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Quasinormal modes in pure de Sitter spacetimes
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We have studied scalar perturbations as well as fermion perturbations in pure de Sitter spacetimes.
For scalar perturbations we have shown that well-defined quasinormal modes in d-dimensions can exist
provided that the mass of scalar field m> d�1

2l . The quasinormal modes of fermion perturbations in
three and four dimensional cases have also been investigated. We found that different from other
dimensional cases, in the three dimensional pure de Sitter spacetime there is no quasinormal mode for
the s-wave. This interesting difference caused by the spacial dimensions is true for both scalar and
fermion perturbations.

DOI: 10.1103/PhysRevD.70.064024 PACS numbers: 04.30.-w, 04.62.+v
I. INTRODUCTION

It is well known that the surrounding geometry of a
black hole will experience damped oscillations under
perturbations. The frequencies and damping times of
the oscillations are entirely fixed by the black hole pa-
rameters and independent of the initial perturbations.
These oscillations are called ‘‘quasinormal
modes’’(QNM), which is believed as a characteristic
‘‘sound’’ of black holes and would lead to the direct
identification of the black hole existence through gravi-
tational wave observation to be realized in the near future
[1]. Because of the potential astrophysical interest, a great
deal of effort has been devoted to the study of black holes’
QNMs. Most of these studies were concerned with black
holes immersed in an asymptotically flat spacetime [2].
Considering the case when the black hole is immersed in
an expanding universe, QNMs of black holes in de
Sitter(dS) space have also attracted much attention [3].

Motivated by the discovery of the AdS/CFT correspon-
dence, the investigation of QNM in antide Sitter(AdS)
spacetimes became appealing in the past several years. It
was argued that the QNMs of AdS black holes have direct
interpretation in term of the dual conformal field theory
(CFT) [4–9]. In dS space the relation between bulk dS
spacetime and the corresponding CFT at the past bound-
ary I� and future boundary I� in the framework of
scalar perturbation spectrums has also been discussed
[10]. A quantitative support of the dS/CFT correspon-
dence was provided.

Recently QNMs in asymptotically flat spaces have
acquired further attention, since the possible connection
between the classical vibrations of a black hole spacetime
address: 022019004@fudan.edu.cn
address: binwang@fudan.ac.cn
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and various quantum aspects was proposed by relating
the real part of the QNM frequencies to the Barbero-
Immirzi (BI) parameter, a factor introduced by hand in
order that loop quantum gravity reproduces correctly the
black hole entropy [11]. In order to see whether this
quantum connection is true in Schwarzschild dS (SdS)
spacetime, a number of extensions have been made
[12][13][14][15]. For the nearly extreme SdS black hole,
like the Schwarzschild spacetime, the real part is found
still proportional to the black hole surface gravity, but
instead of the integer n labeling the modes, with propor-

tional coefficients
��������������������������
‘�‘� 1� � 1

4

q
for scalar and electro-

magnetic perturbations and
��������������������������������������
�‘� 2��‘� 1� � 1

4

q
for

gravitational perturbations. It is too early to confirm the
recent conjecture by relating the ‘-dependent real part to
the BI parameter[12]. The imaginary part of the QNM
frequencies for the nearly extreme SdS black hole was
found having an equally spacial structure with the level
spacing depending on the surface gravity of the black
hole, which agrees to the result in asymptotically flat
spacetime and is independent of whether the perturbation
is scalar, electromagnetic or gravitational[12]. This result
was confirmed even for the very small SdS black holes
[13] and later further supported by using the Born ap-
proximation [14].

The dependence of the surface gravity for both the real
part and imaginary part of QNM frequencies suggests
that there is a possible connection between the QNMs and
thermodynamics of the black hole horizon. But what is
the effect of the cosmological horizon here? It is believed
that cosmological horizon has very similar thermody-
namical behavior to that of the black hole horizon [16].
Is there a connection between the QNMs and surface
gravity of the cosmological horizon? In order to answer
this question, in this paper we are going to investigate the
pure dS spacetime. It was argued that for a massless
24-1  2004 The American Physical Society
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minimally coupled scalar field, there exists no QNMs in
the pure dS space-times, however for a massive scalar
field, there do exist well-defined QNMs[14]. We will
examine this argument in different topological pure dS
space-times by considering scalar perturbation and fer-
mion perturbation. Different from the purpose to test the
dS/CFT correspondence[10], we here concentrate on the
region within the cosmological horizon.

