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Twist of a stationary black hole or ring in five dimensions
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It is unlikely that uniqueness theorem holds for stationary black holes in higher dimensional
spacetimes. However, we will examine the possibility that the higher multipole moments classify
vacuum solutions uniquely. Especially, we compute the potentials associated with rotational Killing
vectors and look at the dependence on the total mass M and angular momentum J. Consequently, there
is a potential � which we cannot write down in terms of integer power of M and J explicitly. This may
be regarded as an evidence for the uniqueness using multipole moments generated by �.
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INTRODUCTION

TeVgravity/brane world [1] opened up the possibility of
the production of higher dimensional black holes in ac-
celerators [2]. Therefore the fundamental study on higher
dimensional black holes came to be important. Important
issues are uniqueness theorem for final equilibrium state
of gravitational collapse [3] and no-hair theorem [4] like
four dimensional cases. If these theorems hold, we can
use exact solutions to have definite predictions for events
in accelerators. Recently the uniqueness for nonrotating
higher dimensional black holes in asymptotically flat
spacetimes has been proven to be unique [5–7]. See
Ref. [8] for a related issue of supersymmetric black holes.
Perturbative uniqueness was also addressed in Ref. [9].
But, if we think of stationary cases, the situation is
drastically changed. The uniqueness theorem for rotating
cases does not hold due to the presence of the counter-
example, black ring solution with S1 � S2 event horizon,
discovered by Emparan and Reall [10] in five dimensions
(see also Ref. [11] for extended solutions). As a result,
there are several solutions with the same total mass M and
angular momentum J. In stationary vacuum black hole
spacetimes with two commuting rotational Killing vec-
tors with S3 event horizon, the uniqueness of Myers-Perry
solution [12] has been proven [13].

In this paper we want to discuss the conditions for
uniqueness theorem. In the theorems the asymptotic
boundary conditions are imposed. The apparent failure
in the uniqueness theorem in higher dimensions seems to
tell us some missing ingredients to prove it. Here we
would propose that the missing one is higher multipole
moments. In the four dimensional case, M and J are
accidentally enough parameter set for the uniqueness
theorem. If the higher order multipole moments are speci-
fied in higher dimensional spacetimes, we might be able
to prove the uniqueness theorem. Indeed, four dimen-
sional stationary spacetimes are unique under fixed multi-
pole moments in the neighborhood of spatial infinity [14].
In higher dimensional spacetimes, on the other hand, the
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asymptotic structure is not so simple. In general the
spacetimes will be not fixed by multipole moments in
asymptotically flat spacetimes defined by conformal com-
pletion [15]. But, if we focus on asymptotically flat space-
times where regular Cartesian coordinates can be
spanned, we can expect that spacetimes near spatial in-
finity can be fixed by multipole moments in the same way
with four dimensional cases. Following this expectation,
it is realized that the multipole moments may be able to
distinguish black ring solutions and Myers-Perry solution
where the regular Cartesian coordinates are spanned in
asymptotic region.

Multipole moments were firstly defined by Geroch for
four dimensional static spacetimes in covariant way [16].
Then it was extended to stationary spacetimes by Hansen
[17]. Furthermore it turned out that multipole moments
uniquely determine the asymptotically flat and source-
free solutions of the Einstein equation in four dimensions
as mentioned above [14]. Geroch’s multipole moments are
defined in terms of the norm of timelike Killing vector
and its derivatives at spatial infinity in the framework of
conformal completion [18]. In the stationary case Hansen
defined two new potential (Hansen potentials) which are
composed of some combinations of the norm and twist
potentials of the timelike Killing vector. The moments
are defined so that they satisfy a certain transformation
under the change of conformal factor, which corresponds
to the change of an origin in Newtonian limit. Recently
Geroch’s definitions were extended to higher dimensional
static spacetimes [15]. The extension to stationary cases
has not been done yet. The problem is how to find Hansen
potentials in higher dimensions. As a first step for the
extension to stationary cases, therefore, we will compute
a set of potentials associated with Killing vectors. It is
also the starting point in four dimensions.When the exact
solutions are given, it will be enough for the argument of
uniqueness. This can be seen as follows. Let us write all
parameters of potentials in terms of M and J. If potentials
can be expanded by some integer powers of M and J near
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spatial infinity, the solutions are degenerated. On the
other hand, we cannot distinguish solutions from each
other if potentials cannot be expanded by only integer
powers of M and J.

The rest of this paper is organized as follows. In Sec. II,
we describe the black string/black hole solutions and
introduce the polar coordinate systems. In Sec. III, we
define some potentials in five dimensional stationary
vacuum spacetimes with three commuting Killing vec-
tors. Then we will compute the scalar functions for five
dimensional black string/black hole solutions and discuss
the uniqueness properties. Finally we will give summary
and discussion in Sec. IV.
BLACK RING AND POLAR COORDINATE

We first describe the black ring/black hole solutions
[10,12]. The metric of black ring/black hole solutions is
written in the form [10]

ds2 ��
F�x�
F�y�

�
dt�

�����
�

1

s

2 � y

A
d�

�
2
�

1

A2�x� y�2

�

�
�F�x�

�
G�y�d�2 �

F�y�
G�y�

dy2
�
� F�y�2

�

�
dx2

G�x�
�

G�x�
F�x�

d�2

��
; (1)

where

F�
� � 1�



1

; (2)

G�
� � �
3 � 
2 � 1 � ��
� 
2��
� 
3��
� 
4�:

(3)

The roots of G�
� � 0 satisfy 
2 < 
3 < 
4 and � �

�� � 2=3
���
3

p
. The coordinates � and � are identified

with period

�� � �� �
4�

�����������������

1 � 
2

p

�
1=2
1 �
3 � 
2��
4 � 
2�

: (4)

For the black ring case, we must require
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to make spacetime regular at x � 
2 and 
4. For black
hole (Myers-Perry) case, on the other hand,
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Mass and angular moment are given by
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We should note that M and J are uniquely determined by
two independent parameters A and � together with con-
dition Eq. (5) or (6). Since 
1 depends on the solutions, M
and J are multivalued functions of �.

