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Effects of stress tensor fluctuations upon focusing
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We treat the gravitational effects of quantum stress tensor fluctuations. An operational approach is
adopted in which these fluctuations produce fluctuations in the focusing of a bundle of geodesics. This
can be calculated explicitly using the Raychaudhuri equation as a Langevin equation. The physical
manifestation of these fluctuations are angular blurring and luminosity fluctuations of the images of
distant sources. We give explicit results for the case of a scalar field on a flat background in a thermal
state.
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I. INTRODUCTION

Although quantum states in field theory may or may
not be eigenstates of the Hamiltonian, and hence have
fixed energy, they are never eigenstates of the energy
density or other stress tensor components. This means
that all quantum field theories exhibit fluctuations of the
stress tensor. These fluctuations can manifest themselves
either through fluctuating forces on material bodies, or
through fluctuations of the gravitational field. In the
former category are fluctuations of Casimir forces [1–4]
and fluctuations of the radiation pressure [5]. In this paper,
we will be concerned with the latter phenomenon, where
stress tensor fluctuations drive fluctuations of the space-
time geometry. These are ‘‘passive’’ fluctuations of the
spacetime, in contrast to the ‘‘active’’ fluctuations which
arise from the quantization of gravity itself. The role of
stress tensor fluctuations in gravity theory has been dis-
cussed by several authors [6–17]. Among the issues of
interest is the extent to which these fluctuations place
limits on the validity of the semiclassical theory of grav-
ity, which is the approximation in which the gravitational
field is assumed to be classical and determined by the
renormalized expectation value of the stress tensor
[6,8,16]. Other authors have been concerned with the
possible role of stress tensor fluctuations in the early
universe or upon black hole evaporation [10–15].

One of the basic problems which must be addressed in
treatments of quantum stress tensor fluctuations is that the
stress tensor correlation function is singular, even if the
stress tensor operator has been renormalized to have finite
expectation values. For this reason, many of the earlier
treatments [6–9,14] studied only a portion of the corre-
lation function which is free of singularities, the ‘‘fully
normal-ordered part.’’ However, more recently it has
become clear that the remaining parts (the ‘‘vacuum’’
and ‘‘cross’’ terms to be defined in Sec. II) can also have
physical effects, and that extracting these effects requires
a careful procedure for defining integrals with singular
ress: ford@cosmos.phy.tufts.edu
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integrands [5,17]. For example, the radiation pressure
fluctuations, arising when light in a coherent state
impinges upon a mirror, come entirely from the cross
term [5].

In this paper, we will present an approach to studying
the gravitational effects of stress tensor fluctuations
which is based upon Raychaudhuri’s equation. This equa-
tion relates the Ricci tensor to the rate of change of the
expansion along a congruence of geodesics, and plays a
central role in the proofs of the classical singularity
theorems. We will treat it as a Langevin equation which
describes how stress tensor fluctuations lead to fluctua-
tions in the expansion. This in turn leads to a lack of
focusing and fluctuations in the luminosity of the images
of distant objects seen through a fluctuating spacetime
geometry. Here the quantum matter field will be a mass-
less, minimally coupled scalar field on an average back-
ground of Minkowski spacetime. The outline of the paper
is as follows: Section II will discuss the stress tensor
correlation function and its decomposition into individ-
ual terms. Section III will deal with the Ricci tensor
correlation function and the fluctuations of the expansion.
The treatment of the singular pieces in the correlation
function will also be discussed in this section. In Sec. IV,
we will explicitly calculate the expansion fluctuations for
a thermal state. The results of the paper will be summa-
rized and discussed in Sec. V. Except as otherwise noted,
we use units in which �h � c � G � k � 1, whereG and k
are Newton’s and Boltzmann’s constants, respectively.
II. QUANTUM STRESS TENSOR FLUCTUATIONS

In this paper, we will deal with the fluctuations of the
stress tensor for quantum fields on an average background
of Minkowski spacetime. The formal expectation values
of T�� are divergent, so we renormalize by subtracting the
expectation value in the Minkowski vacuum state:

:T��: � T�� � hT��i0; (1)

where :T��: is the normal-ordered stress tensor operator.
The fluctuations of :T��: are described by the stress
32-1  2004 The American Physical Society
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tensor correlation function

S�����x; x0� � h:T���x�: :T���x0�:i � h:T���x�:i

� h:T���x0�:i: (2)

Here the expectation value can be taken in an arbitrary
quantum state. It is of interest to note that this correlation
function is unchanged when :T��: is shifted by a constant,
so we could formally write S�����x; x0� without normal
ordering:

S�����x; x0� � hT���x�T���x0�i � hT���x�ihT���x0�i: (3)

Although h:T���x�:i is finite in all well-behaved quan-
tum states, S�����x; x0� is singular in the limit that x and
x0 are null separated. There is a useful decomposition
of operator products which classifies the various
contributions to the correlation function. Let T�x� �
:�1�x��2�x�:, where �1 and �2 are free quantum fields,
or derivatives of fields. The stress tensor operator :T��: is a
sum of such terms. It may be shown using Wick’s theorem
that

T�x�T�x0� � S0 	 S1 	 S2; (4)

where

S0 � h�1�x��1�x0�i0h�2�x��2�x0�i0
	h�1�x��2�x0�i0h�2�x��1�x0�i0; (5)

S1 � :�1�x��1�x0�:h�2�x��2�x0�i0
	 :�1�x��2�x

0�:h�2�x��1�x
0�i0

	 :�2�x��1�x0�:h�1�x��2�x0�i0
	 :�2�x��2�x0�:h�1�x��1�x0�i0; (6)

and

S2 � :�1�x��2�x��1�x0��2�x0�:: (7)

Thus the operator product T�x�T�x0� consists of a purely
vacuum part S0, a fully normal-ordered part S2, and a
part S1 which is a cross term between the vacuum and
normal-ordered parts.

The expectation value of the product of stress tensors
can be expressed as the sum of these three contributions:

h:T���x�T���x0�:i � h:T���x�::T���x0�:i

	 hT���x�T���x0�icross
	 hT���x�T���x

0�ivac; (8)

where the last two terms are the cross term and vacuum
term, respectively. In the limit that x0 ! x,

hT���x�T���x0�icross �
1

�x� x0�4
; (9)

and
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hT���x�T���x0�ivac �
1

�x� x0�8
: (10)

Observable quantities will be expressed as integrals of the
correlation function. However, the singularities in the
cross and vacuum terms are not integrable in a naive
way. As discussed in Refs. [4,5,17], one solution to this
problem is an integration by parts procedure. This
method allows one to define the relevant integrals, and
will be discussed in more detail below. An alternative
approach, which will not be pursued in detail in this
paper, is to use dimensional regularization. In this
approach, the divergent part of a stress tensor correlation
function can be expressed in a local form, which arises
from counterterms in the action of the form of R2 and
R��R

��, where R�� is the Ricci tensor [18].

