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Single-domain spectral method for black hole puncture data
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We calculate puncture initial data corresponding to both single and binary black hole solutions of the
constraint equations by means of a pseudospectral method applied in a single spatial domain.
Introducing appropriate coordinates, these methods exhibit rapid convergence of the conformal factor
and lead to highly accurate solutions. As an application we investigate small mass ratios of binary black
holes and compare these with the corresponding test mass limit that we obtain through a semianalytical
limiting procedure. In particular, we compare the binding energy of puncture data in this limit with that
of a test particle in the Schwarzschild spacetime and find that it deviates by 50% from the
Schwarzschild result at the innermost stable circular orbit of Schwarzschild, if the ADM mass at
each puncture is used to define the local black hole masses.
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I. INTRODUCTION

The evolution problem of general relativity requires the
specification of initial data that satisfies the Hamiltonian
and momentum constraints on the initial hypersurface.
There are different strategies to pose initial data for a
specific physical situation, which typically involve a
choice of free data and the subsequent numerical solution
of the constraint equations to obtain the physical data; see
[1] for a recent review. An active area of research is
concerned with initial data that describe two orbiting
black holes [2–6]. For example, one can study the two-
body problem of relativity by constructing sequences of
quasicircular binary data sets that describe the quasiadia-
batic inspiral of two black holes [7–14]. Furthermore,
binary black hole data sets are the starting point for
evolutions in numerical relativity, e.g., [15].

Important aspects of black hole data sets are the choice
of hypersurface and how the physical singularity inside
the black holes is treated. Concretely, since the constraints
give rise to elliptic equations, one has to specify a com-
putational domain and boundary conditions. One possi-
bility when considering two black holes is to work on R3

with two balls excised. At the spherical excision boundary
one can impose boundary conditions based on an isome-
try, as suggested by Misner [16]. This boundary condition
is used in the first fully 3D numerical data sets [2] and in
the more recent thin sandwich-type initial data sets [11].
The excision boundary can also be defined by an apparent
horizon boundary condition [17,18]; see [10,19] for recent
applications. Other boundary conditions are motivated by
Kerr-Schild coordinates [4].

Excising spheres introduces a technical complication
into numerical methods on Cartesian grids. In finite
differencing codes on Cartesian grids, the boundary
points are not aligned with the grid and one has to
construct appropriate stencils for a ‘‘lego’’ sphere
[2,20,21]. Alternatively, one can work with adapted co-
04=70(6)=064011(13)$22.50 70 0640
ordinates which match the spherical boundary, for ex-
ample, Čadež coordinates [2], or one can use multiple
coordinate patches with spherical coordinates at the ex-
cision region [11,12,17–19].

An alternative to excision boundaries is to work on R3

with two points (the ‘‘punctures’’) excised, where the
punctures represent the inner asymptotically flat infinity
(Brill-Lindquist topology [22,23]). Using the Brill-
Lindquist topology directly is problematic numerically
since one has to resolve a one over radius coordinate
singularity. However, it is possible to analytically com-
pactify the inner asymptotically flat region, filling in the
missing puncture points, and to work on R3 [3,24–27].
This simplifies the numerical method because no special
inner boundary condition has to be considered [3].

In this paper we focus on the construction of an effi-
cient numerical method for the computation of black hole
puncture data for vacuum spacetimes containing one or
two black holes with linear momentum and spin. The
numerical method, pseudospectral collocation, e.g.,
[28], can give exponential convergence when the solution
is infinitely often differentiable (C1). However, in its
usual form puncture data is only C2 at the punctures. We
resolve this issue by constructing an appropriate coordi-
nate transformation that renders the puncture data smooth
at the location of the punctures. Consequently, our pseu-
dospectral method converges rapidly to highly accurate
solutions, although the convergence rate is generally not
exponential due to logarithmic terms in expansions at
infinity (see below).

Note that spectral methods have already been applied
successfully to various elliptic problems in numerical
relativity, including neutron star initial data [29–32],
homogeneous star models [33,34], relativistic Dyson
rings [35], and black hole initial data [5,11,12,19]. In
particular, [11,19] use several coordinate patches to cover
a binary black hole excision domain, and the situation can
become quite complicated with 43 rectangular boxes and
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three spherical shells with various overlap and matching
boundary conditions [19]. While such multipatch codes
have a certain grid adaptivity built-in (compare ‘‘spectral
elements’’ [28]), one of our motivations was to simplify
the spectral method by construction of a simpler compu-
tational domain.

Therefore, a noteworthy feature of our spectral punc-
ture method is that our choice of coordinates maps R3,
including spatial infinity and the two-puncture points, to
a single rectangular coordinate patch. This is the case for
spherical coordinates with a radial compactification, but
recall that in addition we want to ensure smoothness at
the punctures.

The paper is organized as follows. In Sec. II we de-
scribe our spectral method for the solution of the
Hamiltonian constraint on a single domain. After we
introduce the puncture data in Sec. III, Sec. IV discusses
analytical issues and numerical results for a single punc-
ture. In Sec. V we develop our single-domain spectral
method for two punctures and present the key result,
which is rapid convergence of this scheme to highly
accurate solutions. The application of our method to the
case of small mass ratios and a comparison with a semi-
analytic test mass limit can be found in Sec. VI. Finally,
in Sec. VII we compute binding energies of puncture data
in this limit. We conclude in Sec. VIII.
II. THE SPECTRAL METHOD

As will be discussed in detail in the subsequent sec-
tions, for both the single and the two-puncture initial data
problems an elliptic equation of the form

f�u� � 4u� %�u� � 0 (1)

arises for a function u. Here, 4 denotes the Laplace
operator, and % is a source term which in general depends
on u.

In what follows we will introduce coordinates �A;B;’�
with

A 2 	0; 1
; B 2 	�1; 1
; ’ 2 	0; 2	�; (2)

for each specific case that we consider, in which u is well
defined within the spatial domain, in particular, at its
boundaries.

