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Smeared branes and the Gubser-Mitra conjecture
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We argue that smeared brane solutions, where a charged black p-brane is smeared uniformly over one
of the transverse directions, can have a Gregory-Laflamme–type dynamical instability in the smeared
direction even when the solution is locally thermodynamically stable. These thus seem to provide
counterexamples to the Gubser-Mitra conjecture, which links local dynamical and thermodynamic
stability. By exploiting an ansatz due to Harmark and Obers, which relates charged solutions to neutral
ones, we demonstrate the existence of a threshold unstable mode. This provides strong evidence for the
existence of a dynamical instability, although we do not demonstrate its existence directly.
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I. INTRODUCTION

One of the most remarkable features of black holes is
the connection between properties of the classical solu-
tions and thermodynamics. The realization that the laws
of black hole mechanics (describing some dynamical
aspects of black hole horizons) can be identified with
the laws of thermodynamics [1,2] is at the origin of more
than 30 years of work using black hole thermodynamics
to gain clues about the form of the quantum theory of
gravity.

Black p-brane solutions in more than four spacetime
dimensions are richer dynamical systems, exhibiting new
behaviors that have no analogs for black hole solutions. In
particular, some p-brane solutions suffer from a classical
instability discovered by Gregory and Laflamme [3,4].
They showed that perturbations of the metric with wave-
length longer than some critical wavelength in the ex-
tended directions grow exponentially. Thus, the
perturbation breaks translational invariance in the ex-
tended directions. The existence of this instability raises
two fundamental questions:

Given that a solution is unstable, what is the final state
of the instability?

Can the connection between classical dynamics and
thermodynamics be extended to include this feature?

These questions have been the focus of considerable
activity. In [3], a heuristic argument for the appearance of
the instability was advanced, based on comparing the
entropy of the p-brane to that of a periodic array of black
holes. This represents a first attempt to make a connection
between this instability and thermodynamics, and at the
same time suggests that the end state for the instability
might be such an array of black holes.

More recently, a more precise connection between dy-
namics and thermodynamics was conjectured by Gubser
and Mitra [5], who suggested that a black brane with a
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noncompact translational symmetry is classically stable
if and only if it is locally thermodynamically stable.1 This
conjecture was partially motivated by the dual descrip-
tion of such black p-branes in string theory in terms of a
finite-temperature gauge theory on the p-brane’s world
volume. A partial proof of this conjecture was given for a
certain class of p-branes by Reall [6]. The proof is based
on relating the threshold unstable mode, which has wave-
length equal to the critical wavelength, to a negative
mode of the Euclidean black hole solution. Further inves-
tigations of this relation were carried out in [7–10]; the
results so far support the conjecture. Studies of the con-
nection between dynamical and thermodynamic instabil-
ity which relax the requirement of translational
invariance appear in [11–13].

Our aim is to extend these investigations of the con-
jecture to study smeared branes: that is, we take a p-brane
and smear it uniformly over one of the transverse direc-
tions, and study stability to perturbations in this smeared
direction. This is a natural extension of the investigation
of p-branes in [6,8–10]. The two classes of solutions are
related by T duality, which implies that the thermody-
namics of the smeared branes is identical to that of the
p-brane with the same total number of extended direc-
tions. However, the study of perturbations in the smeared
direction is technically more challenging; certain sim-
plifications exploited in [6] no longer apply. We will ex-
ploit recent advances in the construction of nonuniform
brane solutions to circumvent this problem.

This work on nonuniform solutions was inspired by a
contemporaneous development concerning the second
question above: Horowitz and Maeda [14] argued that
the horizon could not pinch off, so the end state of the
instability could not be a collection of separate black
holes. Instead, they conjectured that the solution would
Thermodynamic stability is taken to mean that the Hessian
of the entropy (thought of as a function of extensive variables
such as the charge and mass of the solution) has no positive
eigenvalues.
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settle down to a nontranslationally invariant solution
with the same horizon topology as the original p-brane.
Examples of solutions which are nonuniform in one ex-
tended direction were subsequently found by perturbing
the neutral uniform black string by the threshold unstable
mode, which generates a branch of static nonuniform
solutions [15,16] (this was recently extended to higher
dimensions [17]). These nonuniform black strings have
too large a mass to be the end point of the instability, but
they show that nonuniform solutions with regular event
horizons do exist.2

In [19], Harmark and Obers presented a useful ansatz
for such nonuniform solutions. Their ansatz, which will
be reviewed in detail in the next section, describes both
vacuum black strings of the type discussed in [15,16] and
charged black branes smeared over a transverse circle.
The ansatz involves just two undetermined functions, but
in the vacuum case, it has been shown to be equivalent to
the general conformal ansatz, which involves three un-
determined functions [20,21].

