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Nonlinear N-parameter spacetime perturbations: Gauge transformations
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We introduce N-parameter perturbation theory as a new tool for the study of nonlinear relativistic
phenomena. The main ingredient in this formulation is the use of the Baker-Campbell-Hausdorff
formula. The associated machinery allows us to prove the main results concerning the consistency of
the scheme to any perturbative order. Gauge transformations and conditions for gauge invariance at any
required order can then be derived from a generating exponential formula via a simple Taylor expansion.
We outline the relation between our novel formulation and previous developments.
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In the theory of spacetime perturbations [1–5] (see [6–
8] for an introduction), one usually deals with a family of
spacetime models which, in most cases, depends on a
single parameter �: M� � �M; fT �g�, where M is a
manifold that accounts for the topological and differen-
tial properties of spacetime, and fT �g is a set of fields on
M, representing its geometrical and physical content
(this formulation does not depend on the gravitational
field equations). The parameter � labels the elements of
the family and gives an indication of the ‘‘size’’ of the
perturbations, regarded as deviations of M� from a back-
ground model M0. It can either be a formal parameter, as
in cosmology [3,9,10], in backreaction problems (see, e.g.,
[11,12]), or in the study of quasinormal modes of stars
and black holes [13,14], or it can have a specific physical
meaning, as in the study of black hole mergers via the
close limit approximation, in the analysis of quasinormal
mode excitation by a physical source, or in the modeling
of perturbations generated by the collapse of a rotating
star (see [14–17], and references therein).

There are, however, physical applications in which it
may be convenient to use a perturbation formalism based
on two [5] or more parameters. For instance, in order to
study general time-dependent perturbations of stationary
axisymmetric rotating stars [18] using a spherical back-
ground. In this case one can separately consider the sta-
tionary axisymmetric rotational perturbations, for
example, up to second order in a parameter �, then
considering the coupling of these with the first-order
time dependent ones (see [5] for further discussion). As
it should be clear from this example, the advantage of an
N-parameter non-linear perturbation theory (NLPT) is
that it allows us to make distinctions between different
types of perturbations corresponding to different pa-
rameters, so that we can study their coupling and some
nonlinear effects without having to compute the whole set
of higher-order perturbations. Such a framework may
provide flexibility by allowing us to look at a given
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problem from different points of view. It may also allow
us to choose a simpler (typically more symmetrical)
background to model a given physical scenario. Given
that, even in NLPT, the differential operators are those
defined on the chosen background, this can drastically
reduce the computations and even change the way to
perform them.

The aim of the present article is to introduce a novel
approach to the study of the gauge dependence of pertur-
bations in NLPT which (i) deals with an arbitrary number
of parameters, (ii) provides a closed formula for the
action of a general gauge transformation, valid to any
order, (iii) the construction and derivation of formulas
of practical interest is simpler than in previous frame-
works [3–5]. This new approach is mainly based on the
application of the Baker-Campbell-Hausdorff (BCH) for-
mula [19]. This has been used previously [20], in the
context of the backreaction problem in cosmology, to
derive second order one-parameter gauge transforma-
tions. Here we show how to make use of the full power
of the BCH formula deriving the transformation between
two given N-parameter gauges, each represented by an
N-parameter group of diffeomorphisms, at an arbitrary
order. Our formalism therefore also contains the condi-
tions for gauge invariance for every perturbation order in
N-parameters.

We start by summarizing some relevant results regard-
ing the mathematical structure of the single parameter
NLPT (see [3,4]). The Taylor expansion of a general non-
linear gauge transformation can be expressed in terms of
Lie derivatives with respect to a set of vector fields which,
order by order, constitute the generators of the trans
formation. A closed formula for this expansion, valid at
all orders, was found in [4], using a new object dubbed
Knight diffeomorphism (KD), first defined in [3] (cf. also
[11,21]). The analysis in [3,4,22] gives also the conditions
for gauge invariance at any given order, and provides
the framework for the construction of gauge-invariant
02-1  2004 The American Physical Society