As will become clear below, u always obeys a physical
falloff condition at spatial infinity,

lim
r!1

u � 0: (3)

Since in all cases to be considered the coordinate A is
introduced such that

r! 1()A! 1; (4)

we consider an additional function U which is given by

u � �A� 1�U: (5)
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In our spectral method, the values of this function U
are calculated at the grid points �Ai; Bj; ’k�, i.e.,

Uijk � U�Ai; Bj; ’k�; (6)

0 � i < nA; 0 � j < nB; 0 � k < n’; (7)

where we choose

Ai � sin2
�
	
2nA

�
i�

1

2

��
; (8)

Bj � � cos
�
	
nB

�
j�

1

2

��
; (9)

’k � 2	
k
n’
: (10)

Hence, the grid points Ai and Bj are the zeros of the
Chebyshev polynomials TnA�1� 2x� and TnB��x�, re-
spectively, whereas the ’k represent the zeros of
sin�n’’�. Our spectral expansion is thus a Chebyshev
expansion with respect to the coordinates A and B, and
a Fourier expansion with respect to ’.

The spectral method enables us to calculate first and
second derivatives of U from the values Uijk at the above
grid points within the chosen approximation order which
is given by the numbers �nA; nB; n’�. Thus, for a vector

~U � �U000; . . . ; U�nA�1��nB�1��n’�1��
T (11)

we may fill another vector

~f� ~U� � �f000; . . . ; f�nA�1��nB�1��n’�1��
T (12)

by the evaluation of f�u� at the grid points �Ai; Bj; ’k�.
This results in a nonlinear set of simultaneous equations

~f� ~U� � 0 (13)

for the unknown Uijk.
For the function U we find particular boundary con-

straints by considering the elliptic Eq. (1), written in
terms of �A;B;’� at A � 0, A � 1, B � �1. A solution
U that is regular with respect to A, B and ’ must obey
these requirements, which therefore replace boundary
conditions that usually need to be imposed. These bound-
ary constraints are called ‘‘behavioral’’ [28]. In addi-
tion, a desired 2	 periodicity with respect to ’ is already
‘‘built-in’’ by the particular choice of our basis functions.
Accordingly, using the spectral method with the above
interior collocation points, no further work with respect
to the boundaries needs to be done, for regularity and
periodicity will be realized automatically. Hence, there is
no other requirement constraining the function U. It is
uniquely determined by the elliptic Eq. (1).

For the numerical solution of the discrete equivalent,
Eq. (13), we address its nonlinearity by performing
-2



FIG. 1. For a single puncture with vanishing linear momen-
tum parameter the spin Si � m2w�i1 with w � 0:2 has been
chosen. The plot shows the relative global accuracy of the
spectral method for expansion order nA � nB � n compared
to a reference solution with n � 50 [see (19)]. For this axi-
symmetric example we have used n’ � 4.
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Newton-Raphson iterations. The solution ~U is written as

~U � lim
N!1

~UN; (14)

~U N�1 � ~UN � ~VN; (15)

where ~VN satisfies the linear problem

JN ~VN � ~bN (16)

with

JN �
@ ~f

@ ~U
� ~UN�; ~bN � ~f� ~UN�: (17)

There are different ways to solve the linear system arising
from multidimensional spectral methods, although some
effort has to be made to obtain an efficient method since
the one-dimensional spectral differentiation matrices are
not sparse and the conditioning of the system can be
problematic; see for example [19,28]. We solve (16) with
the preconditioned ‘‘biconjugate gradient stabilized
(BICSTAB)’’ method [36], and the choice of precondi-
tioner is crucial for the overall efficiency of the method.

We construct a preconditioner which is based on a
second order finite difference representation of JN . To
this end we consider the linearized differential equation
corresponding to (1) on the equidistant grid in coordi-
nates ��;�;’� with

A � sin2�; B � � cos�: (18)

Apart from the uniform distribution of our grid points,
these coordinates have the additional advantage that U
becomes symmetric with respect to the planes � � 0,
� � 	=2, � � 0 and � � 	. Therefore, it is possible to
calculate second order finite differencing approximations
of first and second derivatives at any grid point by taking
into account adjacent neighboring points only.

The resulting matrix has at most seven nonvanishing
entries per row and is therefore well suited for the
application of a sparse system solver. We use the pro-
gram package HYPRE which offers a variety of sparse
matrix methods [37]. A choice that works well in this
context is the ‘‘generalized minimal residual’’ method
preconditioned with the algebraic multigrid code
‘‘BOOMERAMG’’ [37].

Our implementation of the above procedure uses the
BAM code as infrastructure [15]. Although both BAM and
HYPRE support parallelization, we have not parallelized
the elliptic solves for our spectral method. Computation
of the binary black hole solution shown in Fig. 5 (below)
takes four minutes on a Xeon/Linux workstation.

In what follows we evaluate the convergence of the
spectral method by computing the ‘‘global relative accu-
racy’’ defined by

�n;m�U� � max�A;B;’�j1�Un=Umj; (19)
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where Un denotes a specific nth order spectral approxi-
mation of the function U. The maximum is typically
evaluated over a regular grid of 63 points. We take nA �

nB � 2n’ � n, with the only exception n’ � 4 which we
use in axisymmetric situations.

Choosing a large valuem defines a reference solution to
which solutions at a lower order of approximation n <m
can be compared. This method gives a reliable character-
ization of convergence in our examples. Furthermore, we
reduce the error in the solution of the discrete nonlinear
system (13) below the error due to the finite order of the
spectral approximation which therefore dominates the
accuracy of the method.

