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A lower bound on the size of a Lorentzian wormhole can be obtained by semiclassically introducing
the Planck cutoff on the magnitude of tidal forces (Horowitz-Ross constraint). Also, an upper bound is
provided by the quantum field theoretic constraint in the form of the Ford-Roman Quantum Inequality
for massless minimally coupled scalar fields. To date, however, exact static solutions belonging to this
scalar field theory have not been worked out to verify these bounds. To fill this gap, we examine the
wormhole features of two examples from the Einstein frame description of the vacuum low energy
string theory in four dimensions which is the same as the minimally coupled scalar field theory.
Analyses in this paper support the conclusion of Ford and Roman that wormholes in this theory can
have sizes that are indeed only a few order of magnitudes larger than the Planck scale. It is shown that
the two types of bounds are also compatible. In the process, we point out a ‘‘wormhole’’ analog of naked
black holes.
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I. INTRODUCTION

Recent years have seen an intense activity in the field
of wormhole physics especially in the wake of the semi-
nal works of Morris, Thorne and Yurtsever [1].Wormholes
are created by embedding into space topological handles
that connect two distant otherwise disconnected regions
of space. Theoretical importance of such geometrical
objects is exemplified in several ways. For instance,
they are invoked to interpret/solve many outstanding
issues in the local as well as in cosmological scenarios
or even for probing the interior of black holes [2–5].
Lorentzian wormholes could be threaded both by quan-
tum and classical matter fields that violate certain energy
conditions (‘‘exotic matter’’) at least at the throat. In the
quantum regime, several negative energy density fields
are already known to exist. For instance, they occur in the
Casimir effect, and in the context of Hawking evapora-
tion of black holes, and also in the squeezed vacuum
states [1]. Classical fields playing the role of exotic matter
also exist. They are known to occur in the R� R2 theory
[6], scalar tensor theories [7–11], Visser’s cut and paste
thin shell geometries [12]. On general grounds, it has
recently been shown that the amount of exotic matter
needed at the wormhole throat can be made arbitrarily
small thereby facilitating an easier construction of worm-
holes [13].

A key issue in wormhole physics is the question of
traversability. A wormhole could be traversable in princi-
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ple but not in practice, due to the occurrence of large tidal
forces at and around the throat. Hence, to ensure the
possibility of travel to be realistic and safe from the
human point of view, several classical constraints are
required to be imposed on the parameters of a
Lorentzian wormhole as well as on the kinematics of
the traveler. For instance, the conditions that the time of
actual travel be reasonable and that the tidal accelerations
remain less than one Earth gravity g� constrain the speed
of the traveler in a definite way. The most severe con-
straint occurs at the throat of the wormhole in the form of
a radial tension which is inversely proportional to the
square of the throat radius. If the size of the throat is
small, the tension is large. Morris and Thorne [1] con-
structed a few wormhole solutions in Einstein’s theory
and showed that the velocity of the traveler v is also
constrained linearly by the size b0 of the throat, viz.,
vth � b0 with suitable dimensional adjustments.

In addition to the classical constraints, some of which
are mentioned above, there are constraints that come
from the quantum field theory. For instance, one has the
Ford-Roman Quantum Inequality (FRQI) [14] that pro-
vides a constraint of intermediate nature between point-
wise and integral (average) energy conditions. It has the
form of an ‘‘energy density-proper time’’ quantum uncer-
tainty type relation that constrains the magnitude and
duration of the negative energy density of a massless
minimally coupled scalar field seen by a timelike geode-
sic observer. The validity of these constraints can be
illustrated only at the level of specific, but appropriate,
solutions. To this end, Ford and Roman applied their
bound to the stress energy of static, traversable wormhole
spacetimes that were discussed as examples in Ref. [1].
18-1  2004 The American Physical Society
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The calculations demonstrate that the wormholes can
only be microscopic with sizes being a few orders of
magnitudes larger than the Planck scale. Alternatively,
if the wormhole is macroscopic, its geometry must be
characterized by large discrepancy in length scales.
Kuhfittig [15] has developed latter kind of model travers-
able wormholes by suitably adjusting different parame-
ters that allow large discrepancies in the Ford-Roman
length scales. However, the solutions considered in the
examples in Ref. [14] were originally designed in Ref. [1]
in an artificial fashion with the primary aim to demon-
strate easy traversability. Not unexpectedly, the resulting
stress tensors for those solutions do not coincide with any
a priori known form of the source stress tensor provided
by some well-defined physical principles. Known forms
of stress tensor could come from physically reasonable
theories of gravity such as the minimally coupled scalar
field theory or other field theories mentioned in the begin-
ning. Apart from this, a desirable feature of any gravity
theory should be that it explains all known tests of gravity
to date. In view of these plausible requirements, we pro-
pose to tread here the reverse path, namely, we start from
a premise where the form of stress energy is known and
investigate the semiclassical and quantum field theoretic
constraints on the corresponding wormhole solutions. We
choose to work in the Einstein massless minimally
coupled scalar field (EMS) theory since it is this theory
for which the FRQI was originally intended. To our
knowledge, the literature still seems to lack an investiga-
tion of this kind and the essential motivation of the
present paper is to fill this gap.

