov exponent (ii), whose value is smaller
than that of the orbit (b) but is still positive (!� 0:02 M).

FIG. 12 (color online). The gravitational wave forms of the
�- and the �-modes for the orbit (c). The observer is on the
equatorial plane. Figures (i) and (ii) show the wave forms of

l � 2 and 3, respectively.

FIG. 13 (color online). An energy spectrum of the gravita-
tional wave from the orbit (c). This is similar to the orbit (a).

GRAVITATIONAL WAVES FROM A CHAOTIC. . . PHYSICAL REVIEW D 70 064036
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From the figures, we may conclude that the spectrum of
gravitational waves from nonchaotic orbits contains only
discrete characteristic frequencies [34]. On the other
hand, the spectrum for the chaotic orbits contains the
various frequencies. It seems to be a continuous spectrum
with finite widths. The ratio of the octopole wave energy
for the orbit (b) to that of the quadrupole wave is about
12.4%. Therefore the higher pole moment does not con-
tribute much to the emitted gravitational waves, even
though the orbit is chaotic.

IV. SUMMARY AND DISCUSSIONS

In this paper, we study the gravitational waves emitted
from a chaotic dynamical system. As a concrete example,
we analyze the motion of a test particle going around the
Kerr black hole. We confirm that the orbit of a spinning
particle can be chaotic. Using the multipole expansion
method of a gravitational field, we evaluate the gravita-
tional waves from a chaotic and a nonchaotic orbit in
order to analyze the effect of chaos on the emitted gravi-
tational waves. Comparing the gravitational wave form in
the chaotic case to that in the nonchaotic case, there is not
much difference between them. However, the energy
spectra of the gravitational waves show a clear difference.
For a chaotic orbit, we find a continuous energy spectrum
with several peaks. Whereas, in the case of nonchaotic
orbit, the spectrum contains the discrete characteristic
064036
frequencies. We also find that the higher pole moments
than quadrupole moment of the system do not contribute
much to the emitted gravitational waves even for a chaotic
orbit.

When the gravitational waves are detected and the
energy spectrum is determined by observation, not only
the astrophysical parameters, e.g., the mass, the angular
momentum, and the spin are determined, but also some
fundamental physics such as relativistic nonlinear dy-
namics could be discussed.

As a future work, we have to study the gravitational
waves in the dynamical system in a full relativistic ap-
proach. For the first step, using the Newmann-Penrose
formalism [35], we extend the present evaluation (the
multipole expansion) to a full relativistic perturbation
analysis.
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