III. RICCI TENSOR FLUCTUATIONS AND
RAYCHAUDHURI’S EQUATION

A. Raychaudhuri’s equation as a Langevin equation

For a classical spacetime, Einstein’s equations relate
the Ricci tensor R�� to the stress tensor by

R�� � 8��T�� �
1
2g��T

�
��: (11)

In the case of a spacetime with fluctuations driven by
stress tensor fluctuations, we assume that this algebraic
relation between the Ricci and stress tensors still holds. A
useful probe of the fluctuations of the Ricci tensor is the
Raychaudhuri equation.

Consider a congruence of either timelike or null geo-
desics with affine parameter � and tangent vector field k�.
The Raychaudhuri equation gives the rate of change of the
expansion � along the congruence to be [19]

d�
d�

� �R��k
�k� � a�2 � ����

�� 	!��!
��: (12)

Here ��� is the shear and !�� is the vorticity of the
congruence. The constant a � 1=2 for null geodesics, and
a � 1=3 for timelike geodesics. We are interested in
interpreting this equation as a Langevin equation in
which the Ricci tensor fluctuates. For the purposes of
this paper, we will further assume that the shear and
vorticity of the congruence vanishes, and that the expan-
sion remains sufficiently small that the �2 term can also
be ignored, so we can write

d�
d�

� �R��k
�k�; (13)

where R�� is determined by the fluctuating stress tensor
by Eq. (11).

Let the Ricci tensor correlation function be defined to
be

C�����x; x
0� � hR���x�R���x

0�i � hR���x�ihR���x
0�i:

(14)
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The variance of the expansion can be expressed as a
double integral of this correlation function as

h�2i � h�i2 � h����2i �
Z �0

0
d�

Z �0

0
d�0C������; �0�

�k����k����k���0�k���0�: (15)

Here we are assuming that the fluctuations of the expan-
sion occur in a finite affine parameter interval, between
� � 0 and � � �0. In the case of a flat background, we
can take the stress tensor to be normal ordered. Then the
Ricci tensor correlation function C�����x; x0� is related to
the correlation function for the normal-ordered stress
tensor by

C�����x; x0� � 64�2�S���� � 1
2g��S

�
��� � 1

2g��S
�
���

	1
4g��g��S

��
���; (16)

and can also be decomposed into fully normal-ordered,
cross, and vacuum terms.

In the remainder of this paper, we will take the matter
field to be a massless, minimally coupled scalar field, for
which the stress tensor is

T�� � �;��;� �
1
2g���

;��;�; (17)

and the Ricci tensor is

R�� � 8��;��;�: (18)

This will now be interpreted as a normal-ordered opera-
tor, so the correlation function C�����x; x

0� can be ex-
pressed as a sum of a fully normal-ordered term, a cross
term, and a vacuum term:

C�����x; x0� � C�����x; x0�NO 	 C�����x; x0�cross
	 C�����x; x0�vac: (19)

Each of these terms can be found explicitly from
Eqs. (5)–(7) to be

C�����x; x0�NO � 64�2h:@���x�@���x�@0���x0�@0���x0�:i;

(20)

C�����x; x0�cross � 64�2�@�@0�D@�@0�D0

	 @�@0�D@�@0�D0

	 @�@0�D@�@0�D0

	 @�@0�D@�@0�D0�; (21)

and

C�����x; x0�vac � 64�2�@�@0�D0@
�@0�D0

	 @�@0�D0@�@0�D0�: (22)

Here @� denotes differentiation at point x and @0� that at
x0. The vacuum two-point function is

D0 � h��x���x0�i0 �
1

4�2�x� x0�2
; (23)
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and

D � h:��x���x0�:i (24)

is the renormalized two-point function in the chosen
state.

The central quantity which we calculate is the variance
of the expansion parameter, h����2i. However, it will be
useful to relate it to more directly observable quantities.
Two possibilities are a characteristic angle by which
images will be blurred by metric fluctuations, �’, and
the fractional fluctuations in the apparent luminosity of
the source, �L=L. In Appendix A, we give a heuristic
treatment of the relation between �’ and ��, and argue
that we should expect a blurring angle of the order of
�’ � s��=2, where s is the distance to the source. Our
treatment is heuristic because we actually analyze the
situation of a source in flat spacetime whose position
fluctuates. We conjecture that a careful treatment of the
effects of a fluctuating spacetime geometry will give a
result of the same order of magnitude. Fluctuations of �
are also related to fluctuations in the brightness, or ap-
parent luminosity of the source, as is discussed in
Appendix B. In general, �L=L is given in terms of an
integral of the expansion correlation function, however,
in some cases, it is of the same order as �’.

B. Averaging over a bundle of geodesics

In order for the contributions of the cross and vacuum
terms to be finite, it is necessary to average over a space-
time volume. This volume is the interior of the world tube
defined by the bundle of geodesics. Thus in Eq. (15), we
replace the integrations on the affine parameter by four-
dimensional spacetime integrations and write

h����2i �
Z
d4x

Z
d4x00f�x�f�x0�C�����x; x

0�k��x�k��x�

�k��x0�k��x0�; (25)

where f�x� is the function which describes the shape of
the world tube.

It is convenient to express this averaging in null coor-
dinates. Let the unperturbed rays propagate in the x
direction, and let u � t� x and v � t	 x be the null
coordinates. We can take the affine parameter to be the v
coordinate, and then introduce additional averaging in the
u, y, and z directions. We will take the averaging func-
tions to be Lorenztian or Gaussian functions in each of
these directions. Let

gL�u; �� �
�

��u2 	 �2�
; (26)

and

gG�u; �� �
1����
�

p
�
e�u

2=�2
(27)
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so that Z 1

�1
gL�u; ��du �

Z 1

�1
gG�u; ��du � 1: (28)

Equation (25) involves an averaging in six variables, u, u0,
y, y0, z, and z0, as well as integrations over v and v0.
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However, in the cases that will be of interest, the corre-
lation function depends only upon the differences
�u � u� u0, etc. We can exploit the property of
Lorenztian and Gaussian functions that averaging in u
and u0 separately is equivalent to an average on �u. In
particular,
Z 1

�1
du

Z 1

�1
du0gL�u; ��gL�u0; ��F�u� u0� �

Z 1

�1
d�ugL��u; 2��F��u�; (29)

and Z 1

�1
du

Z 1

�1
du0gG�u; ��gG�u0; ��F�u� u0� �

Z 1

�1
d�ugG��u;

���
2

p
��F��u�: (30)
Then we need only average over the differences �u, �y,
and �z. It will be convenient to let the averaging function
be a Lorenztian of width a in �u and Gaussians of width
b in each of �y and �z, so

f�x� � gL��u; a�gG��y; b�gG��z; b�: (31)

The integrations on v and v0 already amount to averaging,
so we do not need to introduce any additional smearing in
these variables. If the integrand is a function of the
difference �v � v� v0 then we may use the relationZ v0