In this paper, we shall consider two classes of static,
spherically symmetric exact solutions of the EMS theory
which is just the Einstein frame (EF) version of the low
energy limit of vacuum string theory in four dimensions.
That is the reason why we called such solutions ‘‘stringy’’
in the title. To go along, the immediate question to be
addressed is whether the considered solutions truly rep-
resent traversable wormholes. This is necessary in order
for any constraint including FRQI to be meaningful. A
detailed analysis shows that, under suitable choices of
parameters, the two classes of solutions do indeed repre-
sent Lorentzian wormholes that are traversable in princi-
ple. Practical traversability, on the other hand, requires
that the magnitude of tidal forces at the throat be less than
the Planck scale. This condition sets a lower bound
(Horowitz-Ross constraint [16]) to the size of the worm-
hole throat, which we designate here as a semiclassical
bound in order to distinguish it from the quantum field
theoretic bound. The latter we consider next, namely, the
FRQI and we find, in accord with the conclusions of Ford
and Roman, that the size of the wormholes in the EMS
are also bounded above by values only slightly larger than
the Planck scale. Since both the lower and upper bounds
turn out to be of the Planck order, it is necessary to check
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that the two bounds are compatible. It follows that this is
also the case. The two examples that are considered here
differ substantially in character yet, interestingly, they
show similar wormhole behaviors. A couple of limiting
cases together with the interesting wormhole analog of
naked black holes are briefly touched upon. The develop-
ments in this paper could be useful also from the peda-
gogical point of view.

The paper is organized as follows: In Sec. II, we
investigate the wormhole characteristics of the first ex-
ample while Sec. III briefly touches upon some classical
constraints on traversability and the discussion continues
through Sec. IV until we arrive at the Horowitz-Ross
semiclassical constraint. In Sec. V, FRQI is calculated.
In Sec VI, relevant details of the second example are
presented. Sec. VII summarizes the contents. An appen-
dix at the end contains some useful expressions for the
second example.
II. EMS THEORY: EXAMPLE 1

The EMS field equations are given by [9]

R�	 � 
�;��;	 (1)

�;�
;� � 0: (2)

where 
 is an arbitrary constant, � is the scalar field, R�	
is the Ricci tensor and the semicolon denotes covariant
derivatives with respect to the metric g�	. If 
 is nega-
tive, or � is imaginary, then the Ricci tensor is negative
and the stress tensor of � is said to represent exotic
matter. We shall concentrate here on the solution set given
by (We use units G � c � �h � 1 and the signature con-
vention �;�;�;�):

ds2 � g�	dx
�dx	

� �e2��r�dt2 � e�2 �r��dr2 � r2d�2 � r2sin2�d’2	;

(3)

where

��r� �  �r� � �
M
r
; (4)

and the scalar field is given by

��r� � �
M
r
: (5)

This solution was proposed by Yilmaz [17] decades ago.
Integrating the Einstein complex for the stress energy, we
find that the total conserved mass for the solution is given
by M, and it is also the tensor mass that exhibits all the
desirable properties of a mass [18]. Most importantly, the
metric (3) exactly coincides up to second order with the
Robertson expansion [19] of a centrally symmetric field.
Hence, it describes all the well known tests of general
-2
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relativity just as exactly as does the Schwarzschild metric
for r > 2M.