The convergence rate of a spectral method is called
exponential if the logarithm of the total error of an
approximate solution depends linearly on the correspond-
ing approximation order for sufficiently large order. This
behavior is usually encountered if the underlying solution
to be approximated is analytic everywhere on the spectral
domain. However, if the solution is only Ck differentiable,
the logarithm of the total error depends linearly on the
logarithm of the approximation order. In particular, the
slope of this line is �k� 2�, and the scheme is called
algebraically convergent to �k� 2�th order. Hence, from
the numerical convergence of the spectral method, one
can deduce the differentiability of the solution to be
approximated (see Figs. 1, 2, and 4 below for representa-
tive examples corresponding to puncture initial data).
III. PUNCTURE DATA

In the ADM formulation of a ‘‘3� 1’’ splitting of the
spacetime manifold, the vacuum Hamiltonian and the
momentum constraint equations of general relativity
read as follows:
-3



FIG. 2. For a single puncture with vanishing spin parameter
the linear momentum Pi � mv�i1 with v � 0:2 has been
chosen. The plot shows the relative global accuracy of the
spectral method for expansion order nA � nB � n compared
to a reference solution with n � 70 [see (19)]. For this axi-
symmetric example we have used n’ � 4.
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R2 � K2 � KijK
ij � 0; (20)

r�Kij � "ijK� � 0: (21)

Here "ij is the 3-metric, Kij the extrinsic curvature, K its
trace, and R;r are the Ricci scalar and the covariant
derivative, respectively, associated with "ij.

Following York’s conformal-transverse-traceless de-
composition method [1], we make the following assump-
tions for the metric and the extrinsic curvature (�ij
denotes the three-dimensional Kronecker symbol):

"ij �  4�ij; (22)

Kij �  �2�Vj;i � Vi;j �
2
3�ijdivV�: (23)

The initial data described by this method are conformally
flat and maximally sliced, K � 0. With this ansatz the
Hamiltonian constraint yields an equation for the con-
formal factor  ,

4 � 1
8 

5KijK
ij � 0; (24)

while the momentum constraint yields an equation for the
vector potential V,

4V � 1
3grad�divV� � 0: (25)

One can proceed by choosing a nontrivial analytic
solution of the Bowen-York type for the momentum con-
straint,

V �
XNp
n�1

�
�

7

4jxnj
Pn �

xn � Pn
4jxnj3

xn �
1

jxnj3
xn � Sn

�
;

(26)
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with poles at a finite number of Np spatial points, the
locations of the punctures. Here the vector parameters Pn
and Sn can be identified with the physical linear and
angular momenta of the nth puncture. The vector xn
points from the nth puncture to the point �x; y; z�, xn �
�x� xn; y� yn; z� zn�T , and jxnj is its Euclidian norm.

In [3] it is pointed out that for the extrinsic curvature
determined by (26) a particular solution of the
Hamiltonian constraint is obtained by writing the con-
formal factor  as a sum of a singular term and a finite
correction u,

 � 1�
XNp
n�1

mn

2jxnj
� u; (27)

with u! 0 as jxnj ! 1. The parameter mn is called the
bare mass of the nth puncture.

The main point of the puncture construction is that in
terms of u the Hamiltonian constraint becomes a well-
defined equation on the entire Cartesian 3-space (see [38]
for a general existence theorem for such asymptotically
flat initial data). However, it turns out that u is in general
only C2 at the punctures, although it is C1 elsewhere.

As discussed in Sec. II, such a drop of differentiability
implies that a spectral method can only be expected to be
algebraically convergent to fourth order. We first show for
a single puncture that a simple coordinate transformation
can resolve the differentiability problem at the location of
the punctures. After that we discuss similar techniques
for two punctures.

Note that by virtue of Theorem 1 by Dain and Friedrich
[38], the conformal factor can only be expected to be
globally C1 differentiable with respect to our coordinates
�A;B;’� if the individual linear momenta Pn vanish. In
fact, we will find that for punctures with linear momenta
the conformal factor possesses logarithmic terms when
expanded at infinity, i.e., at A � 1. This holds also true if
the total linear momentum, i.e., the sum of all Pn van-
ishes. Consequently, our single-domain spectral method
cannot be exponentially convergent. Nevertheless, the
scheme is rapidly converging towards highly accurate
numerical solutions.

IV. SINGLE-PUNCTURE INITIAL DATA

For a single puncture at the origin of a Cartesian grid,
we introduce spherical coordinates �r; #;’� via

x � r cos#; y � r sin# cos’; z � r sin# sin’;

(28)

where

r 2 	0;1�; # 2 	0; 	
; ’ 2 	0; 2	�: (29)

The conformal factor for a single puncture is

 � 1�
m
2r

� u; (30)
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and we therefore choose to compactify the spatial domain
by introducing a new radial coordinate A by

A �

�
1�

m
2r

�
�1
; (31)

which implies (4).
We separately investigate the two situations in which

either the linear momentum P or the spin S vanishes. A
single black hole with either small Bowen-York spin or
linear momentum has also been considered in [39– 41].

A. Single puncture with spin

Consider first a single puncture with P � 0 and Si �
Sx�i1. In the chosen spherical coordinates the
Hamiltonian constraint reads

4 �
9S2x
16r6

 �7sin2# � 0: (32)

For the auxiliary function u we obtain a nonlinear
Poisson-like equation,

uAA �
2uA
A

�
1

A2�1� A�2

�
u## � u# cot# �

u’’
sin2#

�

� �
36w2A�1� A�2

�1� Au�7
sin2# (33)

with w � Sx=m
2. The solution u is uniquely determined

by regularity and periodicity conditions at # � 0, # � 	
and ’ � 0, ’ � 2	, respectively. For A � 0 only a regu-
larity condition needs to be imposed, while for A � 1 we
set u � 0. Thus, the single-domain spectral method de-
scribed in Sec. II is applicable with

B � 2#=	� 1; (34)

provided that a global regular solution exists.
In order to study the behavior of u globally, and, in

particular, close to the puncture, consider the following
Taylor series which converges for sufficiently small w:

u �
X1
j�1

w2juj: (35)

All uj can explicitly be given in closed analytic form. In
particular, for u1 we obtain (P2 denotes the second
Legendre polynomial):

u1 � u1;0 � u1;2P2�cos#�; (36)

u1;0 �
2
5��2A5 � 6A4 � 5A3 � 1�; (37)

u1;2 �
4
5�1� A�3A2: (38)

Note that u1 is regular at A � 0 in the spherical coordi-
nates �A;#; ’�. The same holds for all uj and in fact for u
(see [38]). Hence, the C2 differentiability of u at the
puncture has been translated into a C1 differentiability
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with respect to spherical coordinates. We can still recog-
nize the original behavior of the function which is exhib-
ited by the fact that u1 possesses a term �r3 which is C2

differentiable in Cartesian coordinates. However, in the
chosen spherical coordinates �A;#; ’�, u becomes glob-
ally C1.