The structure of the paper is as follows: In Sec. II, we
will study the scalar perturbation in d-dimensional pure
dS spacetime with a spherically symmetric space. The
extension to topological pure dS space-times will be
shown in Sec. III. In Sec. IV, we will present the discus-
sion of the fermion perturbation. Our main results will be
summarized in Sec. V.

II. SCALAR PERTURBATION IN PURE DE
SITTER SPACE

The static metric of a d dimensional dS space reads

ds2 � �f�r�dt2 � f�1�r�dr2 � r2d�2
d�2; (1)

where f�r� � 1� r2=l2(l is the minimal radius of dS
space) and r2d�2

d�2 represents the metric on the d� 2
dimensional sphere Sd�2 of radius r.

We begin our discussion with a massive scalar field �,
satisfying the Klein-Gordon equation

�;
; � m2� (2)

This equation can be separated by � �

�u�r�=r�d�2�=2�e�i!tY‘��d�2�. Here the spherical har-
monic Y‘��d�2� is the eigen function of d� 2 dimen-
sional Laplace-Beltrami operator r2

d�2 with the
eigenvalue �‘�‘� d� 3�. Using the tortoise coordinate,
r	 �

R
dr=f�r� � ltanh�1�r=l�, we can write the radial

part into a Schrödingerlike equation

�
d2u

dr2	
� V�r	�u � !2u (3)

with effective potential

V�r	� � �
A

l2cosh2�r	=l�
�

B

l2sinh2�r	=l�
(4)

where A and B are defined by

A �
d� 2

2

�
d� 2

2
� 1

�
�m2l2;

B � ‘�‘� d� 3� �
d� 2

2

�
d� 2

2
� 1

�
:

When B> 0, the effective potential (4) diverges to a
positive infinity at the origin (r � 0) and vanishes at the
cosmological horizon. On the other hand, if B< 0, the
potential falls down to negative infinity at the origin
which indicates the instability of the perturbation. We
will show it in detail later.
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In the form of a new variable z � 1=cosh2�r	=l�, Eq. (3)
becomes

z�1� z�u00 �
�
1�

3

2
z
�
u0�

1

4

�
!2l2

z
�

B

1� z
�A

�
u � 0: (5)

Further using the ansatz u � z��1� z��F�z�, we have

z�1� z�F00 �

�
1� 2�� �2�� 2��

3

2
�z
�
F0�

�
1

z

�
�2 �

!2l2

4

�
�

1

1� z

�
�2 �

1

2
��

B

4

�
�

�
��� ��2 �

1

2
��� �� �

A

4

�	
F � 0 (6)

If we properly select values of �;� to make terms like 1
z

and 1
1�z disappear, the solution to Eq. (6) is the standard

hypergeometric function. It is not hard to find that z� �
exp��i!r	� when z! 0(that is, approaching the hori-
zon), so that the two independent solutions exactly cor-
respond to the incoming and outgoing waves at the
cosmological horizon. The general solution is

u�z� � u1�z� � u2�z�

� C1z���1� z�� 2F1�a� c� 1; b� c� 1; 2� c; z�

�C2z��1� z�� 2F1�a; b; c; z� (7)

where C1; C2 are constants, and the parameters of the
hypergeometric function are given by

c � 2�� 1 a � �� ��
1

4
�1�

������������������
1� 4A

p
�

b � �� ��
1

4
�1�

������������������
1� 4A

p
�

Note that the condition of writing the solution in the form
of (7) is that c is not an integer.