To examine if the solution (3) represents a traversable
wormhole spacetime, it is convenient to employ the five
geometric conditions put forward by Visser [20] which
state that:
(i) T
he functions��r� and  �r� are everywhere finite.
(We call ��r� the redshift function).
(ii) T
he function C�r� 
 2�re� �r� has a minimum at
r0 � 0. This provides the location of the throat at
r � r0.
(iii) T
he two asymptotically flat regions are at r �
�1 and at r � 0.
(iv) �
�0� and ��1� must both be finite.

(v)  
�1� must be finite while e�2 �r� ! r�4 as r! 0.
The condition (i) is obviously satisfied everywhere except
at the origin. The application of the condition (ii) allows
us to locate the wormhole throat at the isotropic coordi-
nate radius r0 � M. As for (iii), note that the solution is
asymptotically flat at r � �1. However, to discover an-
other flat region at r � 0, let us calculate the curvature
scalars. The Ricci, Kretschmann and Weyl scalars, re-
spectively, turn out to be

R � g�	R�	 �
2M2

r4
e�

2M
r ; (6)

R
���R

��� �

�
28M4

r8
�

64M3

r7
�

48M2

r6

�
e�

4M
r ; (7)

C
���C

��� �

16M2

3r8
�3r� 2M�2e�

4M
r : (8)

All these curvature scalars vanish in the limit r! 0 and
so the spacetime is really flat there. To find the kind of
metric form that exhibits manifest flatness at the origin
r � 0, that is, a form that satisfies especially the condi-
tions (iv) and (v) above, we transform the metric (3) under
inversion r! 1=r to get

ds2 � �e�2Mrdt2 � r�4e2Mr�dr2 � r2d�2

� r2sin2�d’2	: (9)

Now, with regard to condition (iv), note from (9) that
��r� � e�Mr � 1 at r � 0 and from (4), ��r� � e�

M
r � 1

at r � 1. Similarly, from (4) again, we see that  �r� �
e
M
r � 1 at r � 1, while from (9), it is evident that
e�2 �r� ! r�4 as r! 0 accounting for the condition (v).
Thus, finally, we can conclude that the solution (3) rep-
resents a Lorentzian wormhole that is traversable at least
in principle.

The proper radial distance l away from the throat
(where l � 0) is given by

l�r� � 
Z r

M
e
M
r dr � 

�
re

M
r �M� Ei

�
M
r

��
r

M
; (10)
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where Ei�x� is the exponential-integral function given by

Ei�x� � C� lnx�
X1
k�1

xk

k!k
; x > 0 (11)

� C� ln��x� �
X1
k�1

xk

k!k
; x < 0; (12)

where C is an arbitrary constant. Clearly, it is not possible
to invert Eq. (10) and obtain r � r�l� in a closed form and
cast the metric (3) in the proper distance language.
However, the function l is well behaved everywhere since
l! 1 as r! 1. The equation for the embedded
surface z � z�r� is given by

z�r� � 
Z ���������������������

2M
r

�
M2

r2

s
� e

M
r dr: (13)

Again, the right hand side can not be integrated into a
closed form. Nevertheless, as required, the embedding
surface becomes flat very far from the throat: dz=dr �
0 as r! 1 which corresponds to l! 1.

As to the question of violation of energy conditions,
note that the solutions (3)–(5) satisfy the field equations
for the value 
 � �2 [17]. This implies that there is a
negative sign before the kinetic term in the Einstein-
Hilbert action. Consequently, almost all energy condi-
tions are violated providing a situation that is very con-
ducive for the creation of wormholes. Indeed, the energy
density %, the radial pressure pr, the lateral pressures p�
and p’ in the static orthonormal frame turn out to be

% � �

�
1

8�

�
�

M2

r4e
2M
r

; pr � �

�
1

8�

�
�

M2

r4e
2M
r

;

p� � p’ �

�
1

8�

�
�

M2

r4e
2M
r

: (14)

Clearly, % < 0 for all values of r and the Weak Energy
Condition (WEC) is violated. However, the Strong Energy
Condition (SEC) is marginally satisfied since %� pr �
p� � p’ � 0. The massless limit M � 0 leads only to a
trivially flat spacetime and is not physically interesting.
III. TRAVERSABILITY: CLASSICAL
CONSTRAINTS

It is of some interest to discuss the classical constraints
on practical traversability across the wormhole by human-
oids. To begin with, note that our wormhole is attractive.
The radially moving traveler that starts off from rest
from an asymptotic location has the equation of motion:

d2r

d'2

 ar �

M

r2
� e�

M
r �

�
1�

M
r

�
; (15)

where ' is the proper time. Clearly, ar > 0 for r >M and
ar � 0 for r � r0 � M. Therefore, the traveler will be
-3
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pulled in until he/she attains zero acceleration at the
throat and in order to emerge at the other mouth, he/she
has to maintain an outward directed radial acceleration
from being pulled in again. At the throat, the static
observers are also geodesic observers as ar � 0 there,
which is satisfied for a constant velocity including its
zero value [14]. This is a basic feature of the wormhole
example under present investigation.