0
dv

Z v0

0
dv0F�v� v0� �

Z v0

0
d�v�v0 � �v�F��v�

	
Z 0

�v0
d�v�v0	�v�F��v�:

(32)

If F��v� is an even function, this relation becomesZ v0

0
dv

Z v0

0
dv0F�v� v0� � 2

Z v0

0
d�v�v0 � �v�F��v�:

(33)

Henceforth, we will slightly change the notation, drop-
ping the ‘‘�’’s, and write v, u, y, and z for �v, �u, �y,
and �z, respectively. Now our expression for the averaged
variance in the expansion becomes

h����2i �
�Z v0

0
dv�v0 � v� 	

Z 0

�v0
dv�v0 	 v�

�

�
Z 1

�1
dugL�u; a�

Z 1

�1
dy

Z 1

�1
dzgG�y; b�

�gG�z; b�C�����x; x
0�k��x�k��x�k��x0�k��x0�:

(34)
C. Analysis of the cross and vacuum terms

Here we wish to look at the state-independent and
potentially singular factors in the cross and the vacuum
terms. Let
� � 1
2�x� x0�2 � 1

2�x
��x�: (35)

Then the vacuum two-point function is

D0��� �
1

8�2�
: (36)

Further let

B � k�k�@�@0�D0 � ��k�k��D0
0 � �k��x��2D00

0 : (37)

Here D0
0 and D00

0 are derivatives of D0 with respect to �.
The contribution of the vacuum term to C����k�k�k�k�,
the integrand in Eq. (34), is

C����vac k�k�k�k� � 128�2B2: (38)

Similarly, the contribution of the cross term is

C����cross k�k�k�k� � 256�2k�k��@�@0�D�B: (39)

The contributions of these terms must be defined by
averaging, as in Eq. (25). However, we can take the
tangent vector k� to be null, even under the averaging,
so all of the rays in the bundle over which we average have
the same direction. Then k�k� � 0 and the first term in B
vanishes. We can take k� � �*u�. Then

B � �
2u2

�2�r2 � uv�3
; (40)

where r2 � y2 	 z2. The vacuum contribution to h����2i
becomes

h����2ivac �
1024

�2

Z v0

0
dv�v0 � v�

�
Z 1

�1
du

Z 1

�1
dy

Z 1

�1
dzgL�u; a�gG�y; b�

�gG�z; b�
�

u4

�2�r2 � uv�6

�
: (41)

Note that once the integration on u is performed, the
integrand is an even function of v, so we can use Eq. (33).

Let us first consider the u integration. The integrand
has simple poles at u � �ia, coming from the sampling
-4
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function gL�u; a�. However, it also has a sixth-order pole
at u � r2=v, which reflects the singular nature of the
vacuum term. As is well known, contour integrals around
higher order poles may be evaluated by integration by
parts. Here the answer must be a real quantity, so we can
write the integral on u as the average of two integrals, one
over a contour closed in the upper-half plane and going
above the sixth-order pole on the real axis, and a second
over a contour closed in the lower-half plane and going
below this pole. The result is finite and just the real part of
the residue of the pole at either u � ia or u � �ia,

Z 1

�1
dugL�u; a�

�
u4

�r2 � uv�6

�
� Re

�
a4

�r2 � iav�6

�
: (42)

It is convenient to perform the v integration next, which
yields

Z v0

0
dv�v0 � v�Re

�
a4

�r2 � iav�6

�

�
a4v20�a

6v60 	 4a4v40r
4 	 5a2v20r

8 	 10r12�

20r8�a2v20 	 r4�4
:

(43)

In the limit that v0 � r2=a, this approaches a2=�20r8�.
Both the exact form, Eq. (43), and the large v0 limit have
the same r�8 behavior for small r. In either case, a further
averaging in the transverse directions is needed to pro-
duce a finite result.

In the large v0 limit, we can write

h����2ivac �
256

5�2 a
2

�
1

r8

�
: (44)

The evaluation of quantities such as h1=r8i is discussed in
Appendix C, where it is argued that�

1

r8

�
�
A8

b8
; (45)

where A8 has at most a logarithmic dependence on b. This
leads to our final result for the contribution of the vacuum
term in the large v0 limit,

h����2ivac � ‘4P
256A8a

2

5�2b8
; (46)

where ‘P is the Planck length.
Note that v0 � 2s, where s is the spatial separation

between the source and the detector, and that the large
v0 limit now means v0 � b2=a. The fact that h����2ivac
approaches a finite value in this limit indicates that the
focusing fluctuations in the Minkowski vacuum do not
accumulate, but they can be nonzero. This raises the
question as to whether they lead to potentially observable
effects. The expected angular blurring or fractional lu-
minosity fluctuations of an image at a distance s are given
by Eqs. (A12) and (B9), respectively, and in this case will
064032
be

2�’ �

�
�L
L

�
rms

� 0:1A8‘2P
as

b4

� 10�8A8

�
a
b

��
10�10 cm

b

�
3
�

s

1028 cm

�
: (47)

The smallest reasonable averaging scale would be of the
order of the wavelength of the photons from the source.
Even in this case, the effect predicted by Eq. (47) is too
small to have been seen in any measurements that have
yet been performed.

It is also of interest to note that the asymptotic value of
h����2ivac can be made arbitrarily small by making the
temporal averaging scale a small, although the value of
v0 required to attain this asymptotic value grows. This
behavior can be traced to the factor of �k��x

��4 in
Eq. (38). This factor in turn contributes a factor of a4 to
h����2ivac, and turns what would otherwise be an a�2

dependence into an a2 dependence. A general product of
stress tensor operators needs to be averaged in time to be
finite, but the particular combination that contributes to
h����2ivac remains finite even in the limit that the time
averaging scale goes to zero.

Now let us turn to the cross term, which is determined
by Eq. (39). This term also requires averaging to render it
finite. However, it is state dependent, so we cannot cal-
culate it explicitly without specifying the function D.
However, we can look at the result of averaging the
state-independent factor B, and then assuming that the
state-dependent factor is approximately independent of v.
This leads to

h����2icross � 512�2k�k��@�@0�D�
Z v0

0
dv�v0 � v�hBi:

(48)

We may evaluate the integral of hBi in the same manner as
used for the vacuum term:

hBi �
Z
d2xg�r�

Z 1

�1
dugL�u; a�B

� �
2a2

�2

Z
d2xg�r�

r2�3a2v2 � r4�

�a2v2 	 r4�3
: (49)

ThenZ v0

0
dv�v0 � v�hBi �

a2

�2

Z
d2xg�r�

a2v20
�a2v20 	 r4�

: (50)

Note that this expression, and hence the contribution of
the cross term, vanishes in the limit that a! 0 for fixed
v0. However, if we let v0 ! 1 for fixed, nonzero a, then
we find Z v0

0
dv�v0 � v�hBi �

1

�2

�
1

r2

�
�

A2

�2b2
; (51)

where A2 has at most a logarithmic dependence on b. As
-5
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expected, the cross term is singular in the limit that
b! 0, but less so than the vacuum term.

