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In this paper I show that one can have asymptotically de Sitter, anti-de Sitter (AdS), and flat solutions
in Gauss-Bonnet gravity without a cosmological constant term in field equations. First, I introduce
static solutions whose three surfaces at fixed r and ¢ have constant positive (k = 1), negative (k = —1),
or zero (k = 0) curvature. I show that for k = =1 one can have asymptotically de Sitter, AdS, and flat
spacetimes, while for the case of k = 0, one has only asymptotically AdS solutions. Some of these
solutions present naked singularities, while some others are black hole or topological black hole
solutions. I also find that the geometrical mass of these five-dimensional spacetimes is m + 2alk|,
which is different from the geometrical mass m of the solutions of Einstein gravity. This feature occurs
only for the five-dimensional solutions, and is not repeated for the solutions of Gauss-Bonnet gravity in
higher dimensions. Second, I add angular momentum to the static solutions with k¥ = 0, and introduce
the asymptotically AdS charged rotating solutions of Gauss-Bonnet gravity. Finally, I introduce a class
of solutions which yields an asymptotically AdS spacetime with a longitudinal magnetic field, which
presents a naked singularity, and generalize it to the case of magnetic rotating solutions with two

rotation parameters.
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L. INTRODUCTION

It seems established that at the present epoch the
Universe expands with acceleration. This follows directly
from the observation of high red-shift supernova [1] and
indirectly from the measurement of angular fluctuations
of cosmic microwave background fluctuations [2]. These
astrophysical data have created a great deal of attention to
the asymptotically de Sitter (dS) spacetimes. On the other
hand asymptotically anti-de Sitter (AdS) spacetimes con-
tinue to attract more attention due to the fact that there is a
correspondence between supergravity (the low-energy
limit of string theory) in (n + 1)-dimensional asymptoti-
cally AdS spacetimes and conformal field theory living on
a n-dimensional boundary known as the AdS/conformal
field theory correspondence.

The simplest way of having an asymptotically AdS
spacetime is to add a cosmological constant term to the
right hand side of Einstein equation. However, the cos-
mological constant meets its well-known cosmological,
fine tuning, and coincidence problems [3]. In the context
of classical theory of gravity, the second way of having an
asymptotically AdS spacetime is to add higher curvature
terms to the left hand side of Einstein equation. The way
that I deal with the asymptotically AdS spacetime is the
latter one. Indeed, it seems natural to reconsider the left
hand side of Einstein equation, if one intends to inves-
tigate classical gravity in higher dimensions.
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The possibility that spacetime may have more than
four dimensions is now a standard assumption in high
energy physics. From a cosmological point of view, our
observable Universe may be viewed as a brane embedded
into a higher-dimensional spacetime. The idea of brane
cosmology is also consistent with string theory, which
suggests that matter and gauge interaction (described by
an open string) may be localized on a brane, embedded
into a higher-dimensional spacetime. The field repre-
sented by closed strings, in particular, gravity, propagate
in the whole of spacetime.

This underscores the need to consider gravity in higher
dimensions. In this context one may use another consis-
tent theory of gravity in any dimension with a more
general action. This action may be written, for example,
through the use of string theory. The effect of string
theory on classical gravitational physics is usually inves-
tigated by means of a low-energy effective action which
describes gravity at the classical level [4]. This effective
action consists of the Einstein-Hilbert action plus
curvature-squared terms and higher powers as well, and
in general give rise to fourth order field equations and
bring in ghosts. However, if the effective action contains
the higher powers of curvature, in particular, combina-
tions, then only second order field equations are produced
and consequently no ghosts arise [5]. The effective action
obtained by this argument is precisely of the form pro-
posed by Lovelock [6]. The appearance of higher deriva-
tive gravitational terms can be seen also in the
renormalization of quantum field theory in curved space-
time [7].
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In this paper I want to restrict myself to the first two
terms of Lovelock gravity which are the Einstein-Hilbert
and the Gauss-Bonnet terms. The latter term appears
naturally in the next-to-leading order term of the heter-
otic string effective action and plays a fundamental role
in Chern-Simons gravitational theories [8]. From a geo-
metric point of view, the combination of the Einstein-
Gauss-Bonnet terms constitutes, for five-dimensional
spacetimes, the most general Lagrangian producing sec-
ond order field equations, as in the four-dimensional
gravity where the Einstein-Hilbert action is the most
general Lagrangian producing second order field equa-
tions [9]. However, the Gauss-Bonnet term is topological
in four dimensions and hence has no dynamics. Indeed, if
this term had made a nontrivial contribution in four
dimensions, then it would have conflicted with the 1/r
character of the potential because of the presence of
(V)* terms in the equation [10].