Suppose that a human being travels radially with ve-
locity v such that v � 0 at l � �l1 and at l � �l2 and
v > 0 at l1 < l < l2, where l1 and l2 are the locations of
two widely separated space stations. Then, in order that
the journey is completed in a reasonable length of time,
say, 1 yr, the velocity v�r� has to satisfy the following
constraints [1]:

�' �
Z �l2

�l1

dl
v�

� 1 year; �t �
Z �l2

�l1

dl

ve�
� 1 year;

(16)

where � � �1� v2	�1=2 and �' is the proper time inter-
val of the journey recorded by the traveler’s clock, �t is
the coordinate time interval recorded by observers situ-
ated at the stations. These are also several other kinematic
constraints. For instance, at the stations, the geometry
must be nearly flat. This constraint can be easily satisfied
by locating the stations at large r. Another constraint
comes from the demand that the traveler not feel an
acceleration greater than one g�. This leads to								e�� d��e

��

dl

								� g�: (17)

For our solution, the conserved total energy E per unit
mass of the radially freely falling traveler is given by E �

��r�e��r� � constant, and therefore the constraint (17) is
satisfied easily.
IV. TRAVERSABILITY: HOROWITZ-ROSS
CONSTRAINT

There are also constraints coming from the dynamical
considerations. For instance, traveler’s velocity is con-
strained by the magnitudes of tidal forces that involve
the curvature tensor. For our form of the solution, the only
nonvanishing curvature components in the static observ-
er’s orthonormal basis are R0101; R0202; R0303; R1212; R1313

and R2323. Radially freely falling travelers with con-
served energy E per unit mass are connected to the static
orthonormal frame by a local Lorentz boost with an
instantaneous velocity given by

v �
dr
d'

� �1� e2�E�2	1=2: (18)

Then the nonvanishing curvature components in the
Lorentz-boosted frame ( ^ ) are [16,21]:
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R0̂ 1̂ 0̂ 1̂ � R0101; (19)

R0̂k1̂k � cosh
 sinh
�R0k0k � R1k1k�; (20)

R0̂k0̂k � R0k0k � sinh2
�R0k0k � R1k1k�; (21)

R1̂k1̂k � R1k1k � sinh2
�R0k0k � R1k1k�; (22)

and Rklkl, where k; l � 2; 3 and sinh
 � v���������
1�v2

p . The terms

in the parentheses represent an enhancement of curvature
in the traveler’s frame. Incidentally, note that, in the
Schwarzschild or Reissner-Nordström spacetime, the
sums in the parentheses are exactly zero due to special
cancellations. This might appear surprising at first sight,
but actually this cancellation occurs only in the ‘‘stan-
dard’’ coordinates which hide the nontrivial enhancement
that actually takes place. This is only to be expected as
the two pieces in �R0k0k � R1k1k� transform differently at
any spacetime point under transformations to different
coordinate systems.

The differential tidal accelerations felt by the traveler
are

�aj � �R0̂j0̂p*
p; (23)

where j; p � 1; 2; 3 and ~* is the vector separation between
two parts of the body. Taking j ~*j � 2 meters (the size of
the body), the radial tidal constraint should be such as to
satisfy jR0̂ 1̂ 0̂ 1̂j �

g�
2m � 10�20 cm�2. For the solution (4),

we have:

jR0̂ 1̂ 0̂ 1̂j � jR0101j �
2Me�

2M
r

r3

�
1�

M
r

�
; (24)

which vanishes at the throat r � r0 � M. Evidently, the
constraint is well satisfied throughout the journey. On the
other hand, the requirement

jR0̂20̂2j �
g�
2m

� 10�20 cm�2 (25)

constrains the velocity v of the traveler to values that are
comfortably attainable [1]. The exact form of jR0̂20̂2j will
be shown below. However, from now on, we shall focus on
the constraints engendered by physical requirements
rather than by the requirement of human comfort.
Using Eq. (21), we have

jR0̂20̂2j �
Me�

2M
r

r3

�
1�

M
r

�
�
M2e�

2M
r v2�2

r4
: (26)