We will restrict ourselves in the well-accepted defini-
tion of the quasinormal mode which is, in this special
case, that these modes are purely outgoing waves at the
cosmological horizon and vanish at r � 0. Indeed this
boundary condition is determined by the behavior of the
effective potential. Since the sign of � is arbitrary, it is
easy to check that choosing either u1 or u2 as the outgoing
wave does not lead to any difference. Here we take C1 �
0(so � � �i!l=2), hence the incoming wave is elimi-
nated. According to the property of hypergeometric func-
tion[17], we can change the wave function into
-2
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u2�z� � C2z��1� z��
��c���c� a� b�
��c� a���c� b�

�2F1�a; b; a� b� c� 1; 1� z�

�C2z��1� z��1=2���
��c���a� b� c�

��a���b�

�2F1�c� a; c� b; c� a� b� 1; 1� z� (8)

To make it zero at the origin, we use the poles of Gamma
functions. And to obtain the discrete poles which result in
the level spacing frequencies we should assume that

�
�
1

2
� �

�
� �

B

4
� 0;

which is identical to our previous analysis of the effective
potential. It is interesting to find that in the three dimen-
sional case, this condition is equivalent to l2 � 1=4,
which implies that there exists no QNM for s-wave
perturbation.

There are two sets of poles. (i) When � � d�2‘
4 � 1

2 �
1
2

(note that for the three dimensional case we have ex-
cluded the s-wave perturbation for the reason men-
tioned), the poles are a � �n or b � �n
(n � 0; 1; � � � ). These poles indeed remove the divergent
part of the wave function around the origin since both c
and a� b� c � d�2‘�3

2 could not be nonpositive integers
and the numerator remains regular. (ii)When � �

� d�2‘
4 � 1< 0, the poles are c� a � �n or c� b �

�n (n � 0; 1; � � � ). Because both c and c� a� b �
d�2‘�3

2 could not be nonpositive integers, these poles are
well-defined.

The corresponding frequencies are

! � �
i
l
�2n� ‘� h�� (9)

or

! � �
i
l
�2n� ‘� d� 3� h�� (10)

where h� � d�1
2 �

�����������������������������
�d�1

2 �2 �m2l2
q

.

The above discussion should be restricted to the con-
dition that c is not an integer. Now let us see what will
happen when this condition is violated. It only occurs in
the massless case m � 0. We assume that c � k, where
k � 0;�1;�2; � � � . When c � k � 1, we can obtain the
solution satisfying the boundary condition[17]

u�z� / z�iwl=2�1� z��d�2l�2�=4
2F1�a; b; k; z� (11)

and the corresponding quasinormal frequencies are

! �
i
l
�k� 1� (12)

When c � k � 0, the proper solution is then[17]
064024
u�z� / z�iwl=2�1� z��d�2l�2�=4

� 2F1�a� k� 1; b� k� 1; 2� k; z� (13)

and the quasinormal frequencies are

! � �
i
l
�k� 1�: (14)

It is surprising that all these modes (9), (10), (12), and
(14) are just some kinds of ‘‘distribution’’ along the
radius. To show that, we compute its flux[7]

F �
������
jgj

q 1

2i
�R	@rR� R@rR	� (15)

where R � u2�r�=r
d�2
2 is the radial factor of the wave

function. If frequencies ! in (9), (10), (12), and (14) are
all purely imaginary values, � � �i!l=2 is real and so
are the parameters a, b and c. Then R�r� is proportional to
a purely real function defined in the region 0 � r � l,
which results in the vanishing of the flux (15) everywhere
as well as at the horizon! This is in contradiction with the
definition of QNM.

However for the massive case, one can see from the
scalar perturbation spectrum (9) and (10) that if m2l2 >
�d�1

2 �2, the frequencies are not purely imaginary values
which insure that the flux does not vanish. These modes
are purely outgoing waves at the cosmological horizon
and so are well-defined QNMs. Therefore there exists the
lowest bound (m> �d� 1�=2l) of the mass of scalar field
that permits QNMs to survive.We rewrite the correspond-
ing QNM frequencies as follows:

! � �
1

l

�
m2l2 �

�
d� 1

2

�
2
�
1=2

�
i
l

�
2n� ‘�

d� 1

2

�
(16)

or

! � �
1

l

�
m2l2 � �

d� 1

2
�2
�
1=2

�
i
l

�
2n� ‘� 3�

d� 1

2

�
(17)

This result confirms the argument that QNMs cannot
exist for massless scalar field[14]. Here we further present
the lowest mass bound for the scalar field to posses
QNMs.
III. SCALAR PERTURBATION IN TOPOLOGICAL
DS SPACE

In AdS spacetime, the QNMs of different topological
black holes have been studied recently. It was found that
black hole topology influence a lot on the QNMs of scalar
perturbations[8]. Here we would like to extend the inves-
tigation to the topological dS space.