Thus, the problems with the cosmological constant, the
need to go to higher-dimensional spacetime, and the
interest in asymptotically AdS spacetimes provide a
strong motivation for considering asymptotically AdS
solutions of the Einstein-Gauss-Bonnet gravity without
cosmological constant. Recently I introduced a model for
Universe in Gauss-Bonnet gravity without a cosmological
constant, which can explain the acceleration of the ex-
panding Universe [11]. Most of the solutions of Gauss-
Bonnet gravity which have been found until now are the
solutions with nonzero cosmological constant. Static
spherically symmetric black hole solutions of the
Gauss-Bonnet gravity were found in Ref. [12]. Black
hole solutions with nontrivial topology were also studied
in Refs. [13-15]. The thermodynamics of charged static
spherically symmetric black hole solutions was consid-
ered in [16]. All of these known solutions are static.
Recently I introduced two classes of asymptotically
anti-de Sitter rotating solutions in the Einstein-Gauss-
Bonnet gravity and considered their thermodynamics
[17,18]. Also, the linearized gravity on a single de Sitter
brane in Gauss-Bonnet theory has been investigated [19].

The outline of our paper is as follows: I give a brief
review of the field equations in Sec. II. In Sec. III, I
introduce the static solutions of Gauss-Bonnet gravity
without a cosmological constant term in the presence of
electromagnetic field and show that these solutions gen-
erate asymptotically anti-de Sitter and flat spacetimes. In
Sec. IV, I find two classes of asymptotically AdS rotating
solutions . I finish the paper with some concluding
remarks.

IL. FIELD EQUATIONS IN GAUSS-BONNET
GRAVITY WITHOUT A COSMOLOGICAL
CONSTANT

The most fundamental assumption in standard general
relativity is the requirement that the field equations be
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generally covariant and contain at most second order
derivative of the metric. Based on this principle, the
most general classical theory of gravitation in five dimen-
sions is the Einstein-Gauss-Bonnet gravity. The gravita-
tional action of this theory in five dimensions for the
spacetime (M, g,,,) can be written as

1
I =5 fM dx> =g [R + a(R,,,sR*7® — 4R, R*"
+R?) + F,,F*"], (1)
where R, R,,,,, and R,, are the Ricci scalar and

Riemann and Ricci tensors of the spacetime, F,, =
d,A, —d,A, is the electromagnetic tensor field, A, is
the vector potential, and « is the Gauss-Bonnet coeffi-
cient with dimension (length)?. Of course, one may add a
constant term to the above Lagrangian, playing the role
of cosmological constant term. But, here I want to obtain
asymptotically AdS solutions without a cosmological
constant term. Varying the action over the metric tensor
& v and electromagnetic field F,,, the equations of gravi-
tational and electromagnetic fields are obtained as
1

1
R,u.v - Eg,u,VR - a{i gp,V(RKApa'RK)\pU— - 4Rpa'RpU+

R?) — 2RR,,, + 4R,MR,),‘ + 4RPR o —

A
2RZ,0- RI/pO'A} :T,Uv”’

2
VuFu, =0, 3)
where T, is the electromagnetic stress tensor
A 1 Ao
T,ul/ = 2F,U,F/\V - _F/\U'F g,ul/’ (4)

2

Equation (2) does not contain the derivative of the curva-
tures and, therefore, the derivatives of the metric higher
than 2 do not appear. Thus, the Gauss-Bonnet gravity is a
special case of higher derivative gravity.

III. THE STATIC SOLUTIONS

Here I want to obtain the five-dimensional static solu-
tions of Egs. (2)—(4), which are asymptotically anti-de
Sitter or flat. I assume that the metric has the following
form:

dr'?
ds* = —f(r)d* + — + r*dQ?, (5)
f(r)
where d()? is the metric of a three-dimensional hyper-
surface with constant curvature 6k given as

dQ? = d6? + sin*0(d¢p? + sin® pdi?); k=1 (6)
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= d6? + sinh?6(d¢p> + sin’>pdiy?); k=-1, (D
2

= a”ldx? + > deo; k=0. ®)
i=1

Note that the coordinate x has the dimension of length,
while the angular coordinates 6, ¢, ¢, and ¢,’s are
dimensionless as usual. The coordinates 6§ and ¢ lie in
the interval [0, 7], and  and ¢;’s range 0 < ¢; < 2.
The assumption that there exists a charged g at r = 0 (g is
a point charge for k = =1 and is the charge density of a
line charge for kK = 0O cases, respectively) means that the
vector potential may be written as