Clearly, the first term on the right is the curvature mea-
sured in the static frame while the second represents
excess in curvature measured by the geodesically falling
observer with v � 0. Other curvature components follow
from Eqs. (20) and (22) and they are:
-4
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jR0̂30̂3j �
Me�

2M
r

r3

�
1�

M
r

�
�
M2e�

2M
r v2�2

r4
;

jR0̂21̂2j �
M2e�

2M
r v�2

r4
;

(27)

jR1̂21̂2j 
 jR1̂31̂3j �
Me�

2M
r

r3

�
1�

Mv2�2

r

�
;

jR2̂ 3̂ 2̂ 3̂j 
 jR2323j �
Me�

2M
r

r2

�
M

r2
�

2

r

�
;

(28)

and they can also be separated likewise into static and
excess parts. It may be noted here that, at the throat, r �
r0 � M, all the values of the curvature remarkably coin-
cide, up to an unimportant factor (e2=2), with those
obtained for the case of ‘‘� � 0; b � r0 � const:’’ zero
density wormholes discussed in Refs. [1,14].

For a particle that is static at the throat, the radial and
lateral tidal forces, given, respectively, by jR0101j, jR0202j
and jR0303j, are exactly zero. But a radially falling parti-
cle could experience much larger tidal forces in the
vicinity of the throat, either for its velocity v � 1 or for
the wormhole geometry r0 � 0 or for both reasons, than
the one static at the throat that actually feels no tidal
forces at all. Thus, we have here a wormhole analog of the
idea of naked black holes proposed by Horowitz and Ross
[16] for which the curvatures just above the horizon are
much larger than those at the horizon. In the vicinity of
the throat, the maximum value of the curvature felt by the
falling particle [Eqs. (26)–(28)] is given by �2

0=r
2
0, where

�0 is the Lorentz factor at the throat. In order to avoid the
occurrence of infinite tidal forces, the physical require-
ment is that the magnitude of curvature be less than the
Planck scale. This implies that the local radius of curva-
ture (r0=�0) be greater than the Planck length. This
condition gives us a semiclassical lower bound or a
Planck cutoff, on r0, and we call it the Horowitz-Ross
constraint [16], viz.,

r0 > �0‘P; (29)

where ‘P is the Planck length, �0 � 1=
��������������
1� v20

q
and v0 is

the velocity of the particle at the throat. Because of the
introduction of the Planck length, the right hand side of
(29) remains microscopic even for values of v0 very close
to unity. Inequalities similar to (29), but without involv-
ing the Planck scale, have also been worked out by Morris
and Thorne [1] in case of their examples of traversable
wormholes. We shall now turn to FRQI to see what upper
bound it offers on the throat size.
V. FORD-ROMAN QUANTUM INEQUALITY
(FRQI)

This is a constraint coming essentially from the full
quantum field theoretic considerations. The bound has the
064018
form of an uncertainty-principle-type constraint on the
magnitude and duration of the negative energy density as
seen by an observer fixed to a timelike geodesic particle.
The quantum inequality is given by [14]:

'0
�

Z �1

�1

hT�	u�u	id'

'2 � '20
� �

3

32�2'40
; (30)

for all '0 where ' is the freely falling observer’s proper
time, hT�	u

�u	i is the expectation value of the stress
energy of the minimally coupled scalar field in the ob-
server’s frame of reference. Although the inequality was
basically derived in the Minkowski space quantum field
theory, it can be applied also in the curved spacetime
provided that '0 is taken sufficiently small, that is, much
less than the size of the proper local radius of curvature.