When one wants to address multipole moments, the
polar coordinate is useful. The transformation into polar
coordinate ��; �; �; �� is expressed in
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The period of ~� and ~� are 2�. We can check that the
metric approaches the five dimensional Minkowski
spacetimes in polar coordinates, that is,

ds2 ’ �dt2 � d�2 � �2d�2
3; (14)

where d�2
3 � d�2 � sin2��d�2 � sin2�d�2�.

TWIST POTENTIAL

In this section we will define scalar functions associ-
ated with Killing vectors. The computation of such func-
tions for exact solutions can be regarded as a first step for
defining multipole moments. Rather say the computation
of them is enough for current purpose when the exact
solutions are given.

The metric of Eq. (1) admits three Killing vectors;
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There are scalar potentials associated with the Killing
vectors. One of them is
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Note that � depends on only M.
To see the feature related to angular momentum, we

consider twist one-form. There are three kinds of twist
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one-forms
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These twist one-forms are evaluated in the coordinate
basis �t; x; y;�;�� as follows
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By virtue of vacuum spacetime, then, there exists poten-
tials � and ! for each twist �3a and !4a as

�3a � ra� and !4a � ra!: (23)

We obtain these twist potentials from the above twist one-
forms by integrating them. The results are
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Here it is reminded that the period of coordinates � and
� are �� � �� � 2�. Thus it is better to rewrite down
� and ! in new coordinates ~� and ~� and the rescaled
potentials are used. In polar coordinates they become
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Let us consider the situation with fixed M and J. The
functions � and ~! defined above are written in terms of M
and J. Moreover M and J are contained as the form of
integer powers of them in asymptotic region. Therefore
we cannot use � and ~! to classify the solutions with same
M and J. On the other hand, it is easy to see from Eq. (26)
that the dependence of � on M and J are quite nontrivial.
If we consider a certain exact solution, � can be written
in terms of M and J. However, M and J are not included
as the form of integer powers in asymptotic region. Since
the dependence depends on solutions, � are not fixed even
if we fixed M and J. Therefore we can split the degener-
acy between black holes and black rings by twist potential
�. To confirm this argument, we should perform numeri-
cal evaluation of the value of coefficients, which cannot
be explicitly written in terms of M and J in Eq. (26), for
each solution. For example, pick up the coefficient of the

term of ��6,
�����������

1


1�
2

q
�
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2�

2�. The result is in Fig. 1.

From this result we conclude the twist potential � has
different profiles depending on each solution for fixed
mass M and angular momentum J.

CONCLUSION

In this paper we evaluated a twist potential � for sta-
tionary five dimensional black ring/black hole. As a
result we saw that its shape depends on solutions.
Therefore this result means that using twist potentials
we can distinguish the black ring solution from the black
hole one with same mass and angular momentum. Yet, it
indicates that a sort of uniqueness theorem may hold
under the strong asymptotic conditions specified by the
multipole moments defined via this �.

As future work, the definition of the multipole mo-
ments in higher dimension will be important. It is ex-
pected that they uniquely determine stationary solutions.
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FIG. 1. The above numerical result shows the dependence on
solutions of the twist potential �. Here, we computed the
coefficient of the term of ��6 in the twist potential �. We
denote it as & � 
1=2

1 �
1 � 
2�
3=2�. The vertical axis is & and

the horizontal axis is �27�=32G�J2=M3. The dotted line and
the dashed line correspond to the two black ring solutions
(these solutions are different in the values of � ���BR��>
��BR���). The solid line expresses Myers-Perry solution. This
result also shows that the twist potential of Myers-Perry
solution is asymptotically close to the one of the black ring
solution as �27�=32G�J2=M3 ! 1, where the black ring and
Myers-Perry black hole degenerate [10].
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It is an open question how Hansen’s multipole moments
are constructed from the combinations of twist potentials
and gravitational potentials. We also should consider the
multipole moments in Einstein-Maxwell (or higher form
fields) systems in four or higher dimensional spacetimes
because black holes produced in accelerator have charges
in general.
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APPENDIX: CALCULATION

In this Appendix we write down useful formulae and
sketch the derivation of twist potential � of Eq. (26).
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1. Inverse and determinant of metric

The inverse of metric of Eq. (1) is
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The determinant g � det g�� of the metric g�� is
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2. Twist potential

In this subsection, we sketch the calculation of twist
potential �. From Eq. (20), the partial differential equa-
tions for � are
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Integrating Eq. (A4), we obtain
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where f�x� is an arbitrary function of x. Substituting
Eq. (A5) into Eq. (A3), we obtain the ordinal differential
equation for f�x� as
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This can be easily integrated and then
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Finally we obtain Eq. (26) substituting Eq. (A7) into
(A5).
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