A, = h(r)8". )

The functions f(r’) and i(r') may be obtained by solving
the field Eqgs. (2)—(4). Using Eq. (3) one obtains

0%h oh
r’m+3w=0. (10)
Thus, h(r') = —C,/r"?, where C, is an arbitrary real

constant. If one uses the Gauss law for the electric field,
then he obtains 2C; = g. To find the function f(r), one
may use any components of Eq. (2). The simplest equation
is the #'r' component of these equations which can be

written as ‘
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[12ar73(1 — f) + 3r’5]% —6r'*(1 —f) +2¢>=0.
(11)

The solutions of Eq. (11) can be written as

r/2 r/4 m qz
Nk +(k+ 22 - a2
) Jlﬁaz (ll 2a> 6ar> 19

4o

where m is an arbitrary constant. Also, it is remarkable to
note that for large values of r, the function f(r) can be
written as

r? m + 2|kla

e
F -, 13
4da r - 3 (13)

foo(r/) =k+
which shows that the geometrical mass of the spacetime
is m + 2a|k|. Thus, the mass of a five-dimensional space-
time in Gauss-Bonnet gravity for k = *=1 differs from
that of Einstein gravity by a term which is proportional to
6a|k|. Note that the Gauss-Bonnet term decreases the
mass of the spacetime for negative o and increases the
mass for positive «. It is worthwhile to mention that this
occurs only for the five-dimensional spacetime. For
higher-dimensional solutions in Gauss-Bonnet gravity
(n + 1 >5) the function f(r) is

r/2
f“)=k+ﬂn—mm—3m<l—J“*

Equation (14) for large values of ' becomes

2 m (n —3)q?
N — r —
foo(F) k+Mf1iDirMﬂﬂXn—UMM“V
(15)

which shows that the geometrical mass of the spacetime
is the same as that of Einstein gravity.

One should note that the function f(r') in Eq. (12) is
imaginary for ' < ry and real for ' > r;, where r is the
largest real solution of

3r§ + 24a(m + 2lkla)r] — 8ag* = 0. (16)

Of course, one may note that Eq. (16) has real solution
provided a > 0, or 32a(m + 2|k|a)® + 3¢* < 0 for nega-
tive . Thus, one cannot extend the spacetime to the
region ' < ry. To get rid of this incorrect extension, I
introduce the new radial coordinate r as

2

r2 =2

- ré = dr? = dr?. 17

rr+ r%
With this new coordinate, the metric of Egs. (5) and (12)

become

4n—2)(n—3)am 4n—2)(n— 3)aq? (14)
rln*4 (I’l _ l)rIZn—6 :
| 2 2
2 _ 2 dr 2 4 ,2\702
ds fmm+ﬂ+%ﬂ”+0+%yﬂ,a&
2.2
fl) =+
da
24 2 2
G R
@ @ 6a<r2 + r(2)>

and the vector potential is A, = —q/(24/r* + r})8Y,. Of

course, one may ask for the completeness of the space-
time with » = 0. It is easy to see that the spacetime
described by Eq. (18) is both null and timelike geodesi-
cally complete for r = 0 [18].

In order to study the general structure of these solu-
tions, I first look for the curvature singularities. It is easy
to show that the Kretschmann scalar RM,,/\KR“”" di-
verges at r = (. Hence, there is an essential singularity
located at r = 0. As one can see from Egq. (19), the
solution has two branches with “—"" and *“+” signs. I
discuss them in the following subsections:
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A. Asymptotically de Sitter solutions

I first investigate the “+” sign branch of f(r) in
Eq. (19) with k = 1. In this case «a should be nonzero,
but can have negative or positive values. The negative GB
coefficient has been considered recently [11,20]. If & <0,
then the metric of Egs. (18) and (19) have two inner and
outer horizons located at

r+::{é[3n1izvgﬁﬁij?5;5}—»%}U{ (20)

provided 9m? > 12¢%. Thus, one encounters with an
asymptotically dS black hole.

One can show that the Ricci scalar of the spacetime is
10/|a| as r goes to infinity and, therefore, the spacetime
is asymptotically de Sitter. Thus, in the Gauss-Bonnet
gravity, one can have asymptotically de Sitter black
hole without any need to a cosmological constant term
in the field equations. It is remarkable to note that there
exists no asymptotically de Sitter solutions for k = 0 and
—1.