In this paper, we will use some of these results from the
study of the possible end states of the instability to show
that smeared charged black holes provide a counterexam-
ple to the Gubser-Mitra conjecture, implying that the
connection between dynamical instability and thermody-
namics is more complicated than previously thought. The
key is that in the Harmark and Obers ansatz, the full
equations of motion are satisfied if the two undetermined
functions satisfy a system of equations which are inde-
pendent of the charge [19]. Hence, any solution in the
vacuum case gives a solution in the charged case. In
particular, the branch of nonuniform solutions meeting
the black string at the threshold unstable mode found in
[16] must persist for nonzero charge. That is, there is a
threshold unstable mode for any charge. If we increase the
charge sufficiently, the uniform solution becomes ther-
modynamically stable; however, we take the existence of
the threshold unstable mode to indicate that it remains
dynamically unstable, violating the Gubser-Mitra
conjecture.3

As in [6], our analysis involves only the study of static
solutions, so we do not explicitly find the instability.
However, the fact that the ‘‘phase diagram’’ of static
solutions is qualitatively unchanged as the charge varies
strongly argues that there is still an instability. Our result
certainly obstructs any attempt to extend the argument of
[6] to such smeared charged string solutions.

It is surprising that the addition of a smeared charge,
which certainly affects the thermodynamic properties of
the black brane solution, does not affect the dynamics of
2Preliminary numerical investigations of the end point of the
Gregory-Laflamme instability were reported in [18].

3In a recent paper [22], it was suggested that gyrating strings
might also give a counterexample to the Gubser-Mitra
conjecture.
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the perturbations described by the Harmark and Obers
ansatz. It would be very interesting to understand this
observation from a dual field theory point of view. Such
an understanding might also help to see how the Gubser-
Mitra conjecture can be modified or reformulated in light
of these results.

The next section reviews the essential features of the
Harmark and Obers ansatz, and uses them to show that
there is a threshold unstable mode for a smeared charged
black hole. In the appendix, we discuss the extent to
which this ansatz provides a general description for
charged smeared branes.
II. HARMARK AND OBERS’ ANSATZ

In [19], an ansatz for charged dilatonic black hole
solutions on a cylinder Rd�1 � S1 was introduced. This
ansatz was motivated by introducing a coordinate system
which interpolates between the usual black brane with
transverse space Rd, which is a good description of a black
hole on a cylinder of small mass, and the black brane
smeared on the transverse circle, which is a good descrip-
tion at large mass. The ansatz is

ds2n�H��d�2�=�n�2�

�
�fdt2�

Xp
i�1

�dxi�2

�HR2
T

�
f�1AdR2�

A

Kd�2
dv2�KR2d�2

d�2

��
; (1)

ea� � H2; A01���p � coth��1�H�1�;

f � 1�
Rd�3
0

Rd�3
; H � 1�

Rd�3
0 sinh2�

Rd�3
; (2)

where A and K are two unknown functions of R and v
only, and the total spacetime dimension n � d� p� 1.
This solution has an event horizon at R � R0.

The uniform smeared black p-brane is given by setting
A � K � 1. Its thermodynamics are equivalent to those
of the T-dual p� 1-brane solution. In particular, the mass
and charge are4

M �
�d�22�RTVp

16�G
�RTR0�

d�3��d� 2� � �d� 3�sinh2�	;

(3)

Q �
�d�22�RT

16�G
�RTR0�

d�3�d� 3� sinh� cosh�; (4)

while the entropy and temperature are
4We take the v and xi coordinates to be periodically identi-
fied to allow us to write finite expressions.
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S �
�d�22�RTVp

4G
�RTR0�

d�2 cosh�;

T �
d� 3

4��RTR0� cosh�
:

(5)

The statement of the conjecture uses the Hessian matrix
of derivatives of the entropy as the test for thermody-
namic stability. However, following [6,8,9], we will as-
sume that there is no charged field in the theory, so the
charge is not allowed to vary, and focus on the specific
heat: we take the condition for thermodynamic stability
to be the positivity of the specific heat,

CQ �

�
@M
@T

�
Q
> 0: (6)

It is easy to work out from these formulas that the specific
heat is negative at Q � 0 for all values of d, but it
becomes positive above some critical charge if d > 5.

We now review the study of nonuniform solutions in
this ansatz. In [19], it was shown that when we impose the
equations of motion

R� �
1

2
@��@ ��

1

2
ea�F"�F"

 

� g� 

�
1

4�2� n�

�
ea�F2; (7)

r2� �
a
4
ea�F2; r��e

a�F� � � 0; (8)

the resulting system of equations for A and K is indepen-
dent of the charge (i.e., of �), and hence also of the value
of p (since the extra dimensions xi decouple in the neutral
case). Furthermore, the boundary condition necessary to
ensure regularity at the horizon is simply that A�R0; v�
and K�R0; v� are constants, so the boundary conditions
also do not involve the charge (this boundary condition
corresponds physically to requiring that the surface grav-
ity, and hence the temperature, is constant along the
horizon). This allows us to map the problem of finding a
charged solution of the form (1) to finding a solution in
the uncharged case.