As was the case for the vacuum term, h����2icross
vanishes in the limit that a! 0. In both cases, this is
due to the presence of the factor of �k��x��2 in B. Note
that if we were to take first the limit a! 0 and then the
limit b! 0, we would have a localized ray for which
h����2i is given entirely by the fully normal-ordered
term.

Here we have used a specific choice of averaging. One
topic for future research will be to generalize this choice.
In particular, it will be of interest to write covariant
expressions for B and B2 as derivatives of logarithmic
functions, and then integrate over a four-dimensional
spacetime region.

D. The physical meaning of smearing scales a and b

We have defined the singular terms of the Ricci tensor
by averaging over a world tube containing the bundle of
geodesics. The shape of this world tube is determined by
its spatial width b, which describes the transverse dis-
tance from the central geodesic, and its temporal width a.

As far as the temporal smearing is concerned, it is
worth noting that the parameter a only appears in the
pure vacuum term, and does not affect results obtained
for state-dependent terms (the cross terms and the fully
normal-ordered term). If one assumes that pure vacuum
effects in Minkowski spacetime are unphysical, or least
unobservable, a discussion of the meaning of a is rendered
superfluous. However, if we remain open to the possibility
that the pure vacuum effects possess physical signifi-
cance, we should attempt to connect a with some concrete
length scale in the problem. There are a few reasonable
options to chose from. Certainly the following come to
mind: the wavelength of the source, the coherence length
of the source, and the duration of time over which the
light source is collected. The latter, in at least one respect,
seems the least appealing. It would suggest that the vac-
uum effect could be made arbitrarily large by leaving the
measuring device on for an arbitrarily long time [noting
the power dependence in Eq. (47)]. If we are concerned
with finding an upper bound when the measuring process
is arbitrarily extended in time, it seems more likely that
the coherence length of the light source, or even the
smallest scale involved, the wavelength, should be related
to the temporal smearing. The argument here is that the
photon extends off the light cone, but certainly no more
than the temporal size of its wave packet, and no less than
the resolution provided by its characteristic wavelength.

On the other hand, it seems most natural to associate
the width of the bundle with the parameters of the ex-
perimental setup, determined by both conditions at the
source and at the observer. That is, it seems we can
associate the width of the bundle b with the two quanti-
ties: the aperture of the device used to collect the light
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rays, and the size of the emitting source. If both could be
fixed to the same size, we would effectively enclose the
bundle of geodesics within a cylinder extending along the
entire flight path. Under such a circumstance it seems safe
to say that b would simply be the radius of the cylinder. In
the case of point source emissions, b might be sensibly set
to the average width of the bundle along the flight path,
i.e., one-half of the aperture’s diameter. For a larger
source, b should perhaps be an average between the di-
ameter of the emitting source and the diameter of the
aperture.

IV. A THERMAL STATE

A. Fully normal-ordered term in the low temperature
limit

Now we turn to the case of a thermal state, so the
fluctuations of the expansion have their origin in thermal
fluctuations of the scalar field stress tensor. In this sub-
section, we consider the limit of a localized ray in the
sense discussed above. The limit in which a and b are
small is equivalent to a low temperature limit because the
thermal wavelength is large compared to these scales. In
this limit, we need to consider only the effect of the fully
normal-ordered term, so we must calculate the right-hand
side of Eq. (20). There is a useful identity which can be
used for this purpose:

h:�1�2�3�4:i � h:�1�2:ih:�3�4:i 	 h:�1�3:ih:�2�4:i

	h:�1�4:ih:�2�3:i; (52)

where the expectation values are taken in a thermal state.
One proof of this identity is based upon the Hawking
effect [20]. First, one may use Wick’s theorem to prove
Eq. (52) for a generalized vacuum state [8]. This is any
state j i for which there exists a decomposition of the
field operators into positive and negative frequency parts,

� � �	 	��; (53)

such that �	j i � h j�� � 0. However, the formation
of a black hole by gravitational collapse transforms the
in-vacuum state into a thermal state at late times [20]. As
a consequence, Eq. (52) must also be valid for thermal
states.

It is also possible to give a more direct proof of this
identity. Recall that the thermal average of an operator A
can be expressed as

hAi� �
Tr��A�
Tr���

; (54)

where � is the density operator. Let us now express each of
the �i operators as a sum of positive and negative fre-
quency components, as in Eq. (53). Recall that normal
ordering means positive frequency terms are to the right
of all negative frequency terms. Because � has a Fock
space representation as a sum of terms of the form jnihnj,
-6
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where jni is a number eigenstate, only terms with equal
numbers of positive frequency and negative frequency
factors can have nonzero expectation values. Thus, we
can write

h:�1�2�3�4:i � h��
1 �

�
2 �

	
3 �

	
4 i 	 h��

1 �
�
3 �

	
2 �

	
4 i

	 h��
1 �

�
4 �

	
2 �

	
3 i 	 h��

2 �
�
3 �

	
1 �

	
4 i

	 h��
2 �

�
4 �

	
1 �

	
3 i 	 h��

3 �
�
4 �

	
1 �

	
2 i:

(55)

Next we can use the fact that in a thermal state

hayi a
y
j akali � hayi aliha

y
j aki 	 hayi akiha

y
j ali (56)

to write

h��
1 �

�
2 �

	
3 �

	
4 i � h��

1 �
	
4 ih�

�
2 �

	
3 i 	 h��

1 �
	
3 ih�

�
2 �

	
4 i;

(57)

and similar relations. We can now express h:�1�2�3�4:i
as a sum of products of the form of that on the right-hand
side of Eq. (57). By use of the fact that for a thermal state

h:�1�2:i � h��
1 �

	
2 i 	 h��

2 �
	
1 i; (58)

this sum can be rewritten to complete the proof of
Eq. (52).

By use of this identity, the fully normal-ordered term,
Eq. (20), can be expressed as

C���4�x; x0�NO � 64�2�@�@0�D�@
�@04D�

	 @�@0�D�@�@04D��; (59)

where

D� � h:��x���x0�:i� �
X1 0

n��1

1

4�2�j�xj2 � ��t	 in��2�

(60)

is the renormalized thermal two-point function. Here
� � 1=T, where T is the temperature, �x � x� x0, �t �
t� t0, and the prime on the summation denotes that the
n � 0 term is omitted.