SOPUERTA, BRUNI, AND GUALTIERI PHYSICAL REVIEW D 70 064002
formalisms [23]. A similar construction has been at-
tempted for the two-parameter case in [5], where the
action of a general gauge transformation on arbitrary
tensor quantities was expressed in terms of the Lie de-
rivatives with respect to a set of vector fields. However,
since no natural generalizations of the KD approach were
found, these expressions were derived up to fourth order
in the parameters by imposing, order by order, consis-
tency conditions (see [24] for a related analysis and [25]
for an application to gravitating strings). It must be
pointed out that, although that derivation is not as elegant
and compact as in [3,4] or the one based on the BCH
formula presented here, it still leads to the right formulas
of practical interest, as we shall discuss.

The basic assumption for the construction of a multi-
parameter relativistic NLPT is the existence of a multi-
parameter family of spacetime models M~� � �M; fT ~�g�,
where M denotes the spacetime manifold and fT ~�g is a
set of fields on M, describing their geometrical and
physical content, which we assume to be analytic. These
spacetime models are labeled by a set of N parameters
~� � ��1; . . . ; �N� that control the strength of the pertur-
bations with respect to the background spacetime model
M~0, which describes an idealized situation. In order to
construct the physical spacetime model M~� as a deviation
from the background model M~0, we need to establish a
correspondence between them; what, in the context of
relativistic perturbation theory, is called a gauge choice.
This correspondence is established, for all ~�, through the
action of a diffeomorphism of M: ’ ~�:M ! M. The set

of diffeomorphisms G�’� � f’ ~�j
~� 2 RNg is chosen in

such a way they constitute an N-parameter group of
diffeomorphisms of M:

’:M� RN ���!M

�p; ~�� j���!’�p; ~�� :� ’ ~��p�: (1)

The identity element corresponds to ~� � ~0, i.e. ’~0�p� �
p. Moreover, a consistent perturbation scheme should
have the property that perturbing first with respect to a
given parameter, say �P, and afterwards with respect to
another parameter, say �Q, must be equivalent to the
converse operation.We can implement this idea by impos-
ing the following composition rule for the group G�’�:

8 ~�; ~�0; ’ ~� � ’ ~�0 � ’ ~�� ~�0 : (2)

This property implies that the group is Abelian. It also
implies that we can decompose ’ ~� into N one-parameter
groups of diffeomorphisms (flows) that remain implicitly
defined by the equalities (we have N! equalities)

’ ~� �’��1;0;...;0� � ’�0;�2;...;0� � � � � � ’�0;0;...;�N�

�’�0;�2;...;0� � ’��1;0;...;0� � � � � � ’�0;0;...;�N�

� � � � : (3)
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The action of the flow ’�0;...;�M;...;0� is generated by a vector
field, 
M �M � 1; . . . ; N�, acting on the tangent space of
M, and the Lie derivative of an arbitrary tensor field T
with respect to 
M is given by

L 
MT �

�@’�
�0;...;�M;...;0�

T

@�M

�
�M�0

; (4)

where the superscript � denotes the pullback. Since the
group is Abelian, the vector fields 
M commute

�
P; 
Q� � 0 �P;Q � 1; . . . ;N�: (5)

The Taylor expansion around ~� � ~0 of the pullback asso-
ciated with the flow ’�0;...;�M;...;0� is given by

’�
�0;...;�M;...;0�

T �
X1
k�0

�kM
k!

L k

M
T: (6)

This expression can be written in a more compact way by
using the formal exponential notation

’�
�0;...;�M;...;0�

T � exp��ML
M�T � e�ML
MT; (7)

which provides a clear operational way for working with
groups of diffeomorphisms. From expressions (6) and (3)
we can derive the Taylor expansion of the pullback ’�

~�
T

’�
~�
T �

X1
k1;...;kN�0

 YN
P�1

�kPP
kP!