One of the equations of motion can be solved algebrai-
cally for A in terms of K; this leaves a system of three
second-order equations which need to be satisfied by the
function K�R;v�. Generically, such a system is heavily
overdetermined; however, it was shown in [19] that the
system is consistent to second order in perturbation the-
ory. This surprising result was elucidated in [20,21],
where it was shown that in the neutral case, the seemingly
restricted ansatz taken above is in fact equivalent to the
most general ansatz consistent with the symmetries. For
the neutral black string, the Harmark and Obers ansatz
reduces to
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ds2n��fdt2�R2
T

�
f�1AdR2�

A

Kd�2
dv2�KR2d�2

d�2

�
;

(9)

where

f � 1�
Rd�3
0

Rd�3
: (10)

Using staticity and spherical symmetry, the most general
metric for a black string can be brought to the form

ds2 � �e2Bdt2 � e2C�dr2 � dz2� � e2Dd�2
d�2; (11)

referred to as the conformal form, as the �r; z� space is
written in conformally flat coordinates. Here B, C and D
are functions of r and z only. Since the latter form for the
metric involves three arbitrary functions, while the for-
mer only involves two, it seems like the former must be
more restrictive. However, they are in fact equivalent if
we further assume the equations of motion are satisfied
[20,21]. To get from (11) to (9), we need to choose R�r; z�
so that e2B � f is only a function of R, and v�r; z� so that
there is no dRdv cross term in the resulting metric, and
we get the appropriate relation between the gRR, gvv and
sphere components of the metric. These conditions can in
fact be satisfied, subject to an integrability condition; in
terms of the conformal form of the metric, this condition
is

�@2r � @2z�B� �@rB�
2 � �@zB�

2�

�d� 2��@rB@rD� @zB@zD� � 0: (12)

This condition is exactly the Rtt � 0 equation of motion
for the three-function conformal metric (11), so if the
equations of motion are satisfied, we can pass from (11) to
(9) by a coordinate transformation. In the Appendix, we
discuss the extent to which this argument can be gener-
alized to the charged case.

The important point for our present purpose is that this
implies that any solution of the equations of motion
describing a neutral black string, uniform or nonuniform,
can be written in the form (9). This provides a convenient
framework for discussing solutions. In [23], Harmark and
Obers constructed a phase diagram summarizing the
known solutions in terms of two parameters, the mass
M and a relative binding energy n (which provides a
measure of the nonuniformity of the solutions). For gen-
eral charge, the mass is

M � !�RTR0�
d�3��d� 2� � �d� 3�sinh2�	 (13)

and the binding energy parameter is

n �
1� �d� 2��d� 3�)

�d� 3�sinh2�� �d� 2� � �d� 3�)
; (14)

where
-3



FIG. 2. The bold lines now refer to charged solutions. The
diagram is qualitatively the same as in the neutral situation,
shown as dotted lines for reference.
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! �
�d�22�RT

16�GN
; (15)

and ) parametrizes the asymptotic falloff of the un-
known function K [19], and is hence independent of the
charge.

The phase diagram for the neutral case given in [23]
for a five-dimensional system on a circle of radius RT is
sketched in Fig. 1.

Now since the equations of motion are independent of
the charge, each solution in Fig. 1 gives a solution for
every value of the charge. Inspection of (13) and (14)
shows that adding charge increases the mass, as expected,
and decreases n, enhancing the binding effect. Thus, if we
plot M vs n in the charged case, we get a qualitatively
similar picture, as shown in Fig. 2.

We can see that on a circle of some fixed radius RT ,
there is always some critical value of the mass at which a
nonuniform branch joins on to the uniform smeared black
hole branch. We can restate this in terms relevant for the
Gubser-Mitra conjecture: for any given value of the mass
and charge, there is a finite wavelength at which a thresh-
old unstable mode occurs. We know that for zero charge,
the uniform black string is unstable to modes of longer
wavelength. Although we have not demonstrated the ex-
istence of the corresponding dynamical instability ex-
plicitly in the charged case, the persistence of the
threshold unstable mode is strong evidence that it exists.

This result should be contrasted with the analysis of
p-brane solutions in [8–10]. In those studies, it was found
that for the ten-dimensional supergravity p-brane solu-
tions with p � 4, there is a threshold unstable mode for
the neutral case, but this mode goes off to infinite wave-
length at a critical value of the charge, signaling the
disappearance of the instability. This was found to occur
at the same critical value of the charge where the specific
heat changes sign.