B. Asymptotically anti-de Sitter solutions

Now I consider the metric of Egs. (18) and (19) for the
“+ sign branch of f(r) with positive values of a, which
is asymptotically anti-de Sitter. For the case of k = 0 and
1, since f(r) >0 in the range 0 < r < oo, this metric
presents a naked singularity. While for the case of k =

—1, the function f(r) in Eq. (19) has a zero at r =

{1/6[\/9m> + 12¢*> — 3m] — rZ}"/? and consequently one
has an asymptotically AdS topological black hole.

Note that there is no asymptotically anti-de Sitter non-
topological black hole in Gauss-Bonnet gravity without a
cosmological constant. This feature is different from the
case of Einstein or Gauss-Bonnet gravity with cosmo-
logical constant, which one has an asymptotically anti-de
Sitter black hole in the latter cases.

C. Asymptotically flat solutions

Now I discuss the branch of f(r) in Eq. (19) with the
—” sign. One may note that for k = 0, the function f(r)
goes to 0 as r goes to infinity and, therefore, it is not
acceptable. For k = 1, one may note that f(r) — 1 as r
goes to infinity. Hence, the metric of Eqgs. (18) and (19) is
asymptotically flat. In this case for @ > 0, the metric of
Egs. (18) and (19) has two inner and outer horizons
located at r_ and r, provided 9m? > 124°. In the case
that 9m = 1247, 1 will have an extreme black hole, and
for the case of 9m? < 1242, one encounters with a naked
singularity. It is remarkable to note that for large values of
r, the function f(r) can be written as

13

m+2a g
- 41
3r? 3rt

fr)=1- (21)
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which shows that the spacetime behaves like a Reissner-
Nordstrom black hole with mass parameter (m + 2a)/3.
Thus, one may conclude that the mass of asymptotically
flat black holes in Gauss-Bonnet gravity is more than the
mass of asymptotically flat black holes in Einstein grav-
ity. For negative values of «, the metric presents a naked
singularity, and in the limit of a — 0, the spacetime is
exactly asymptotically flat Reissner-Nordstrom spacetime
as one expected. For k = —1 and a <0, this branch of
f(r) presents an asymptotically flat spacetime with naked
singularity and a cosmological horizon.

IV. ROTATING SOLUTIONS

Here I consider two classes of rotating solutions in
Gauss-Bonnet gravity without a cosmological constant
for which the hypersurface of constant r and ¢ are flat.
As 1T have seen in the last section, one can only have
asymptotically AdS static solutions of these types.

A. Charged rotating solutions

First, I endow our spacetime solution (18) and (8) with a
global rotation. The rotation group in (n + 1) dimensions
is SO(n) and, therefore, the number of independent rota-
tion parameters for a localized object is equal to the
number of Casimir operators which is [n/2], where [z]
is the integer part of z. Therefore, for the case of a five-
dimensional spacetime, one can have at most two rotation
parameters. It is easy to show that the metric of Eq. (18)
with two rotation parameters a; and a, can be written as
(17]

2 2 2oodrr 242
ds? = —f(n(Edt = Y a;d¢; | + —— 0
s f(r)< ;Cl, ¢z> 2+ r% i a
2
x{al S (adt — BadY — (a1de,
i=
—ayd)* + dxz}’ (22)
2
E’=14+a! Zalz,
i=
A, = %(Eé% — a;6%,)(no sum on i),

where the functions f(r) is given by Eq. (19).

B. Magnetic rotating solutions

Here I want to obtain the five-dimensional solutions of
Egs. (2)—(4) which produce a longitudinal magnetic field
normal to the (r — ¢)-plane. I assume that the metric has
the following form:
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ds*> = _r dt2 + ]% + af(r)dé? + r’de3 + = dx

(23)

Again, the coordinate x has the dimension of length,
while the angular coordinates ¢; are dimensionless as
usual and range in 0 = ¢; < 27r. The motivation for this
metric gauge [g,, < —r* and (g,,) ! < 8¢,4,] instead of
the usual Schwarzschild gauge [(g,,) ™" o< g, and g, o<
2] comes from the fact that I am looking for a magnetic
solution instead of an electric one. First, I consider only
the static solution. Since I want to have a magnetic field,

one may assume that A, = h(r)sz‘. Using the field
Egs. (2)—(4), one obtains

2 A m 7
== +—+ = 24
i) = 4a \/16a 6a  6ar” 24

A 8. (25)