Consequently, the application of our single-domain
spectral method exhibits exponential convergence, which
can be seen in Fig. 1 for a representative example.

B. Single puncture with linear momentum

Consider now a single puncture with linear momentum
Pi � Px�i1 and vanishing spin. The Hamiltonian con-
straint becomes

4 �
9P2

x

16r4
 �7�1� 2cos2#� � 0: (39)

Similar to the treatment in the previous section we obtain
in spherical coordinates the nonlinear Poisson-like equa-
tion

uAA �
2uA
A

�
1

A2�1� A�2

�
u## � u# cot# �

u’’
sin2#

�

� �
9v2A3

4�1� Au�7
�1� 2cos2#� (40)

with v � Px=m. Again, we may study the behavior of u
by performing a Taylor expansion which converges for
sufficiently small v,

u �
X1
j�1

v2juj: (41)

All uj can explicitly be given in closed analytic form. In
particular, for u1 we obtain

u1 � u1;0 � u1;2P2�cos#�; (42)

u1;0 �
1
8�1� A5�; (43)

u1;2 �
�1� A�2

20A3 	84�1� A� log�1� A� � 84A� 42A2

� 14A3 � 7A4 � 4A5 � 2A6
: (44)

We recover that u is analytic at A � 0 while it is C4

differentiable in Cartesian coordinates, which is implied
by a term �r5.

However, the solution u � u�A;#; ’� also possesses
logarithmic terms with a branch point at A � 1 (r!
1). For a single puncture, such logarithmic terms are
known to occur for nonvanishing linear momentum, e.g.,
[38,40]. In particular, the leading term

21�1� A�3

5A3
log�1� A� (45)

gives rise to a mere C2 differentiability of u at A � 1.
-5



FIG. 3. Several coordinate patches for the two-puncture ini-
tial data problem. Shown are (a) equidistant coordinate lines in
the system of spectral coordinates �A;B�, as well as (b) their
images in prolate spheroidal coordinates �/; 0�, (c) in the
coordinates �X; R�, and (d) in cylindrical coordinates �x; 1�.
The punctures are indicated by bullets. The x � 0 plane, several
sections of the x axis and their corresponding images in the
other coordinate systems, as well as spatial infinity given by
A � 1 are emphasized by thick lines.
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This fact again is reflected by the spectral method, which
now converges only algebraically to fourth order as ex-
pected; see Fig. 2 for a representative example.

V. TWO-PUNCTURE INITIAL DATA

Consider two punctures that are placed symmetrically
on the x axis at x � �b so that D � 2b is the distance
between the two punctures.We denote the bare mass of the
punctures by m�, the linear momenta by P� and the spin
parameters by S�; the subscripts refer to the correspond-
ing locations at x � �b.

In the following we introduce appropriate coordinates
in which the auxiliary function u becomes regular at the
location of the punctures.

The decomposition (27) reads

 � 1�
m�

2r�
�
m�

2r�
� u; (46)

with the distances from the punctures given by

r� �
���������������������������������������
�x� b�2 � y2 � z2

q
: (47)

As we have seen for the single-puncture initial data
problem, the auxiliary function u discussed there is regu-
lar at the location of the puncture in spherical coordinates
about this point. We therefore expect a similar regular
behavior if we were to introduce coordinates that become
spherical at both punctures. However, regularity of u at
the punctures can also be achieved if we use specific
coordinates in which the distances r� are analytic func-
tions there (see [38]). This is a weaker condition because it
does not necessarily require one of our coordinates to
behave as r� close to the punctures.

A coordinate transformation that describes this situ-
ation at the origin in two dimensions is given by

c � C2; (48)

where

c � x� iy and C � X� iY (49)

are complex combinations of Cartesian coordinates �x; y�
and new coordinates �X; Y�. Clearly, the distance becomes
regular with respect to X and Y,����������������

x2 � y2
q

�
�����
c �c

p
� C �C � X2 � Y2: (50)

Note that transformation (48) maps a right angle at the
origin to a straight line through the origin.

For the two-puncture initial data problem, we apply
this idea by introducing a specific mapping

�A;B;’� � �x; y; z�; (51)

which is composed of several transformations (see Fig. 3),

�A;B;’� � �/; 0; ’� � �X;R;’� � �x; 1; ’� � �x; y; z�:

(52)
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These transformations are chosen to realize the two dif-
ferent aspects of the desired entire transformation: (i)
regularity of r� at both punctures and (ii) mapping of a
compact rectangular domain in R3 to the entire space of
�x; y; z� coordinates.

We first introduce cylindrical coordinates �x; 1; ’� such
that

y � 1 cos’; z � 1 sin’; ’ 2 	0; 2	�; (53)

and combine x and 1 to form c,

c � x� i1: (54)

Now consider the transformation

c �
b
2
�C� C�1�; where C � X� iR: (55)

It maps the region of the upper half plane with coordi-
nates �X;R� which is exterior to the unit circle onto the
upper half plane of our coordinates �x; 1� [see Figs. 3(c)
and 3(d)].

The key motivation behind this transformation has
been to produce locally at each puncture the same effect
on angles as has been done above in the transformation
(48) and (49) and which has resulted in the regular
expression (50) for the distance from the origin.
Similarly we now obtain expressions for the distances
from either puncture
-6



FIG. 4. Two punctures with vanishing spins. The physical
parameters are given by m� � m� � b; Pi� � �0:2b�i2. For
this plot we took nA � nB � 2n’ � n and compared to a
reference solution with n � 70. Apart from the global relative
accuracy [see (19)] taken over 63 spatial points, the correspond-
ing maximal deviations at infinity and at the punctures are
shown. For small n, the error near the punctures is about 10
times larger than the error at infinity, and the convergence rate
is approximately exponential down to about 10�9. The error at
infinity converges at roughly sixth algebraic order as expected,
and for sufficiently large n this becomes the dominant con-
vergence rate.
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r� � jc� bj �
b

2
������������������
X2 � R2

p 	�X� 1�2 � R2
 (56)

which are regular with respect to X and R at the punctu-
res, i.e., at c � �b or C � �1.