L kP

P

!
T: (8)

Using the exponential notation and the commutation
relations (5) we can write it as follows:

’�
~�
T �

"YN
P�1

exp��PL 
P�

#
T � exp

 XN
P�1

�PL 
P

!
T: (9)

In a given gauge ’, the perturbation of an arbitrary
tensorial quantity T is defined as

�T’~�
:� ’�

~�
T ~� � T~0: (10)

The first term on the right-hand side of (10) can be Taylor-
expanded around ~� � ~0 using (8) to get

�T’~� �
X1

k1;...;kN�0

 YN
P�1

�kPP
kP!

!
� ~k’T � T~0; (11)

where ~k � �k1; . . . ; kN� and

� ~k’T :�
�

@k1�����kN

@�k11 � � � @�kNN
’�
~�
T
�
~��~0

�
YN
P�1

L kP

P
T; (12)

which defines the perturbation of order �k1; . . . ; kN� of T
(�~0’T :� T~0). The total order of a perturbation can be
defined as nT :� k1 � � � � � kN. As a consequence of
these definitions, we have that �T’~� and � ~k’T are fields
that belong to the background spacetime model M~0.

Let us consider two different gauges ’ and  , with
generators �’
1; . . . ;’ 
N� and � 
1; . . . ; 
N�, respectively.
For all ~�, the objects defined in these two gauges can be
-2
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related by a diffeomorphism � ~�:M ! M given by

� ~�
:� ’�1

~�
�  ~� � ’� ~� �  ~�: (13)

This is what is called a gauge transformation in pertur-
bation theory. The family of all the possible gauge trans-
formations for two given gauges ’ and  

�:M� RN ���!M

�p; ~�� j���!��p; ~�� � � ~��p�; (14)

is not in general a group of diffeomorphisms. The action
of the gauge transformation � ~� can be written as
064002
��
~�
T � �’� ~� �  ~��

�T �  �
~�
� ’�

� ~�
T

� exp

 XN
P�1

�PL 
P

!
exp

 
�
XN
P�1

�PL’
P

!
T: (15)

Using group theory techniques we can write (15) as the
action of a single exponential operator. This can be ex-
plicitly done by using the BCH formula [19] (cf. [20]).
This formula, which can be applied to any two linear
operators A and B, reads

e AeB � ef�A;B�; (16)
f�A;B� �
X1
m�1

��1�m�1

m

X
pi; qi

pi � qi � 1

�A � � �A
z���}|���{p1

B � � �B
z���}|���{q1

� � �A � � �A
z���}|���{pm

B � � �B
z���}|���{qm

�hPm
��1�pj � qj�

iQm
��1 p�!q�!

; (17)
where the following notation has been used:

�X1X2X3 � � �Xn� :� �� � � ��X1; X2�; X3�; � � � ; Xn�: (18)

Then, the BCH formula can be seen as an expansion in
commutators of the initial operators A and B. Up to two
commutators, this expansion is given by

f�A;B� � A� B�
1

2
�A;B� �

1

12
��A;B�; B�

�
1

12
��B;A�; A� � � � � : (19)

This infinite expansion can be truncated and becomes
finite when some commutators vanish (for a solvable
Lie algebra). For instance, if ��A;B�; A� � ��A;B�; B� �
0, then the BCH formula only contains the three first
terms shown in (19).

The application of the BCH formula, (16) and (17), to
the construction of the gauge transformation � ~� (15)
constitutes the main point in our approach. As we are
going to see, it provides an operational apparatus to
compute all the perturbation orders as well as expressions
for the vector fields that generate the transformation
between different gauges. This supposes an important
advantage with respect to the approach to two-parameter
NLPT considered in [5], which is based on a construction
order by order and no close expressions to every order can
be obtained. In what follows, we show how to use the
BCH formula to obtain closed expressions at every order,
in particular, for the gauge transformation generators.

To apply the BCH formula to Eq. (15) we have to
choose A and B in (16) and (17) as follows:

A �
XN
P�1

�PL 
P
and B � �

XN
P�1

�PL’
P
: (20)

Since A and B are linear in the parameters, the number of
commutators in a given term in the expansion of f�A;B�
coincides with the total perturbation order nT .