” 2\/—r

The only nonvanishing component of electromagnetic
field is F,4, = /ag/r*, which is a longitudinal magnetic
field normal to the (r — ¢)-plane. In order to study the
general structure of these solutions, I first look for curva-
ture singularities. It is easy to show that the Kretschmann
scalar R, 1<R#VA« diverges at r = 0. Consequently, there
is an essential singularity located at this point. As one can
see from Eq. (24), the solution has two branches with
“—"and “+” signs. Since the “—"" signs branch goes to
zero as r goes to infinity, it cannot be accepted. The “+”
signs branch is always positive and, therefore, this space-
time has no horizon. Thus, the metric of Eqgs. (23)—(25)
presents a naked singularity.

Now I consider the most general magnetic rotating
solution which can have two rotation parameter in five
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dimensions. It is easy to show that the following metric
satisfies the field Eqgs. (2)—(4):

ds? = —— (dt Z d¢>2 f(i)]

x i[(sz ~ )i - E iaiqu,-T

i=1 i=1 (26)
r2 dr?
— = (a1déy — axd )2+—+ dx
a(Z 1) 4P Tl S
2
Bl=a1Y a3
2
A, = %(EE?L — a,;6',)(no sum on i).

V. CLOSING REMARKS

In this paper I investigated the classical theory of
gravity without cosmological constant. Indeed, I added
the Gauss-Bonnet term to the Einstein action and intro-
duced a few solutions of the field equations in the pres-
ence of an electromagnetic field. I found that one can have
asymptotically de Sitter, flat, or anti-de Sitter solutions in
Gauss-Bonnet gravity without any need to a cosmological
constant term in gravitational field equations. First, I
introduced static solutions whose three surfaces at fixed
r and ¢ have constant positive (k = 1), negative (k = —1),
or zero curvature (k = 0). I encountered with two differ-
ent branches for f(r) in Eq. (19). For the “+’ sign branch,
I showed that when k = 1, one could have asymptotically
dS and AdS solutions. Indeed, for negative « the solution
presented an asymptotically dS black hole with event (E)
and cosmological (C) horizons (H) provided 9m?> > 1247,
while for positive values of «, the spacetime was asymp-
totically AdS with a naked singularity. For the case of
zero k, one could have only asymptotically AdS solutions,
while for k = —1 and positive «, one had an asymptoti-
cally AdS topological black hole. For the “— sign
branch, the solutions were asymptotically flat. See for
more details Table 1.

TABLE 1. Various types of static solutions.

Branch sign of f(r) k a  Asymptotic behavior Singularity
+ 1 - ds BH with E&CH (9m? > 12q)
+ 1 + AdS NS
+ 0o + Ads NS
+ -1 + Ads BH with EH
- 1+ flat BH with two H’s (9m? > 124?%)
— 1+ flat BH with EH (9m2 = 124?)
- 1 + flat NS (9m? < 124?)
- 1 - flat NS
- -1 - flat NS with CH
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I found that the geometrical mass of these five-
dimensional spacetimes is m + 2«a|k|, which is different-
from the geometrical mass m of the solutions of Einstein
gravity. It seems reasonable to say that the Gauss-Bonnet
term with negative coefficient « acts as a negative mass or
antigravity effect. This feature occurred only for the five-
dimensional solutions and was not repeated for the solu-
tions of Gauss-Bonnet gravity in higher dimensions.

Second, I added angular momentum to the static solu-
tions with k = 0 and introduced the asymptotically AdS
charged rotating solutions of Gauss-Bonnet gravity with
two rotation parameters. Finally, I found a class of solu-
tions which yields an asymptotically AdS spacetime with
a longitudinal magnetic field (the only nonzero compo-
nent of the electromagnetic field is F,4) generated by a
static magnetic brane. I found that these solutions have
curvature singularity at » = 0 without any horizons. I
also introduced the magnetic rotating solutions with two
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rotation parameters. In these spacetimes, when all the
rotation parameters are zero (static case), the electric field
vanishes and, therefore, the brane has no net electric
charge. For the spinning brane, when one or more rotation
parameters are nonzero, the brane has a net electric
charge density which is proportional to the magnitude
of the rotation parameter given by 5% — 1.

As stated before, the Gauss-Bonnet gravity is the most
general gravitational field equation in five dimensions. In
higher dimensions, one should use more terms for action
in Lovelock theory. The consideration of asymptotically
AdS solutions in Lovelock gravity with more curvature
terms remains to be carried out in future.
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