Next we need to find a transformation which maps a
compact rectangular region onto the region of �X;R�
coordinates. As a first step, the polar transformation

C � e2 ; 2 � /� i0; / 2 	0;1�; 0 2 	0; 	


(57)

yields a strip which is infinitely extended with respect to
positive / values [see Fig. 3(b)]. Writing c in terms of 2
gives

c � b cosh2: (58)

Thus we recover the transformation

x � b cosh/ cos0; 1 � b sinh/ sin0; (59)

which maps the well-known prolate spheroidal coordi-
nates �/; 0� onto cylindrical coordinates. Hence, constant
/ and0 values correspond to confocal ellipses and hyper-
bolas, respectively, in the �x; 1� plane. Their focal points
are located at the two punctures, i.e., at �/; 0� � �0; 0� and
�/; 0� � �0; 	� (see Fig. 3). The distances r� expressed in
terms of / and 0 are

r� � b�cosh/� cos0�: (60)

For a compactification we choose the relations

/ � 2 artanhA; 0 �
	
2
� 2 arctanB: (61)

In summary, the transformation from �A;B;’� to �x; y; z�
takes the (somewhat symmetric) form

x � b
A2 � 1

A2 � 1

2B

1� B2 ; y � b
2A

1� A2

1� B2

1� B2 cos’;

z � b
2A

1� A2

1� B2

1� B2 sin’:

(62)

It is now straightforward to apply our single-domain
spectral method to solve the Hamiltonian constraint (24)
for the two-puncture initial data problem. Again we im-
pose u! 0 as A! 1, i.e., �x2 � y2 � z2� ! 1. As in the
one-puncture initial data problem, at all the other bounda-
ries we again merely require regularity of the solution
which replaces a particular boundary condition there. As
expected, the auxiliary function u is C1 at the two
punctures.

As mentioned at the end of Sec. III, in general u
possesses logarithmic terms when expanded at infinity,
A � 1. In [38] a theorem is proved that does not exclude
the existence of such logarithmic terms given the falloff
condition satisfied by the extrinsic curvature that we
consider here. We have checked in the case of axisymme-
064011
try analytically that for two equal mass punctures with
linear momentum logarithmic terms do indeed occur.
The only exception is when both linear momenta P�

vanish, in which case the solution is also C1 at A � 1.
Otherwise we obtain terms ��1� A�3 log�1� A� if the
total momentum P � P� � P� � 0, and terms ��1�
A�5 log�1� A� if P � 0. In other words, in the center of
mass frame where the total linear momentum vanishes
the leading order logarithmic terms cancel, but next to
leading order logarithmic terms are still present such that
the solution is only C4 at A � 1. Although we carried out
this analysis for axisymmetry, it is to be expected that the
same result applies to puncture data describing orbiting
black holes in the center of mass frame.

A representative convergence rate of our single-domain
spectral method is displayed in Fig. 4. We show the
relative accuracy (19), which involves the maximum
over a set of points, computed over a 3D set of points
as before, but also for points only at infinity and at the
puncture. The error is dominated by errors near the punc-
ture down to about 10�9 for n < 35. In this regime con-
vergence of the maximal error is exponential. However,
the error at infinity only converges algebraically at
roughly sixth order as expected. Around n � 35, the error
at infinity overtakes the error elsewhere and the overall
convergence becomes algebraic.

Therefore we conclude that our numerical method is
successful since it obtains exponential convergence for
orbiting punctures down to about 10�9 with relatively
-7
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small computational resources. At the punctures our co-
ordinate transformation leads to a smooth solution, but at
infinity there are logarithmic terms which lead to alge-
braic convergence of sixth order. We consider this quite
satisfactory since higher accuracy is rarely needed in
numerical relativity. In principle, it should be possible
to eliminate the leading logarithmic term which should
bring the calculation close to numerical round-off errors.
However, it is unclear whether logarithmic terms can be
avoided completely in this approach, for example, by an
appropriate coordinate transformation.

In Fig. 5 we compare the result for u obtained by the
spectral method with u computed by the second order
finite difference multigrid method on a fixed mesh refine-
ment implemented in BAM previously [3,15]. As an
example we picked the parameters b � 3M, m� � m� �
0:5M, and Pi� � �Pi� � 0:2M�i2. The ADM linear mo-
mentum at infinity vanishes. For the purpose of this
discussion we have defined M � m� �m�. For these
parameters we can restrict the computational domain to
one quadrant of a Cartesian box centered at the origin.We
computed the multigrid data at three overall resolutions
using seven levels of refinement with approximately the
same geometrical layout of the boxes. The highest reso-
lution was obtained for 98� 98� 50 points on the finest
level, while to test convergence we successively doubled
the grid spacing, resulting in a grid spacing of M=64,
FIG. 5. Example for a solution to the Hamiltonian constraint obta
nested Cartesian grids. Shown is the regular part u of the confor
linear momentum, which are located on the x axis at x � �3M.
markers. The panels on the left show the various levels of refinement
panels on the right show an enlargement of the region near one of th
panels the result for the single-domain spectral method with nA �

Note that on this scale the methods agree well both far away and

064011
M=32, and M=16 on the finest level. The face of the
outermost box is located at about 48M in each case.

The main result is that the two methods verify each
other quite accurately on this scale near the punctures and
also for large x. Near the punctures it is a question of
resolution whether the known feature of a local indenta-
tion is fully resolved. For the chosen parameters both
methods reach this level of resolution, but the spectral
method uses significantly less resources.
VI. TWO PUNCTURES IN THE TEST MASS
LIMIT

Apart from the high accuracy that can be achieved by
spectral methods, they also prove to be very useful for the
investigation of critical and limiting situations. For the
binary black hole initial data problem, a situation of this
kind is encountered when the two gravitational sources
possess very different masses. It is the aim of this section
to apply our spectral method for the binary-puncture
initial data problem in this limiting case.