Recall that here we are discussing a limit of localized
rays. Let the unperturbed path of the bundle of geodesics
be in the 	x direction, so that �x � �t and �y � �z �
0. We can take the coordinate time in a given frame of
reference to be the affine parameter, so that � � t, �0 � t0

and k� � �1; 1; 0; 0� in Eq. (15). After some calculation,
the integrand may be expressed as

C���4v�v�v�v4 � C���4NO v�v�v�v4 �
211

�2�8 f�k�;

(61)

where
064032
f�k� �

"X1
n�1

�n2 � 3k2�

�n2 	 k2�3

#
2

�
1

4k8
��3k3 coth��k�csch2��k� 	 �2k2csch2��k�

	�k coth��k� � 3�2 (62)

and k � 2�t=�. Now we can write the variance of the
expansion as

h����2i �
Z s

0
dt

Z s

0
dt0C���4NO k�k�k�k4

�
210

�2�6

Z 5

0
dk�5� k�f�k�: (63)

Here s is the separation of the source and detector (the
flight time), 5 � 2s=�, and we have used Eq. (33). The
function f�k� is finite at k � 0, f�0� � �8=8100 and
vanishes rapidly for large k:

f�k� �
�2

4k6
; k! 1: (64)

As a consequence, both
R
1
0 dkf�k� and

R
1
0 dkkf�k� are

finite. In this case, the large 5 limit of Eq. (63) is

h����2i �
210c0
�2�6

5; (65)

where

c0 �
Z 1

0
dkf�k� � 0:3468: (66)

We can now write the root-mean-squared fluctuation in
the expansion as

��rms �
128

�����
c0

p

�
‘2P

��������
sT7

p
: (67)

The fractional luminosity fluctuations of the image of a
point source viewed at a distance s through a bath of
scalar radiation at temperature T becomes, for localized
rays, �

�L
L

�
rms

�
64

�����
c0

p���
3

p
�
‘2P

����������
s3T7

p
: (68)

Equation (68) can be expressed as�
�L
L

�
rms

� 0:02
�

s

1028 cm

�
3=2

�
T

106 K

�
7=2

� 10�3

�
s

106 km

�
3=2

�
T

1 GeV

�
7=2
: (69)

Thus a source seen at a cosmological distance, 1028 cm �
3 Gpc through a thermal bath at a temperature of 106 K
could in principle show large luminosity fluctuations if
one could select rays localized on a scale less than the
thermal wavelength �. Of course, there cannot be such a
bath in our present universe, as its energy density would
-7
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have long dominated the expansion of the universe. Note
that 106 km is the Schwarzschild radius of a black hole
with a mass of 3� 105M�, in the mass range of the
supermassive black holes which may be in the centers
of many galaxies, and possibly linked to the phenomenon
of gamma ray bursts. In at least some cases [21], these
bursts have produced gamma rays with energies well in
excess of 1 GeV. Although the details of the size and
nature of the emitting regions are unclear, this raises
the possibility that within the burst sources, there are
quantum metric fluctuations large enough to achieve
�L=L � 1 for a bundle of rays localized on a scale small
compared to thermal wavelength �. Any realistic obser-
vation is likely to average over a much larger scale, so we
now turn to the opposite limit.

B. High temperature limit

In the limit in which the averaging scales a and b are
large compared to the thermal wavelength, we need to
adopt a different approach. Now the effect of the averag-
ing cannot be ignored, even in the fully normal-ordered
term. It is easiest to include the effects of the vacuum,
064032
cross, and fully normal-ordered terms all together by
using the full thermal Green’s function,

DF� � h:��x���x0�:i�

�
X1

n��1

1

4�2�j�xj2 � ��t	 in��2�
: (70)

If we impose the same type of averaging as used in
Sec. III C, then we can write

h����2i �
512

�2

�Z v0

0
dv�v0 � v� 	

Z 0

�v0
dv�v0 	 v�

�

�
Z 1

�1
dugL��u; a�

Z
d2xg�r��@2vDF��

2:

(71)

In the high temperature (small �) limit, we can replace
the sum on n in DF� by an integral. Let 7 � �n, and let

X1
n��1

!
1

�

Z 1

�1
d7: (72)

Then we can write
@2vDF� �
16

�2�

Z 1

�1
d7

�i7	 u�2

��v� u�2 	 4r2 � �2i7	 v	 u�2�3
� �

1

2��
2r2 � �v� u�2

��v� u�2 	 4r2�5=2
: (73)

This leads to

h����2i �
32

�2

Z 1

�1
dugL��u; a�

Z
d2xg�r�

�Z v0

0
dv�v0 � v� 	

Z 0

�v0
dv�v0 	 v�

�
�2r2 � �v� u�2�2

��v� u�2 	 4r2�5
: (74)

In the limit that v0 is large compared to either a or b, we can write this as

h����2i �
32v0
�2

Z 1

�1
dugL��u; a�

Z
d2xg�r�

Z 1

�1
dv

�2r2 � v2�2

�v2 	 4r2�5
�

27�v0
512�2

�
1

r5

�
: (75)
Note that in this limit, the integrand of the v integration
becomes independent of u, and hence the result is inde-
pendent of a.

The final expression involves the transverse average of
a singular function, 1=r5. However, unlike the singular
functions encountered earlier in the vacuum and cross
terms, this is simply an artifact of our approximations.
The dominant contribution here is from the fully normal-
ordered term, and should be finite. The apparent singu-
larity at r � 0 arises because our approximation of
replacing the sum by an integral assumes that � is small
compared to all other length scales including r. An exact
calculation of the fully normal-ordered contribution to
h����2i would, in the high temperature limit, replace
Eq. (75) by

h����2i �
27�v0
512�2 hf�r�i; (76)

where f�r� is a function which falls as r�5 for r * �, but
approaches a constant for r & �. We can estimate hf�r�i in
the high temperature limit by simply cutting off the
integration on r at a lower limit of order �. Thus,

hf�r�i �
2

b2
Z 1

�

dr

r4
e�r

2=b2 �
2

3b2�3 : (77)

This leads to an estimate for h����2i of

h����2i �
K2

b2�5
s; (78)

where K is a constant of order 1.
The corresponding fractional luminosity fluctuation is�

�L
L

�
rms

�
Ks3=2

b�
5
2

‘2P: (79)

Note that as compared to Eq. (68), the effect is now
suppressed by a factor of �=b. This is essentially the
effect of classical averaging of the luminosity fluctua-
tions; when one averages over a larger source, the fluctu-
ations are suppressed. In Eq. (79), we might take b to be
-8
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either of the order of the size of the source, or of the
average of the source size and the observer’s aperture size.
In either case, the luminosity fluctuations will be strongly
suppressed compared to the estimates given in Eq. (69).
V. DISCUSSION

In this paper, we have treated the effects of the fluctua-
tions of a massless, minimally coupled scalar field stress
tensor on a flat background. In particular, we used the
fluctuations in expansion of a congruence of null rays as
an operational measure of the effects of stress tensor
fluctuations on the spacetime geometry. Although the
cross and vacuum terms are potentially singular parts
of the stress tensor correlation function, we argued that
their contributions can be rendered finite by an integra-
tion by parts procedure. In the limit of localized rays,
they actually yield a zero contribution to the variance of
the expansion. This is in contrast to other situations [4,5],
where the cross term often yields the dominant contribu-
tion.We calculated an explicit formula for the fluctuations
in the expansion produced by a thermal bath. This in turn
led to results, Eqs. (68) and (79), for the fractional lumi-
nosity fluctuations of the image of an object seen through
a fluctuating spacetime filled with a thermal bath.
Although these effects are usually small, there are con-
ceivable astrophysical situations where �L=L would be-
come large if the rays could be sufficiently localized.