In our case, by contrast, the threshold unstable mode
exists all the way up to extremality, even though the
specific heat changes sign before we reach extremality
FIG. 1. Phase diagram for neutral solutions for a five-
dimensional system on a circle.
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for cases with d > 5. Thus, there are smeared branes
which are locally thermodynamically stable, but possess
a dynamical instability by the argument of the previous
section. This is a clear violation of the Gubser-Mitra
conjecture. Note that the wavelength of the threshold
unstable mode, which signals the onset of instability, is
determined by R0, since the equations for K are indepen-
dent of charge. Hence if we go near extremality by taking
R0 ! 0 and � ! 1 keeping M fixed, the wavelength of
the unstable mode will go to zero, suggesting that the
instability will appear sufficiently close to extremality for
any compactified black string as well.
APPENDIX: GENERALITY IN THE CHARGED
CASE

In Sec. II, we reviewed the argument of [20,21] that the
Harmark and Obers ansatz is consistent in the neutral
case. Since the equations for the unknown functions
A�R; v� and K�R; v� are independent of the charge, this
also implies that the ansatz is consistent in the charged
case. It would still be interesting, however, to ask if we
can show that the most general solution of the equations
of motion with the assumed symmetries can be written in
the form (1) and (2) when we include charge.

We can easily show that the metric can be written in the
form (1) by an extension of the previous argument.
Starting from the 3-function conformal form (11), we
can make the redefinitions,

eB ! �H��d�2�=�n�2�eB; (A1)

eC ! �H1=�n�2�eB; (A2)

eD ! �H1=�n�2�eD; (A3)

for any function �H, so that (11) becomes

ds2 � �H��d�2�=�n�2���e2Bdt2 � �He2C�dr2 � dz2�

� �He2Dd�2
d�2	: (A4)

If we now perform the same change of variables as was
used in [21] in the neutral case,
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Rd�3 � Rd�3
0 � �rd�3; (A5)

Â � f�1AR2
T

�
�r
R

�
2�d�4�

; (A6)

K̂ d�2 �
Kd�2

f

�
�r
R

�
2�d�4�

; (A7)

and then transform to the conformal form by making the
further transformation,

�r � g�r; z�; v � h�r; z�; (A8)

@rg � e��d�2�k@zh; @zg � e��d�2�k@rh: (A9)

We can bring the metric (1) in the ansatz to the form (A4)
if

gd�3 �
Rd�3
0 e2B

1� e2B
; (A10)

and

e2a �
e2c

�@rg�2 � �@zg�2
;

e2k �
R2
T

R2
0

e2De�2�d�5�=�d�2��d�3�	B�1� e2B�2=�d�3�:
(A11)

The system of equations in (A9) imply an integrability
condition which together with (A11) imply that

�@2r � @2z�B� �@rB�2 � �@zB�2�

�d� 2��@rB@rD� @zB@zD� � 0; (A12)

the same integrability condition we had in the neutral
case.

If we assume that the arbitrary function �H introduced
in the redefinitions (A1) is identified with the dilaton as in
(2), i.e., ea� � �H2, we can show that this integrability
condition is again implied by the equations of motion.
The most general form for F� consistent with the as-
sumed symmetries has only Ftz and Ftr nonzero; hence
we can write

SMEARED BRANES AND THE GUBSER-MITRA CONJEC
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F"tF
"
t � 1

2gttF
2; (A13)

and so eliminating the dilation field using (8) from the t; t
component of the graviton equation (7) gives us

Rtt � gtt
n� 3

2�n� 2�
r2�ln �H�: (A14)

This equation reduces to exactly (A12) for the metric
given in Eq. (A4) and therefore we conclude that this
integrability condition is implied by the equations of
motion.

However, this is not yet enough to show that the general
solution takes the form (1) and (2): we have not yet shown
that �H � H�R�, and we have no coordinate freedom left
to redefine it. The problem can be simply stated in
coordinate-independent terms: in the charged case, there
are two a priori independent scalar quantities, namely,
the norm of the timelike Killing vector @t and the dilaton.
The ansatz (1) and (2) assumes a specific functional form
for both of these.While we can choose coordinates so that
one of them takes the specified form, it will not be
possible to do this for both of them in general, without
using some additional information.

Thus, while it seems quite natural to us to assume that
the ansatz (1) and (2) describes the most general solution
of the equations of motion in the charged case as well, we
cannot show this by some analog of the arguments in
[20,21]. Rather, verifying our belief would require explic-
itly solving the equations of motion. We reiterate that this
question of generality is irrelevant to the argument in the
body of the paper, which required only the observation
that uncharged solutions of the form (1) and (2) lift to
charged solutions.
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