To apply the FRQI to our solution, let us find the energy
density in the geodesic frame of the radially falling
observer. This can be obtained by applying a local
Lorentz boost given by

%0 � �2�%� v2pr�: (31)

Using the relevant expressions from Eqs. (14), we have

%0 � �

�
1

8�

�
�
M2�2

r4e
2M
r

� �1� v2�< 0: (32)

Next, from the expressions of the components of Riemann
tensor [Eqs. (26)–(28)], it follows that, at the throat, the
maximum magnitude of curvature in the Lorentz-boosted

frame is R0
max �

�2
0

r20
and therefore the smallest local proper

radius of curvature r0c � r0=�0. Thus the sampling time is
taken as '0 � fr0=�0 <<r0c, for f <<1. The energy
density does not significantly change over this time scale
and FRQI says:

'0
�

Z �1

�1

hT�	u�u	id'

'2 � '20
� %0

0 � �
3

32�2'40
; (33)

where %0
0 � �� 1

8�� �
�2
0

r20e
2 � �1� v20� is the value of the

energy density at the throat r � r0 � M. Putting this
value in FRQI (33), we have the upper bound on r0:

r0 �

 
e

2f2
��������������
1� v40

q
!
‘P: (34)

For v0 � 0 (recall that it is still geodesic motion), and
f � 10�4, we have r0 � 10�25 cm. Even if v0 is ex-
tremely close to unity, say 1� v40 � 10�40, one has r0 �
10�5 cm. These results show that the FRQI bound is
really robust. The solution (3) of the EMS theory does
indeed represent a wormhole of microscopic size, even at
the two near extreme values of observer’s velocity.
Considering a realistic motion (with energy E normalized
to unity) that begins from rest at the asymptotic region
and passes through the wormhole throat, we see that the
-5
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particle attains maximum velocity right at the throat
and it is v � v0 �

�����������������
1� e�2

p
. Then r0 � �1=2f2��

�e3=
����������������
2e2 � 1

p
�‘P. Obviously, again the FRQI constrains

the wormholes to have sizes that are just a few orders of
magnitude larger than the Planck scale. Looking at the
Horowitz-Ross constraint (29), we expect it to be com-
patible with the FRQI (34). That is, we expect the follow-
ing inequality to hold good:

�0‘P < r0 �

 
e

2f2
��������������
1� v40

q
!
‘P: (35)

This is true if
��������������
1� v20

q
< e2

2f2
, which is easily satisfied for

f <<1.
It was mentioned earlier that the class of solutions (4)

is distinguished from other classes of solutions in the
EMS theory in some important respects. In the next
section, we consider one such class of solutions in the
form of a second example pointing out how it differs in
nature from that of Example 1.
VI. EMS THEORY: EXAMPLE 2

Consider the class of solutions, which, in isotropic
coordinates, is given by [9,22]:

��r� � � ln
�
1� m

2r

1� m
2r

�
;

 �r� � ��� 1� ln
�
1�

m
2r

�
� ��� 1� ln

�
1�

m
2r

�
;

(36)

��r� �
�
2�1� �2�




�1
2
ln
�
1� m

2r

1� m
2r

�
; (37)

where 
 is an arbitrary constant parameter. The two
undetermined constants m and � are related to the source
strengths of the gravitational and scalar parts of the
configuration. To highlight the differences in nature be-
tween this solution and that in (4), we point out the
following: Once the scalar component is set to zero (� �
0 ) � � 1), the solutions (36) and (37), reduce to the
Schwarzschild black hole in accordance with Wheeler’s
‘‘no scalar hair’’ conjecture. Physically, this indicates the
possibility that the scalar field is radiated away during
collapse and the end result is a Schwarzschild black hole
[18]. On the other hand, in the case of our previous
example, solution (4), there is no separate scalar parame-
ter. The condition � � 0 ) M � 0, that is, one obtains
only a flat space from the metric (3) and not a black hole.
In this sense, (4) was a pure wormhole solution having no
counterpart in the black hole regime. Another important
difference is that, for � � 1, the solutions (36) and (37),
represent a spacetime with naked singularity at r � m=2
in the sense that all curvature invariants diverge there. In
contrast, such divergences do not occur in the solutions
064018
(4) and (5). In spite of these basic differences, the calcu-
lations below show that the presence of a separate scalar
parameter � does not alter the Horowitz-Ross or FRQI
constraints.