The effects of the fully normal-ordered term are un-
ambiguous, but those of the vacuum and cross terms
contain singular parts which need to be defined by a
spacetime averaging over a bundle of rays. This may be
done by the integration by parts procedure discussed in
Appendix C. This procedure involves some undetermined
constants, some of which can be eliminated by a scaling
argument. Unfortunately, the overall constant which de-
termines the magnitude of the vacuum contribution is not
fixed. Further work is needed to determine this constant
uniquely. As noted above, one topic for future research
will be the use of covariant averaging.

Note that Eq. (67) describes the effects of the Ricci
tensor fluctuations, not the expansion due to any mean
Ricci curvature. Our treatment has assumed a nearly flat
background spacetime, More generally, the nonzero mean
value of the stress tensor will lead to mean Ricci curva-
ture and hence classical focusing.

Recall that we assumed that the �2 term in the
Raychaudhuri equation, Eq. (12), can be neglected. As
h����2i grows, this assumption will eventually break
down. However, in many cases h����2i remains small
compared to the Ricci tensor term for a very long time.
We can give an explicit estimate of this time for the case
of the thermal bath. In this case, the root-mean-square
fluctuations in the Ricci tensor term are of order
jR��v

�v�jrms � ‘2PT
4. Thus h����2i � jR��v

�v�jrms so
long as
064032
s�
�3

‘2P
: (80)

For temperatures less than about 1 GeV, this condition will
be satisfied for any s less than the size of the observable
universe. We also assumed that the shear and vorticity
terms in the Raychaudhuri equation can be ignored. So
long as the bundle of geodesics is hypersurface orthogo-
nal, the vorticity remains zero in all classical spacetimes,
so it is reasonable to expect that small quantum geometry
fluctuations will not generate any vorticity. The shear can
grow in response to nonzero Weyl curvature. Thus if the
stress tensor fluctuations cause the Weyl tensor to fluctu-
ate, through the excitation of gravitational wave modes,
then eventually h������i could become important.
However, it seems reasonable to speculate that it will
not grow any more rapidly than does h����2i.

In summary, we have illustrated how expansion fluc-
tuations provide a concrete measure of the effects of
passive quantum geometry fluctuations.
APPENDIX A

In this Appendix, we will illustrate the geometric
meaning of the expansion � in an explicit example [22],
and then use this example to infer a relation between
fluctuations of the expansion and the angular blurring
of an image. First consider a point source in flat spacetime
which is emitting null rays, whose tangent vector field is
v� � dx�=d�. Choose a coordinate system in which the
origin of spatial coordinates is at the location of the point
source, and take the affine parameter to be coordinate
time in this frame: � � t. Then

v� � �1; v�; (A1)

where v is a unit 3-vector, which is also the unit position
vector in this coordinate system

v � x̂ �
x
jxj

: (A2)

The expansion is defined as the trace of the tensor
r�v� in the subspace orthogonal to v�:

� � r�v��g�� 	 v�v��: (A3)

In our case, the tensor r�v� has only spatial components

rjvi � @jvi �
*ijjxj2 � xixj

jxj3
: (A4)

Now � can be found to be

� � @jvi�*ij 	 vivj� �
2

s
; (A5)

where s � jxj is the distance from the source. If we repeat
this calculation for the case of timelike geodesics, using
the 4-velocity u� as the tangent vector, the result is
-9
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FIG. 1. A source S at a mean distance s from an observerO is
displaced in direction  by a distance � from its average
position A. The effect is to shift the apparent position of the
source by an angle �’.
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� �
24v
s
; (A6)

where 4 � 1=
��������������
1� v2

p
. In both cases, � / 1=s, so as the

distance from the source increases and the rays become
more nearly parallel, the expansion decreases.

Now let us relate the fluctuations of � to fluctuations in
the apparent angular position of the source. In our case,
the � fluctuations are due to fluctuations in the spacetime
geometry between the source and the observer. However,
one could achieve the same effect with a source whose
position fluctuates in a fixed Minkowski spacetime.
Consider the situation illustrated in Fig. 1, where the
source is displaced from its mean position by a distance
� in a direction given by the angle  . For an observer at a
mean distance of s, the expansion changes by

�� � �
2

s2
�s �

2

s2
� cos ; (A7)

and the angular position of the source changes by ap-
proximately

�’ �
� sin 
s

; (A8)

provided that �� s. We now assume that � and  fluc-
tuate independently of one another and that all values of  
are equally probable. Then

h�2sin2 i � h�2ihsin2 i � 1
2h�

2i (A9)

and

h�2cos2 i � h�2ihcos2 i � 1
2h�

2i: (A10)

This would happen, for example, if � does not fluctuate
and  fluctuates randomly. This allows us to relate the
expansion fluctuations to the angular position fluctua-
tions:

h��’�2i � 1
4s

2h����2i: (A11)

Thus the effect of � fluctuations is to blur the angular
resolution of the image of the source by an amount
064032
�’rms �
1
2s��rms: (A12)

Strictly, we have treated only a source in flat spacetime
whose position fluctuates. However, we offer this as a
heuristic estimate of the magnitude of angular blurring
expected in a fluctuating spacetime.
APPENDIX B

In this Appendix, we show how the stochastic behavior
of the expansion leads to small deviations in the density
of geodesics. In the case of light rays this translates into
luminosity fluctuations. The connection between lumi-
nosity fluctuations and expansion fluctuations can be seen
as follows. Let us write the expansion as the sum of a
classical (deterministic) component �c and a stochastic
component �̂:

��t� � �c�t� 	 �̂�t�: (B1)

Here t is an affine parameter along the bundle of geo-
desics. The stochastic component can be expressed as

�̂ �
d log�A=Ac�

dt
; (B2)

where Â is the cross sectional area of a bundle. Now we
assume �̂ is a small stochastic perturbation. This means

A � Â	 Ac � Ac; (B3)

where Â is the stochastic variation in the area (zero at t �
0). Using the Taylor expansion of log�1	 x� for small x,
we find

�̂ �
d�Â=Ac�
dt

; (B4)

Z t

t0
dt0��t0� �

Â
Ac

�
��
�
; (B5)

where � is the density of geodesics. Since the number of
geodesics, n, is conserved (total energy flow), while the
transverse area A is distorted (density fluctuations),

intensity or luminosity �
n
A
: (B6)

The fractional luminosity fluctuation is therefore given by

�L
L

�
��
�

�
Z t

t0
dt0��t0�: (B7)