Using the properties of Lie derivatives we can then
express the gauge transformation � ~� in the following
way:
��
~�
T � exp

�
Lf�

P
N
P�1

�P 
P;�
P

N
Q�1

�Q’�Q�

�
T: (21)
This can be rewritten as:
��
~�
T � exp

8<: X1
k1;...;kN�0

0@YN
P�1

�kPP
kP!

1AL � ~k
� I

9=;T; (22)
where L�~0
denotes the identity operator I and the rest of

terms are Lie derivatives. This is a consequence of the fact
that A and B are linear combinations of Lie derivatives
(20) and that the functional f�A;B� is a linear combina-
tion of A, B, and commutators formed out of A and B (19).
Then, this introduces an infinite set of vector fields
f� ~kj

~k 2 NN � f~0gg. By direct comparison of (19), (20),
and (22) we can find the explicit expressions of these
vector fields � ~k directly in terms of the generators of
the gauges ’ and  .

We can then derive an expression for the gauge trans-
formation up to a given order in the perturbation parame-
ters by simply expanding the exponential (22). Up to third
total order (nT � 3) we obtain
-3
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��
~�
T �T �

XN
P�1

�PL� ~kP
T �

1

2

XN
P;Q�1

�P�Q

�

�
L� ~kP� ~kQ

�L� ~kP
L � ~kQ

 
T �

1

6

XN
P;Q;R�1

�P�Q�R

�

�
L � ~kP� ~kQ� ~kR

�
3

2

�
L � ~kP� ~kQ

;L � ~kR

�

�L � ~kP
L� ~kQ

L� ~kR

 
T �O4� ~��; (23)

where ~kP � �0; . . . ; 0
z���}|���{P�1

; 1; 0; . . . ; 0
z���}|���{N�P

� and fA;Bg denotes the
anticommutator of A and B. From (23) we can easily
derive the transformation of a given perturbation from
the gauge ’ to the gauge  , � ~k T � � ~k’T. First, from (13),
the pullbacks ’�

~�
T and  �

~�
T are related by

 �
~�
T ~� � ��

~�
’�
~�
T ~�: (24)

Then, using (10) and (11) we have that

’�
~�
T ~� �

X1
k1;...;kN�0

 YN
P�1

�kPp
kP!

!
� ~k’T; (25)

and for  �
~�
T ~� we only have to replace ’ by  . From (23)–

(25) we can extract the expressions for the � ~k T’s in terms

of Lie derivatives of the � ~k’T’s. In the particular case N �

2 and ~k � �1; 1� we find

��1;1� T � ��1;1�’ T �L��1;0��
�0;1�
’ T �L��0;1��

�1;0�
’ T

�

�
L��1;1� �

1

2
fL��1;0� ;L��0;1� g

�
T0: (26)

With the aim of comparing the formulation here intro-
duced with previous approaches to NLPT, we will show
now how to recover standard one-parameter NLPT. Let us
consider two gauge choices: ’ and  . For a given �, the
action of their associated pullbacks can be written in the
exponential notation as: ’�

�T � e�L’
 T, and  �
�T �

e�L 
 T. A gauge transformation between these two
gauges is then described by �� � ’�1

� �  �. Using the
exponential notation, its action can expressed as follows

��
�T � e�L 
 e��L’
 T: (27)

The result of using the BCH formula can be written as

��
�T � exp

 X1
n�1

�n

n!
L�n

!
T; (28)

where f�njn 2 IN� f0gg is a set of generators of �. These
can be expressed in terms of the gauge generators ’
 and
 
 . From (19) the three first generators are:
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�1 �
 
 � ’
; �2 � �’
; 
�;

�3 �
1

2
�’
 � 
; �’
; 
��:

(29)

Up to third order, (28) gives [the N=1 subcase of (23)] :

��
�T � T � �L�1T �

�2

2
�L�2 �L2

�1
�T �

�3

3!