As a first step we perform the test mass limit analyti-
cally. The results arising from this study will then be
compared to those obtained by the spectral method for
a small mass ratio.

We consider two nonspinning punctures with bare
masses m� and m� located on the y axis at y � 0 and
ined with the spectral method and with a multigrid method on
mal factor for two punctures without spin and vanishing total
Results from the multigrid method are indicated by lines with
combined into one line for the highest resolution (see text). The
e punctures for three resolutions of the multigrid method. In all
nB � 40 and n’ � 20 is shown as a solid line without markers.
close to the punctures.

-8
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y � D, respectively, and perform the test mass limit by
choosingm� ! 0 withD andm� held fixed.We moreover
assume that the linear momenta are given by (v� and P̂i�
fixed, v� � 0)

Pi� � m�v��
i
1; Pi� � m�P̂

i
�; (63)

which implies that the total linear momentum vanishes as
m� ! 0. Thus, in this limit we will have placed ourselves
in a frame in which the total linear momentum vanishes.

In order to understand the behavior of u in the entire
spatial domain, we have to consider two different ways of
performing this limit separately:
(1) I
f we calculate the auxiliary function u at a given
spatial point at some finite distance from the ori-
gin, i.e., at fixed coordinates �x; y; z� � �0; 0; 0�, we
will find that u tends to zero in this limit. In
particular,

lim
m�!0

�
u
m�

�
�

�41

2r
; (64)

where r �
���������������������������
x2 � y2 � z2

p
. The physical meaning of

the constant �41 (which is obtained through the
second limiting process, see below) with respect to
the system’s relative binding energy in this limit
will be discussed in Sec. VII.
(2) I
f, on the contrary, we hold the relative coordinates
�~x; ~y; ~z� � �x=m�; y=m�; z=m�� fixed, we maintain
finite values for u at these spatial points. In par-
ticular, the resulting u obeys a constraint equation
valid for a modified single-puncture initial data
problem with nonvanishing linear momentum P
(and no spin). The above constant �41 can be
read off from these data.
For both ways of establishing the test mass limit, we
rewrite the Hamiltonian constraint as an integral equa-
tion,

u�x� �
1

32	

Z
R3

 5KijK
ij

jx� x0j
d3x0: (65)

Introducing spherical coordinates

x � r cos#; y � r sin# cos’; z � r sin# sin’;

(66)

this integral equation becomes

u�r;#;’� �
m2

�v2�
32	

Z 2	

0
d’0

Z 	

0
sin# 0d# 0

Z 1

0

r02dr0

jx�x0j

�


�
1�

m�

2r�
�
m�

2r0
�u

�
�7
�

9

2r04
�1�2cos2#0�

�
g

r02r2�
�
h

r4�

��
; (67)

where x0 � �x0; y0; z0�T with
064011
x0 � r0 sin# 0; y0 � r0 cos# 0 cos’0;

z0 � r0 cos# 0 sin’0;
(68)

and

r� �
��������������������������������������������
x02 � �y0 �D�2 � z02

q
: (69)

The functions g and h depend on P̂i�, v� and D. They
remain finite everywhere.

We now perform the two different limits.
1. Consider fixed values r > 0. We split the integration

with respect to r0 such that (a) r0 2 	r=2;1� and (b)
r0 2 	0; r=2
.

For (a) observe that for r0 � r=2 the term
�
1�

m�

2r�
�
m�

2r0
�u

�
�7
�

9

2r04
�1�2cos2# 0��

g

r02r2�
�
h

r4�

��

remains regular in the limit m� ! 0, and thus, the con-
tribution of the corresponding Poisson integral, evaluated
for r0 2 	r=2;1�, is of order O�m2

��.
Performing for the remaining near-zone integral (b)

the substitution r0 � m�s
0 leads us to

18m�v
2
�

	r

Z 2	

0
d’0

Z 	

0
sin# 0d# 0

Z r=�2m��

0

�ds0
�
s05

1� 2cos2# 0 �O�s0m��

f1� 2s0	1�m�=�2D� � u
g7

�
;

from which it follows that

lim
m�!0

u�r; #; ’�
m�

�
�41

2r
(70)

with the constant �41 given by

�41 �
36v2�
	


 R
2	
0 d’

R
	
0 sin#�1� 2cos2#�d#

R
1
0 ds�

s5f1� 2s	1�m�=�2D�� ~u
g�7:

(71)

Here, the function ~u is defined by

~u�s; #; ’� � lim
m�!0

u�m�s; #; ’�; (72)

and turns out to be the auxiliary potential resulting from
the second limit, which we will discuss now.

2. Take for the fixed relative distance limit r � m�s
with s fixed, s � 0, for which we may perform the analo-
gous steps as in the previous case. We calculate the first
integral for r0 2 	D=2;1�, and again get only a contribu-
tion of order O�m2

��. For the near-zone integral we obtain

18v2�
	

Z 2	

0
d’0

Z 	

0
sin#0 d# 0

Z D=�2m��

0

ds0

j~x� ~x0j

�

�
s05

1� 2cos2# 0 �O�s0m��

f1� 2s0	1�m�=�2D� � u
g7

�

with vectors
-9



TABLE I. Test mass limit m� ! 0 for the representative
example with values given in (80) with Pi� � �Pi� �
�m�v��i1. For the above nonvanishing mass ratios we used
the spectral method for the binary-puncture initial data prob-
lem with nA � nB � 2n’ � 100. The last line has been calcu-
lated with the spectral method for the single-puncture initial
data problem with nA � nB � 70, n’ � 4.

m�=m� u� 2Du�=m� limr!1�2ru=m��

10�1 0.034 17 0.2011 0.1688
10�2 0.034 06 0.1635 0.1601
10�3 0.034 06 0.1596 0.1592

0 0.034 056 8 0.159 094 0.159 094

MARCUS ANSORG, BERND BRÜGMANN, AND WOLFGANG TICHY
~x � �~x; ~y; ~z�T � x=m�; x0 � �~x0; ~y0; ~z0�T � x0=m�;

where

~x � s sin#; ~x0 � s0 sin#0; ~y � s cos# cos’;