The metric of the topological dS space is showed as (1)
with[18]
-3
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f�r� � k�
2Gm

rd�3
�
r2

l2
(18)

where k � 0;�1 correspond to two kinds of hypersurfa-
ces �d�2: Ricci flat space Rd�2 and negative constant
curvature space Hd�2, respectively. Note that d � 4 since
d � 3 is trivial.

The wave equation for the scalar perturbation still has
the form as (3), but the effective potential

V�r� �
K�

r2
�
d� 2

2

ff0

r
�
d� 2

2

�
d� 2

2
� 1

�
f2

r2

�m2f�r� (19)

where K� is the eigenvalue of Laplace-Beltrami operator
r2
d�2. It is easy to find that the effective potential tends to

zero at cosmological horizon, while it goes to negative
infinity when r! 0. Because of the existence of negative
effective potential for the scalar field equation of motion,
the bound states can be formed leading to the growing
modes instead of decaying modes[19].

The growing modes imply that these topological dS
space are not stable. This result is not so surprising, since
both of these topological dS spaces possess naked
singularity.

In AdS case, though the wave amplification behavior
exists in hyperbolic space, for flat space it still exhibits
decaying wave for scalar perturbation[8]. The growing
modes for the flat hypersurface in dS case can be consid-
ered as one more difference between dS and AdS space-
times.

IV. FERMION PERTURBATION

A. Three dimensional case

The fermion perturbation in a BTZ background was
studied in [7,20,21]. We are interested to generalize the
investigation of the fermion perturbation in a pure dS
space. There is a little difference between three and four
dimensional case due to the different representations of
gamma matrixes. We first consider the three dimensional
case. After the coordinate transformation t � ', r �
l cos( and ) � ’=l, metric (1) becomes

d s2 � �sin2(d'2 � l2d(2 � cos2(d’2: (20)

We begin with the Dirac equation

+aea�@ � ����m� � 0; (21)

where +a are the conventional spin matrixes. In the three
dimensional case we choose the representation of them in
term of Pauli matrixes: +0 � i,2, +1 � ,1, +2 � ,3. The
triads ea are

e0' � sin(; e1( � l; e2’ � cos(: (22)

The spin connection, defined by � �
1
8+

�a+b�ea
-eb-;; ,

has only two nonvanishing components
064024
�' � �
1

4l
cos(+�0+1�; �’ � �

1

4l
sin(+�2+1�:

(23)

We write out Eq. (21) explicitly�
1

l
,1

�
@( �

cos(
2 sin(

�
sin(
2 cos(

�
�

i,2

sin(
@' �

,3

cos(
@’ �m

�
� � 0: (24)

Separating the equation by

� �
e�i!'e�i‘’=l����������������������
sin( cos(

p

�
�1

�2

�

we arrive at the radial part equation�
@( �

i!l
sin(

�
�1 � �

�
ml�

i‘
cos(

�
�2; (25)

�
@( �

i!l
sin(

�
�2 � �

�
ml�

i‘
cos(

�
�1; (26)

Introducing a new set of wave functions  1;  2, which
relate to �1;�2 by

�1 ��2 � �1� tan2(��1=4
����������������������
1� i tan(

p
� 1 �  2� (27)

�1 ��2 � �1� tan2(��1=4
����������������������
1� i tan(

p
� 1 �  2� (28)

and using a new variable y � tan( for the sake of con-
venience, we turn Dirac equations into

�1� y2�@y 1 �

�
�‘y�

il!
y

�
 1

� �

��
ml�

i
2

�
� �i‘� l!�

�
 2; (29)

�1� y2�@y 2 �

�
�‘y�

il!
y

�
 2

� �

��
ml�

i
2

�
� �i‘� l!�

�
 1: (30)

Further by setting z � �y2 and choosing the ansatz  1 �
z��1� z��F�z�, from the coupled Eq. (33) and (34), we
find the purely outgoing solutions in terms of hypergeo-
metric function:

 1 � B1z
��1� z�� 2F1�a; b; c; z�; (31)

 2 � B2z1=2���1� z��
��
‘
2
� �� �

�
2F1�a; b; c; z�

�
ab
c
�1� z� 2F1�a� 1; b� 1; c� 1; z�

�
;