The solution (36) can be interpreted as a traversable
wormhole as it satisfies all of the Visser’s conditions (i)–
(v). We only mention that the metric is not only flat at r �
0 but is also form invariant under inversion. (Just choose
r � �m=2�%; %! 1=%.) The throat appears at the co-
ordinate radii

r0 �
m
2
�� ��2 � 1�1=2	: (38)

Here we take only the positive sign (r�0 ). The requirement
that the throat radii be real implies that �2 > 1 and the
reality of � in turn demands that 
< 0. Alternatively,
one could have 
> 0 allowing for an imaginary �. The
latter choice presents no pathology or inconsistency in the
wormhole physics, as recently shown in Ref. [23]. In both
cases, however, we have a negative sign before the stress
tensor on the right hand side of Eq. (1) and consequently
almost all energy conditions are violated. For instance,
the energy density is given by

% � �

�
1

8�

�

�

�
256m2r4��2 � 1��1�m=2r�2��1�m=2r��2�

�m2 � 4r2�4

�
:

(39)

Thus, % < 0 at the throat and elsewhere satisfying the
necessary wormhole condition that the Weak Energy
Condition (WEC) be violated. The expressions for the
pressure components are given in the Appendix. Note
that the tensor mass of the solution is given by M �
m� and the expansion of the metric (36) indicates that
it is also the Keplerian mass.

All curvature components in the Lorentz-boosted or-
thonormal frame are given in the Appendix. We consider
here only a representative one, viz., R0̂20̂2. From (A4)–
(A6), it is evident that the static frame measure of the
curvature at the throat is zero. The geodesic excess, at the
throat r � r�0 �>m=2� is given by the last term in (A5)
which works out to a remarkably simple expression:

jR0̂20̂2j �

�
v0�0

r�0

�
2
; (40)

for �2 > 1. So, once again, we get the same Horowitz-
Ross constraint, that is, the inequality (29). Note that, for
� � 1 (Schwarzschild), we have, r�0 
 rH � m

2 (rH is the
horizon radius) and v0 � 1, as expected. Only for these
exact values, jR0̂20̂2j ! 1, that is, an arbitrarily large
tidal force is experienced by the test (light!) particle.
But for slightly massive test particles (v0 � 1), one can
introduce a Planck cutoff as embodied in (29) and avoid
infinities in the measurement of curvature.
-6
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As to the FRQI, we get, at the throat, using a little
manipulation with Eqs. (31), (39), and (A1),

%0 � �
1

32�
�
�2
0�1� v20�

r�2
0

�

�
��

���������������
�2 � 1

p
���������������
�2 � 1

p �
2

�

�
��� 1� �

���������������
�2 � 1

p
��� 1� �

���������������
�2 � 1

p �
2�


 �
1

32�
�
�2
0�1� v20�

r�2
0

� g���: (41)

For �! 1 it is clear from (39) and (A1) that both % and
pr vanish implying that %0 � 0. For �! 1, the function
g��� tends to 0. Therefore, only the coefficient of g��� is
important for FRQI. Noting from Eq. (40), that R0

max �
�2
0=r

�2
0 and taking '0 � fr�0 =�0 with f <<1, and using

Eq. (41) in (33), we get the same upper bound as in (34).
This concludes the discussion of bounds on wormholes.

Let us consider a couple of limiting cases. If m � 0,
one can choose � sufficiently large and arrange to have
any finite nonzero value for M so that

r�0 � M; %jr�0 � �
1

8�M2 ; jR0̂20̂2j �
v20�

2
0

M2 ;

(42)

with all other curvature components behaving similarly.
This is the closest approximation to a Schwarzschild-
like, but traversable wormhole that one can obtain in
the EMS theory. If, on the other hand, we set � � 0 but
m � 0 in the equation M � m�, we have a zero mass
(M � 0) wormhole [23]. These solutions are not flat. In
fact, in this case, we have

r�0 �
m0

2
; %jr�0 � �

1

8�m02 ; R � �
2

m02 ;

m � �im0; (43)

where R is the Ricci scalar. This is an extreme case, since
M � 0. Also, at the throat the velocity of the test particle
for unit energy E, viz.,

v20 � 1�
�
��� 1� �

���������������
�2 � 1

p
��� 1� �

���������������
�2 � 1

p �
2�

(44)

becomes zero for � � 0. (This also implies that jR0̂20̂2j �
0.) Therefore, the test particle is captured and kept at rest
forever at the throat [24,25]. This is an interesting aspect
of zero mass wormholes.
VII. SUMMARY

Quantum field theory calculations involving massless
minimally coupled scalar field (EMS theory) imply that
there are two possible alternatives: Either a wormhole
threaded by this matter must only be of microscopic
(Planck) size or that there should be large discrepancies
064018
in the length scales associated with macroscopic worm-
holes [14]. Ford and Roman applied their bound only to
some artificial examples for which the stress tensors do
not comply with those in the EMS theory. There is there-
fore the important logical need that the bound be applied
in the proper setting. To this end, it is necessary to
consider exact wormhole solutions in the EMS theory,
investigate their traversability and see which of the two
alternatives is allowed. The present paper is motivated
essentially by these considerations.