~y0 � s0 cos# 0 cos’0; ~z � s cos# sin’;

~z0 � s0 cos#0 sin’0:

This leads in the limitm� ! 0 to an integral equation for
the function ~u introduced above. Equivalently, we may
consider the corresponding differential equation

4~u�
9v2�
16s4

~ �7�1� 2cos2#� � 0 (73)

with

~ � 1�
m�

2D
�

1

2s
� ~u; (74)

and the Laplace operator taken in the spherical coordi-
nates �s; #; ’�. In particular it follows that

lim
s!1

2s~u�s; #; ’� � �41: (75)

We moreover see that for the function

û � m̂ ~u with m̂ �

�
1�

m�

2D

�
�1

(76)

we recover the equation valid for a single-puncture initial
data problem (without spin) (see Sec. IV B). The (dimen-
sionless) bare mass is just m̂, and the corresponding
momentum reads

	x � v�m̂4: (77)

The above analytic study shows that we can use our
spectral methods applied to a single puncture with non-
vanishing momentum (as described in Sec. IV B) in order
to evaluate the test mass limit with algebraic convergence
of fourth order. These results can be compared with the
values obtained for a corresponding two-puncture initial
data problem with a small mass ratio (see Table I). In this
table, one finds the value u� � u�0; 0; 0� at the origin (i.e.,
at the ‘‘light’’ puncture), the expression

2D
m�

u� �
2D
m�

u�0; D; 0� (78)

(i.e., at the ‘‘heavy’’ puncture), and the limit

lim
r!1

�
2ru
m�

�
; (79)

where the latter two tend to �41 as m� ! 0. We have
chosen a particular example where the distance D and the
velocity v� obey the relations valid for the last stable
circular orbit of a test particle in the gravitational field of
a Schwarzschild black hole of mass m�:
064011
D
m�

�
5

2
�

���
6

p
; v� �

4
���
3

p

5� 2
���
6

p : (80)

Moreover, we simply set P̂i� � �v��
i
1.

It turns out that for ratios m�=m� � 10�3 the spectral
scheme yields reliable results that approach those of the
test mass limit. For mass ratios of 10�3, four digits of
accuracy are obtained for the given order of approxima-
tion from the two-puncture calculation, while six digits
are obtained with the single-puncture method for the test
mass limit.

VII. BINDING ENERGY IN THE TEST MASS
LIMIT

In this section we use the results of the previous section
to compute the binding energy of two punctures without
spin in the limit of vanishing mass ratio. The aim will be
to compare the binding energy in this test mass limit with
the binding energy of a test particle in Schwarzschild
spacetime. The deviation of the puncture binding energy
from the Schwarzschild result will yield a quantitative
statement about how realistic puncture data are in this
limit. If punctures were completely realistic we should
recover the Schwarzschild results. A related study of
small mass ratios (up to 1=32) has already been performed
by Pfeiffer [42] for excision-type initial data with
Bowen-York extrinsic curvature, and also to a limited
extent for conformal thin sandwich initial data.

In order to define a binding energy we need a notion of
the total mass as well as of the local black hole masses.
The ADM mass at infinity yields a well-defined global
mass. For two punctures it is given by

MADM
1 � m� �m� ��M1; (81)

where

�M1 � �
1

2	

I
1
riu dAi � lim

r!1
2ru: (82)

On the other hand, it is impossible to unambiguously
define local black hole masses in general. In the following
we choose the ADM mass
-10
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MADM
� � �1� u��m� �

m�m�

2D
(83)

computed in the asymptotically flat region at each punc-
ture as a measure of the local black hole mass [6]. Here u�
and u� are the values of u at each puncture. As shown by
Beig [26], this definition of local mass has the following
advantage. For a single slowly moving puncture with
momentum PADM

1 � P�, the ADM energy EADM
1 at infin-

ity is related to the ADM mass MADM
� as measured in the

asymptotically flat region near the puncture by

EADM
1 � MADM

� �
�PADM

1 �2

2MADM
�

�O	�PADM
1 �4
; (84)

which is just what one expects if the local mass definition
is reasonable. If, for example, one uses instead the bare
mass m� as the definition of local mass, one finds (e.g.,
[26,43])

EADM
1 � m� �

5

8

�PADM
1 �2

m�

�O	�PADM
1 �4
; (85)

which is incompatible with special relativity.
Next, we define the binding energy for two punctures

by

Eb � MADM
1 �MADM

� �MADM
�

� �M1 �m�u� �m�u� �
m�m�

D
: (86)

In the test mass limit of m� ! 0, it follows from Eq. (64)
that

lim
m�!0

�M1=m� � �41 (87)

and

lim
m�!0

u� � 0: (88)

Thus Eb goes to zero in this limit. We therefore consider
Eb=4, where

4 � MADM
� MADM

� =�MADM
� �MADM

� � (89)

is the reduced mass. With the help of Eqs. (64), (75), (86),
and (87), we find that

lim
m�!0

Eb
4

� lim
m�!0

Eb

�
1

MADM
�

�
1

MADM
�

�

�
�41�1�

m�

2D� � u� � m�

D

1� u� � m�

2D

: (90)

This binding energy can now be compared with the
binding energy of a test particle in Schwarzschild space-
time. For circular geodesics in Schwarzschild the binding
energy, angular momentum, and angular velocity ob-
served at infinity are given by

Eb;S
4

�
�2r�M�2

�2r�M�
������������������������������������
4r2 � 8Mr�M2

p � 1; (91)
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LS
4

�
�2r�M�2

2r2

���������������������������������������
Mr3

�4r2 � 8Mr�M2�

s
; (92)

and

$S �

����������������������
64Mr3

�2r�M�6

s
; (93)

respectively, where M is the mass of the Schwarzschild
black hole, 4 is the mass of the test particle, and r is the
orbital radius in isotropic coordinates.