Now the variance of the fractional luminosity fluctua-
tions can be computed as��

�L
L

�
2
�
�

Z s

0

Z s

0
dt0dt00h��t0���t00�i: (B8)

For large flight times (where s in the upper bound of the
integral is much greater than the correlation length
scale), there is a simple connection between the variance
-10
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of the fractional luminosity fluctuations and the variance
of the expansion:��

�L
L

�
2
�
/ s2h�2�s�i: (B9)

Let us show this for a typical positive-definite correla-
tion function, C1��t�. We have

h��t���t0�i �
Z t

0
dt1

Z t0

0
dt2C1�j�tj�: (B10)

The function C1 is symmetric in its arguments, so just
consider t < t0, then symmetrize later. The first integra-
tion over dt2 produces the area under the Ricci correlation
curve, c0 . (We will be considering large flight times, so
the edge effect at the origin is neglected.) After the
second integration, and symmetrizing, we have the ex-
pression for the expansion correlation function:

h��t���t0�i � c0t; t0 > t; (B11)

� c0t0; t > t0: (B12)

Now we can calculate the fractional luminosity fluctu-
ations:��

�L
L

�
2
�
�

Z s

0

Z s

0
dtdt0h��t���t0�i (B13)

� 2
Z s

0
dt

Z s

0
dt0h��t���t0�i; t > t0; (B14)

� 2c0
Z s

0
dt

Z t

0
dt0t0 (B15)

� c0
Z s

0
dtt2 (B16)

� 1
3c0s

3 (B17)

� 1
3s

2h��s�2i: (B18)

Explicit calculations show that Eq. (B9) also holds for
the vacuum correlation function encountered in this pa-
per. In the case of the vacuum term, direct calculation
reveals ��

�L
L

�
2
�
vac

�
1

4
s2h��s�2ivac: (B19)
APPENDIX C

In this Appendix, we will discuss two methods for
defining quantities such as h1=r8i. The first approach
involves an integration by parts. Let us first illustrate
this approach in one space dimension with the quantity
064032
��1�
n � hxni �

Z 1

�1
dxxng1�x�; (C1)

where g1�x� � e�x
2=b2=�

����
�

p
b�. If n >�1, then the above

integral is absolutely convergent and there is no ambigu-
ity in the definition of ��1�

n . If, however, n <�1, then the
integral in Eq. (C1) diverges at x � 0. In the case that n is
a negative integer, let m � �n and write

xn �
1

xm
�

��1�m�1

2�m� 1�!

dm

dxm

�
ln
�
x2

x20

�
	 Pm�1�x�

�
; (C2)

where x0 is a constant and Pm�1�x� is an arbitrary �m�
1�th degree polynomial in x. We can now insert this
identity into Eq. (C1) and integrate by parts to define

��1�
n �

�
1

xm

�
� �

1

2�m� 1�!

Z 1

�1
dx

�
ln
�
x2

x20

�
	 Pm�1�x�

�

�
dm

dxm
g1�x�: (C3)

The resulting integrals are not only convergent, but are
also independent of the choices of x0 and the coefficients
of Pm�1�x�. (These are not really independent, as a shift
in x0 shifts the zeroth order term in Pm�1.) Furthermore,
the results are always of order b�m. For example,

h1=x2i � �2=b2; (C4)

h1=x4i � 4=�3b4�; (C5)

h1=x6i � �8=�15b6�; (C6)

and

h1=x8i � 16=�105b8�: (C7)

Note that if we were to allow the polynomial Pm�1 to
be a function of jxj, rather than x, then the final result will
depend upon the coefficients of the odd powers of jxj. For
example, let

P1 � P1�jxj� � c0 	 c1jxj: (C8)

Then we find

��1�
�2 � �

2

b2
�

c1����
�

p
b
: (C9)

In effect, what has happened here is the addition of a term
proportional to *�x� into the representation of 1=x2, which
has caused ��1�

�2 to acquire a term proportional to g1�0�
with an arbitrary coefficient.

The second approach to defining the ��1�
n involves a

recurrence relation. Note that if we let � � 1=b2, then we
can write
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@g1
@�

�

�
1

2�
� x2

�
g1: (C10)

This allows us to derive the recurrence relation

��1�
n	2 � �

����
�

p d
d�

�
��1�
n����
�

p

�
: (C11)

We can start from ��1�
0 � 1 and uniquely generate all ��1�

n ,
where n is a positive even integer from Eq. (C11). We can
also integrate this relation to define ��1�

n for negative even
values of n, but the result will contain undetermined
constants of integration which are equivalent to the arbi-
trary coefficients in Pm�1�jxj�.

Now we turn to two space dimensions and examine the
quantities

��2�
n � hrni �

Z
d2xrng�r� � 2�

Z 1

0
drrn	1g�r�; (C12)

where the sampling function is now g�r� � e�r
2=b2=��b2�.

Here the integrals converge if n >�2, but are divergent
for n � �2. In the latter case, we can still use integration
by parts to define ��2�

n . Consider first the case where n �
�2‘ is a negative, even integer, and write

1

r2‘
� �r2�‘

�
a‘ln

2

�
r2

r20

�
	 f‘�r�

�
; (C13)

where

r2 �
1

r
d
dr

�
r
d
dr

�
(C14)

is the Laplacian operator and fm�r� is any function which
satisfies

�r2�‘f‘�r� � 0 (C15)

for r � 0. If we insert Eq. (C13) into Eq. (C12), the
Laplacian operators may be successively moved to act
on g�r� by repeated use of Green’s theorem:Z

�Fr2G�Gr2F�dV �
I
�FrG�GrF�da: (C16)

Here the region of integration is a disk of radius R. In the
limit that R! 1, the surface term vanishes because g�r�
and its derivatives vanish rapidly. The result is

��2�
�2‘ �

�
1

r2‘

�
� 2�

Z 1

0
drr

�
a‘ln2

�
r2

r20

�
	 f‘�r�

�
�r2�‘g�r�:

(C17)

This integral is convergent, but depends upon various
arbitrary constants.