We considered two wormhole examples from the EMS
theory. The first example has been worked out in some
detail while analogous calculations can be carried out for
the second example, of which an outline is given above. In
both the examples, we calculated the physical condition
for traversability which provides the Horowitz-Ross
lower bound [16] on the throat size of the wormhole.
This bound is obtained by introducing the Planck cutoff
on a classical quantity, viz., curvature and that is why we
called this bound semiclassical. In the process, we arrived
at the wormhole analog of naked black holes proposed by
Horowitz and Ross [16]. The similarity is interesting
given that the energy conditions are violated only in the
former case, but not in the latter. The FRQI provides a
quantum field theoretic upper bound on the throat size. It
is shown that the two bounds are compatible. The main
lesson that the two examples teach us is that traversable
Lorentzian wormholes in the EMS theory could indeed be
microscopic, which supports the conclusions of Ford and
Roman [14] in a direct way. An analogous result has been
advanced by Visser [26] in the context of minisuperspace
models. He has shown that the expectation value of the
throat radius is also of the order of Planck length. It is
tempting to speculate that the EMS wormholes, in virtue
of their sizes being microscopic, could be the natural
candidates for the constituents of the spacetime ‘‘foam’’
of Wheeler [27,28].

Finally, although microscopic wormholes are of con-
siderable theoretical interest, one question still remains.
Recall that traversability is a basic criterion in order for
FRQI to be defined since the negative energy density is
measured in the proper frame of the traveling or static
observer. If the wormhole throats are doomed to be of
only Planck dimensions in the EMS theory, can one
meaningfully define a nonhypothetical static and/or a
traveling test particle through the wormhole? It seems,
in general, one cannot since the Bohr radius of an ele-
mentary particle is several orders of magnitude higher
than the Planck length. However, if the velocity is ex-
ceedingly close to that of light, an elementary particle
can just pass through (see the discussion after Eq. (34)).
For zero mass wormholes, the test particle is captured at
the throat and kept at rest forever there. The possibility of
interstellar travel by using these microscopic objects
seems out of question [26].
-7
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APPENDIX

For the metric (36), the pressure components are given
by
064018
pr � �

�
1

8�

�

�

�
256m2r4��2 � 1��1�m=2r�2��1�m=2r��2�

�m2 � 4r2�4

�
;

(A1)

p� � p’ � �pr: (A2)

Using the expression for % from Eq. (39), we have

%� pr � p� � p� � 0: (A3)

The curvature components in the Lorentz-boosted or-
thonormal frame for the metric (36) read, using
Eqs. (19)–(22):
R0̂10̂1 � R0101 �
128m�r3�m2 � 4r2 � 4m�r��1�m=2r�2��1�m=2r��2�

�m2 � 4r2�4
; (A4)

R0̂20̂2 � R0̂30̂3 � R0202 � v2�2�R0202 � R1212�; (A5)

R1̂21̂2 � R1212 � v2�2�R0202 � R1212�; (A6)

R2̂ 3̂ 2̂ 3̂ � R2323 �
128mr3�m2�� 4r2�� 2mr�1� �2�	�1�m=2r�2��1�m=2r��2�

�m2 � 4r2�4
; (A7)

R0̂21̂2 � v�2�R0202 � R1212�; (A8)

R0202 � R0303 �
64m�r3�m2 � 4r2 � 4m�r��1�m=2r�2��1�m=2r��2�

�m2 � 4r2�4
; (A9)

R1212 � R1313 �
128mr3�m2�� 4mr� 4r2���1�m=2r�2��1�m=2r��2�

�m2 � 4r2�4
:

The wormhole throat satisfies r2
0 � m2

4 �m�r0 � 0, and so, from (A4) and (A5), we see that in the static frame, the
tidal accelerations (Eq. (23)) vanish at the throat.
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