In order to compute Eb=4 for punctures in the test mass
limit we have to solve Eq. (73) with the appropriate
velocity v� for circular orbits. This raises two questions.
The first is how to choose the coordinate distance D
between the two punctures if one wants to compare with
a test particle in Schwarzschild at isotropic radial coor-
dinate r. The answer is that in the limit of m� ! 0 the
spacetime is determined by the puncture with bare mass
m�, so that one simply obtains Schwarzschild in isotropic
coordinates, which allows us to set

D � r: (94)

The second question is how one should choose v� for two
punctures in circular orbit. One could, for example, obtain
v� by requiring equality of Komar and ADM mass,
which is a necessary condition for the existence of a
helical Killing vector, as done in [13]. An alternative
would be the effective potential method [8]. Each of these
methods will give a binding energy and an angular mo-
mentum for the so-defined circular orbits and in general
we do not expect the binding energy and angular mo-
mentum to exactly agree with the Schwarzschild results.
For simplicity and in order to eliminate possible errors in
the angular momentum we choose

v� �
LS=4
r

(95)

so that the angular momentum of the light puncture
exactly equals the angular momentum of a test particle
in Schwarzschild spacetime.

Using our spectral method with nA � nB � 70 and
n’ � 4 we have computed the binding energy for punc-
tures in the test mass limit. The result is plotted in Fig. 6
versus the angular velocity given in Eq. (93). Also shown
are the results for circular orbits in Schwarzschild and
several other binding energies in the equal mass case
taken from [13,14]. One can see that the binding energy
for punctures (solid line on bottom) in the test mass limit
does not agree with the binding energy of a test particle in
Schwarzschild (dotted line), except in the Newtonian
limit of small M$. The discrepancy reaches about 50%
at the innermost stable circular orbit (ISCO) of
Schwarzschild, which means that the amount of energy
radiated before reaching the Schwarzschild ISCO is too
large by 50% and that the location of the ISCO predicted
-11
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FIG. 6 (color online). The solid line on the bottom shows the
binding energy versus angular velocity for two punctures in
circular orbit in the test mass limit. For comparison we also
show the binding energy of a test particle in Schwarzschild
(dotted line). In addition we show several binding energies for
circular orbits in the equal mass case. The post-2-Newtonian
binding energy (broken line) is close to puncture data based on
an approximate helical Killing vector (plusses) as well as to
puncture data based on post-2-Newtonian data (squares), and
also to the Schwarzschild result.
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by puncture data is wrong. This means that, for the
assumptions made in the definition of the binding energy,
puncture data are not realistic for extreme mass ratios and
that one cannot expect to obtain reliable predictions
about the gravitational waves emitted.

Let us point out two possible reasons for the discrep-
ancy. One is that it is not clear whether there are alter-
natives to our definition of mass, (83), that change the
result. Another issue is that it is known that there is
‘‘artificial’’ radiation present in puncture data. Such ra-
diation could contribute at the observed level to the ratio
of infinitesimal binding energy to infinitesimal mass.

Interestingly, the curve for puncture data in Fig. 6 in
the equal mass case (marked by pluses) is much closer to
both the Schwarzschild (dotted line) case and the post-2-
Newtonian (broken line) results, as well as to the results
of the numerical method based on post-2-Newtonian data
(marked by squares) discussed in [14]. This might indi-
cate that artificial radiation affects the binding energy per
reduced mass for comparable mass puncture data less
than in the test mass limit.

Note also that in [44] a method has been described in
which conformally flat black hole data does indeed lead to
the correct Schwarzschild result for the binding energy in
the test mass limit. That method is quite different, for
example u is approximated by zero and the local masses
entering the binding energy are defined differently. At
this point it is not clear how to make contact with our
064011
approach, but this is clearly an important question for
future research.
VIII. CONCLUSION

In Cartesian coordinates the regular part of the con-
formal factor of puncture initial data is only C2 differ-
entiable at the punctures. Therefore, a numerical
implementation based on a spectral method is expected
to be at most fourth-order algebraically convergent.
However, one can overcome this problem by introducing
appropriate coordinates in which the solution is smooth at
the punctures. In particular, our transformation maps the
entire R3 onto a single rectangular domain with the
punctures at the boundary.

We have demonstrated rapid convergence of our single-
domain spectral method and obtained highly accurate
numerical solutions. Moreover, we have provided a
comparison to a numerical implementation with finite
differences in Cartesian coordinates and found good
agreement.

While our coordinate transformation renders puncture
data smooth at the punctures, in general the falloff of the
extrinsic curvature appears to imply the existence of
logarithmic terms such that the solution is only C4 at
infinity if the total linear momentum vanishes, and only
C2 otherwise. This behavior is a consequence of the fall-
off of the Bowen-York extrinsic curvature and as such
unrelated to the puncture construction. It is an interesting
but to our knowledge mostly open question which other
approaches to construct initial data for black holes share
or avoid the problem of logarithmic terms at infinity.

As an application of our spectral method for punctures,
we have considered small mass ratios, and the corre-
sponding results approach the test mass limit which was
obtained through a semianalytic limiting procedure.
Finally, we have computed the binding energy of two
punctures in the test mass limit and compared it to the
binding energy of a test particle in Schwarzschild space-
time and to binding energies in the equal mass case. We
find that in the test mass limit the binding energy per
mass deviates from the Schwarzschild result by about
50% at the Schwarzschild ISCO, while the binding en-
ergy of two punctures in the equal mass case is close to
post-Newtonian results, if the ADM mass at each punc-
ture is used to define the local black hole masses. This
should be compared with [44], where by a different
method conformally flat black hole data does lead to the
proper test mass limit.

The study of specific coordinate transformations might
also help in reducing the number of domains that are used
by methods for binary black hole excision data. We have
started a corresponding investigation based on a coordi-
nate transformation that requires two coordinate patches,
and we intend to apply spectral methods. Within the
analysis of these data we plan among other things to go
-12
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into the matter of possible logarithmic expansion terms
of the conformal factor in the context of binary black
hole excision data.
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[14] W. Tichy, B. Brügmann, M. Campanelli, and P. Diener,

Phys. Rev. D 67, 064008 (2003).
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