(32)

where the constants �;�, the hypergeometric parameters
-4
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a; b; c and coefficients B1; B2 are

� � �
i!l
2
; � � �

�
1

4
�
iml
2

�
;

a � �
‘
2
� �� �; b �

1� ‘
2

� �� �;

c �
1

2
� 2�; B1 � B2�

‘
2
� �� ��:

(33)

We now consider the flux along the radial direction

F �
������
jgj

q
e(a��+a� � �j 1j

2 � j 2j
2�: (34)

Using the property of hypergeometric function[17], we
can obtain the asympotic behavior of  1 when z! �1

 1 � B1

�
1�

1

z

�
�
��1��

�
��z�����a

��c���b� a�
��c� a���b�

�2F1

�
a; a� c� 1; a� b� 1;

1

z

�
� ��z�����b

�
��c���a� b�
��c� b���a� 2F1

�
b; b� c� 1; b� a� 1;

1

z

�	

’ B1��1��
�
��z�����a

��c���b� a�
��c� a���b�

���z�����b
��c���a� b�
��c� b���a�

�
: (35)

Similarly for  2 we have

 2 ’ B2��1���1=2
��
‘
2
� �� �

��
��z�1=2�����a

�
��c���b� a�
��c� a���b�

� ��z�
1
2�����b

��c���a� b�
��c� b���a�

�

�
ab
c

�
��z�1=2�����a

��c� 1���b� a�
��c� a���b� 1�

���z�1=2�����b
��c� 1���a� b�
��c� b���a� 1�

�	
: (36)

To make the flux F vanish at the origin, we should have
poles of gamma functions

c� a � �n; or b� 1 � �n; for ‘ > 0 (37)

c� b � �n; or a� 1 � �n; for ‘ < 0 (38)

Thus the quasinormal frequencies are

! � �m�
i
l

�
2n�

3

2
� ‘

�
; or

! � m�
i
l

�
2n�

1

2
� ‘

�
; for ‘ > 0

(39)

! � �m�
i
l

�
2n�

1

2
� ‘

�
; or

! � m�
i
l

�
2n�

1

2
� ‘

�
; for ‘ < 0

(40)
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From (38)–(40), we know that when ‘ � 0 the flux
would not vanish at the origin, in contradictory to the
QNM’s definition. So it is true for the fermion perturba-
tion as well as the scalar perturbation that there is no
QNMs for the s-wave in the three dimensional pure dS
space.

B. Four dimensional case

We now turn our discussion to the four dimensional
case. The metric and the Dirac equation are showed as (1)
and (21) but with d � 4. In this spherical coordinate, a
general formalism was provided in [22](see also [23]). We
will follow this setup. With the separation

� �
e�i!t���
f4

p
iG��r�
r ’�

jm �2;)�
F��r�
r ’�

jm �2;)�

 !
;

where ’�
jm are the two component spinors with j � l� 1

2

[24], we arrive at the radial part equation . If we use a new
variable r � l sin(, the equations are like�

@( �
3�
sin(

�
G� � �

�
ml�

!l
cos(

�
F�; (41)

�
@( �

3�
sin(

�
F� � �

�
ml�

!l
cos(

�
G�; (42)

where 3� and 3� are positive and negative integers. These
equations resemble Eqs. (25) and (26) in the form, if one
replaces i!l; ‘;�1;�2 there with 3�; i!l;G�; F� here.
So the general solutions are similar. But things are a bit
complicate here. We cannot find the purely outgoing solu-
tions as we did in the three dimensional case. Thus we
first consider the flux along the radial direction at the
origin r � 0(or equivalently z � 0 here)

F �
������������
1� z

p
sin2�jG�j2j’�

jmj
2 � jF�j2j’�

jmj
2�

’ sin2�j �
1 j

2j’�
jmj

2 � j �
2 j

2j’�
jmj

2�: (43)

We can find the solutions that make the flux vanish at the
origin. For the case (G�; F�; 3�), they are

 �
1 � B�

1 z
�1�3��=2�1� z�� 2F1�a1; b1; c1; z�; (44)