This is best illustrated with some specific examples.
First let ‘ � 1, in which case we find a1 � 1=8 and
064032
f1 � c0 ln
�
r
c1

�
: (C18)

This leads to the result�
1

r2

�
� �

1

b2

�
2 ln

�
r0
b

�
	 4	 c0

�
; (C19)

where 4 is Euler’s constant. There is really one arbitrary
constant in this result, as c0 may be absorbed into a
redefinition of the constant r0. We can understand the
appearance of c0 in Eq. (C19) from the fact that

r2f1�r� � �2�c0*�x� (C20)

in two dimensions. Similar results arise for larger values
of ‘, but with more constants. For ‘ � 2, where a2 �
1=32, we can solve r2f2 � f1 to find

f2 �
1

4
c0r

2

�
ln
�
r
c1

�
� 1

�
	 c2 ln

�
r
c3

�
(C21)

and�
1

r4

�
�

1

b4

�
2 ln

�
r0
b

�
	 4	 1� 8c2

�
	

2c0
b2

: (C22)

For ‘ � 3, a3 � 1=512 and

f3 �
1

128
c0r4

�
2 ln

�
r
c1

�
� 3

�
	

1

4
c2r2

�
ln
�
r
c3

�
� 1

�

	c4 ln
�
r
c5

�
; (C23)

which yields�
1

r6

�
� �

1

4b6

�
4 ln

�
r0
b

�
	 24	 3� 64c4

�
�

8c2
b4

	
2c0
b2

:

(C24)

Finally for ‘ � 4, where a4 � 1=18 432,

f4 �
1

13 824
c0r6

�
6 ln

�
r
c1

�
� 11

�
	

1

128
c2r4

�
2 ln

�
r
c1

�

�3
�
	

1

4
c4r

2

�
ln
�
r
c3

�
� 1

�
	 c6 ln

�
r
c7

�
(C25)

and�
1

r8

�
�

1

36b8

�
12 ln

�
r0
b

�
	 64	 11

�
�

768c6
b8

	
64c4
b6

�
8c2
b4

	
2c0
b2

: (C26)

Now let us consider the case where n � �2‘� 1 is a
negative odd integer and write

1

r2‘	1
� �r2�‘

�
1

��2‘� 1�!!�2r
	 f‘�r�

�
: (C27)

A procedure analogous to that in the case of even n leads
to
-12
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��2�
�2‘�1 �

�
1

r2‘	1

�
� 2�

Z 1

0
dr
�

1

��2‘� 1�!!�2
	 rf‘�r�

�
�r2�‘g�r�:

(C28)

The results for ‘ � 1 and ‘ � 2 are�
1

r3

�
� �

2
����
�

p

b3
	

2c0
b2

(C29)

and �
1

r5

�
�

4
����
�

p

3b5
�

8c2
b4

	
2c0
b2

: (C30)

We can also derive a recurrence relation for ��2�
n . Note

that

@g
@�

�

�
1

�
� r2

�
g: (C31)

This leads to the relation

��2�
n	2 � ��

d
d�

�
��2�
n

�

�
: (C32)

We may start from either ��2�
0 � 1 or ��2�

�1 �
����
�

p
=b and

integrate this recurrence relation to find ��2�
n for all nega-

tive integers n. The results agree with those of the inte-
gration by parts approach, with the constants ci arising as
constants of integration.

Now we wish to address the difficult question of
whether these constants can be determined by physical
arguments. Let us first consider the one-dimensional case.
So long as we require the polynomial Pm�1 to be a
function of x, as opposed to jxj, then

dm

dxm
Pm�1 � 0; (C33)

and there is no ambiguity. The undetermined constants
which appear if Pm�1 is a polynomial in jxj, or if we

EFFECTS OF STRESS TENSOR FLUCTUATIONS UPON . .
064032
integrate the recurrence relation, all have dimensions of
inverse powers of length. One way to resolve the ambi-
guity is to require that ��1�

n be proportional to bn, which
sets all of the constants of integration to zero. This is
essentially a scaling requirement, that if b! 2b, for
example, then ��1�

n ! 2n��1�
n . Another way to say this is

that ��1�
n should depend only upon the sampling scale b

and not on any additional length scales.
For odd n, we can apply the same requirement to the

two-dimensional case, and similarly require that

��2�
n / bn: (C34)

In the case that n is a negative odd integer, this uniquely
defines ��2�

n by setting the constants c1 � 0. For example,
now �

1

r3

�
� �

2
����
�

p

b3
(C35)

and �
1

r5

�
�

4
����
�

p

3b5
: (C36)

For n even and negative, there is still an undetermined
multiplicative constant associated with a term logarith-
mic in b, so we will have�

1

r2‘

�
�
A2‘

b2‘
; (C37)

where we allow A2‘ to possess a possible logarithmic
dependence on b.

ACKNOWLEDGMENTS

We would like to thank Arvind Borde, Ken Olum, Tom
Roman, Richard Woodard, and Chun-Hsien Wu for useful
discussions. This work was supported in part by the
National Science Foundation under Grant No. PHY-
0244898.
[1] G. Barton, J. Phys. A 24, 991 (1991); 24, 5533 (1991).
[2] C. Eberlein, J. Phys. A 25, 3015 (1992); 25, 3039 (1992).
[3] M. T. Jaekel and S. Reynaud, Quantum Opt. 4, 39 (1992);

J. Phys. I (France) 2, 149 (1992); 3, 1 (1993); 3, 339
(1993).

[4] C.-H. Wu, Chung-I Kuo, and L. H. Ford, Phys. Rev. A 65,
062102 (2002).

[5] C.-H. Wu and L. H. Ford, Phys. Rev. D 64, 045010 (2001).
[6] L. H. Ford, Ann. Phys. (N.Y.) 144, 238 (1982).
[7] S. del Campo and L. H. Ford, Phys. Rev. D 38, 3657

(1988).
[8] Chung-I Kuo and L. H. Ford, Phys. Rev. D 47, 4510
(1993).

[9] N. G. Phillips and B. L. Hu, Phys. Rev. D 55, 6123 (1997).
[10] E. Calzetta and B. L. Hu, Phys. Rev. D 49, 6636 (1993);

52, 6770 (1995).
[11] E. Calzetta, A. Campos, and E. Verdaguer, Phys. Rev. D

56, 2163 (1997).
[12] R. Martin and E. Verdaguer, Phys. Rev. D 60, 084008

(1999).
[13] B. L. Hu and K. Shiokawa, Phys. Rev. D 57, 3474 (1998).
[14] C.-H. Wu and L. H. Ford, Phys. Rev. D 60, 104013 (1999).
-13



J. BORGMAN AND L. H. FORD PHYSICAL REVIEW D 70 064032
[15] C. Barrabes,V. Frolov, and R. Parentani, Phys. Rev. D 62,
044020 (2000).

[16] N. G. Phillips and B. L. Hu, Int. J. Theor. Phys. 39, 1817
(2000); Phys. Rev. D 62, 084017 (2000).

[17] L. H. Ford and C.-H. Wu, Int. J. Theor. Phys. 42, 15 (2003).
[18] L. H. Ford and R. P. Woodard (to be published).
[19] For definitions and derivation of this equation, see, for

example, R. M. Wald, General Relativity (University of
Chicago Press, Chicago, 1984), Sect. 9.2.
064032
[20] S.W. Hawking, Commun. Math. Phys. 43, 199
(1975).

[21] S. D. Biller et al., Phys. Rev. Lett. 83, 2108 (1999).
[22] Some of the results presented in this Appendix are found

in textbook presentations, but are included here for
completeness. See, for example, M. Ludvigsen, General
Relativity (Cambridge University Press, Cambridge, UK,
1999), pp. 62 and 106.
-14