 �
2 � B�

2 z
3�=2�1� z��

�

��
1

2
� 3� �

�
1� 3�

2
�
i!l
2

� �
�
z
�

� 2F1�a1; b1; c1; z� �
a1b1
c1

z�1� z�

� 2F1�a1 � 1; b1 � 1; c1 � 1; z�
	
; (45)

where the hypergeometric parameters a; b and c and the
-5
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relationship between the coefficients B�
1 ; B

�
2 are

a1 �
3� � 1� i!l

2
� �; b1 �

2� 3� � i!l
2

� �;

c1 � 3� �
3

2
; B�

1 � B�
2

�
3�

2
�
i!l
2

� �
�
:

For the case (G�; F�; 3�), they are

 �
1 � B�

1 z
�
3�
2 �1� z�� 2F1�a2; b2; c2; z�; (46)

 �
2 � B�

2 z
�1�3��=2�1� z��

�

��
�

1� 3�

2
�
i!l
2

� �
�
2F1�a2; b2; c2; z�

�
a2b2
c2

�1� z� 2F1�a2 � 1; b2 � 1; c2 � 1; z�
�
:

(47)

where the hypergeometric parameters and coefficients are

a2 � �
3� � i!l

2
� �; b2 �

1� 3� � i!l
2

� �;

c2 � �3� �
1

2
; B�

1 � B�
2

�
3�
2

�
i!l
2

� �
�
:

Note that � is the solution of equation
�2 � 1

4 �ml�
i
2�
2 � 0.

To obtain the QNMs, we require that the waves are
purely outgoing at the horizon. In other words, the wave
function is of the form �� 1

z�
�iwl=2 around the horizon

�z! �1�. To eliminate the ingoing part in the wave
function  1;2, again, we appeal to the property of hyper-
geometric function illustrated in (35). The incoming and
outgoing parts are then detached which enable us to
remove the incoming one thoroughly by setting poles,
which are

c1 � b1 � �n; or a1 � 1 � �n;

for �G�; F�; 3��;
(48)

c2 � b2 � �n; or a2 � 1 � �n;

for �G�; F�; 3��:
(49)

The corresponding frequencies of QNMs are obtained as:
For (G�; F�; 3�)

! � �m�
i
l

�
2n� 3� �

3

2

�
; or

! � m�
i
l

�
2n� 3� �

1

2

�
:

(50)
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For (G�; F�; 3�)

! � �m�
i
l

�
2n� 3� �

1

2

�
; or

! � m�
i
l

�
2n� 3� �

1

2

�
:

(51)

These results are very similar to that of the three
dimensional case, showing consistent behavior of the
fermion perturbation in pure dS space.
V. CONCLUSIONS AND DISCUSSIONS

We have studied the QNMs of the scalar and fermion
perturbations in the pure dS space. For the scalar pertur-
bations, we have confirmed the argument (see [14])
that no QNM exists for the massless scalar perturba-
tions in four dimensional space or, more generally ,
in arbitrary dimensional case. To allow the existence
of QNMs of scalar perturbation, we have found that
there is a constraint on the mass of scalar field, that is
m> d�1

2l . Moreover, we have found that in the three
dimensional pure dS space QNM does not exist for the
s-wave scalar perturbation. This is a special result in the
three dimensional case and does not exist in other
dimensions.

We have also extended the discussion of scalar pertur-
bation to the topological dS spaces. In two special cases,
the flat hypersurface and the hyperbolic hypersurface,
perturbations experience amplification behaviors. Here
again we see that topology influence the behavior of the
perturbation as that we observed in AdS situation [8]. In
AdS cases, the wave amplification was only found in the
hyperbolic spaces [8], however in dS spaces the growing
modes are obtained in all topological spaces. This serves
as an additional difference between the dS and AdS
spacetimes.

We have also investigated the fermion perturbations in
the three and four dimensional pure dS spaces. The well-
defined QNM frequencies were obtained. Similar to the
scalar perturbation, we again found that for the three
dimensional case no QNMs exists for the s-wave
perturbation.

Examining the QNM frequencies of both scalar and
Fermion perturbations, we found that though the real part
of scalar perturbation is proportional to the surface grav-
ity of the cosmological horizon, this dependence disap-
pears in Fermion perturbation. In addition to the
difficulty in fully understanding the quantum connection
between QNM and loop gravity [12,25], it is also too
early to see the relation between the QNMs and thermo-
dynamics of horizons.
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