�

�
L�3 �

3

2
fL�1 ;L�2g �L3

�1

 
T �O4���: (30)

This form of ��
�T , derived through the BCH approach, is

not the same as the one obtained using KDs in [3,4].
However, as we are now going to show, the resulting
gauge transformations are —order by order—equivalent,
as expected, since both cases are expansions of the same
exact expression (27). The KD is defined as [3,4]:

��k�
� � ��k�

�k=k!
� � � � ���2�

�2=2
���1�

� ; (31)

where the ��n� are one-parameter groups of diffeomor-
phisms (flows). The main idea behind this concept is that a
family of diffeomorphisms f��j� 2 IRg can be approxi-
mated at a given order in �, say k, by a KD of order k.
Therefore one can approximate �� by ��k�

� in the follow-
ing sense [4]:

��
�T ���k��

� T � Ok�1���: (32)

The action of the pullback of ��k�
� can be expressed, using

the exponential notation, as

��k��
� T � e�L 1 � � � e�

k=k!L k T; (33)

where f ngn�1;...;k is the set of generators of the family
��k�, and each  n is the generator of the flow ��n�. Like
the �n’s, they can be expressed in terms of the gauge
generators ’
 and  
 . Hence, we can find the relations
between the �n’s and  n’s. Up to third order we have

�1 �  1; �2 �  2; �3 �  3 �
3

2
� 1;  2�: (34)

Therefore, the expansion for ��
�T that we obtain from the

expansion of ��k��
� T is (up to third order):

��k��
� T � T � �L 1

T �
�2

2
�L 2

�L2
 1
�T �

�3

3!

� �L  3
� 3L 1

L 2
�L3

 1
�T �O4���; (35)

i.e. the result in [3,4]. Comparing the expansions (30) and
(35) and we see that they have different structures.
However, substituting  1,  2 and  3 from (34) into (35)
we obtain (30); thus, these two expansions of the gauge
transformation (27) are equivalent. Our formulation,
Eq. (30), leads to an expansion with terms of the form
� � �L�k � � �L�l � � �T with l < k; which do not appear
in the formulations of [3] [due to the ordering introduced
by the KDs, see (31)] and [5]. Comparing further our
-4
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formulation with the order by order approach in [5] we see
how the use of the BCH formula naturally selects a
unique expansion for the gauge transformation, in con-
trast with [5], which contains freely specifiable
parameters.

To sum up, we have presented a formulation of
N-parameter NLPT in which we have a (unique) closed
formula for the expansion of general gauge transforma-
tions and whose consistency is given by construction,
shedding light onto the underlying mathematical struc-
ture. The importance of this result is even more clear if
considered in the context of practical applications of
relativistic perturbation theory, where the issue of com-
paring results obtained in different gauges and the related
problem of constructing gauge-invariant formulations
have always been crucial to obtain physically transparent
results [1,22]. These issues become even more important
when dealing with nonlinear perturbations [3,4,22] and
more than one parameter. Our formalism provides the
gauge transformations and the conditions for gauge in-
variance for every perturbation order in N-parameters
(explicit conditions for the 2-parameter case where given
in [5]).

In retrospect, one may wonder why our general results
have not been previously derived, given that the BCH
formula has long been known in differential geometry
[19]. The likely answer is that, although the problem of
gauge dependence is as old as relativistic perturbation
itself [1], until recently, spacetime perturbations have
mostly been considered at first order only and for a single
parameter, and consequently gauge transformations have
always been dealt with at the most elementary linear
level, where the BCH formalism and the exponentiation
(7) on which it is based are superfluous.When the problem
of gauge transformations has been considered in NLPT
for the case of one parameter, two routes have been
followed. In [3,4] KDs have been introduced and used
(see also [11] for an equivalent second order result and
[21] for some basic fomulas), and, in particular, in [4] a
closed formula was derived to generate gauge transfor-
mations at arbitrary order. In [20] on the other hand the
BCH formula was used, for one parameter at second
order. As we have illustrated above in the one parameter
case and up to third order, the two routes are equivalent in
that they provide equivalent gauge transformations at the
required order. On the other hand, the gauge transforma-
tions derived in [5] contain freely specifiable constants
(linked by sets of constraints) that are not present
in the BCH derivation presented here. Again, order by
order the gauge transformations are equivalent, with one
specific choice of the constants corresponding directly to
the BCH derivation, and other choices connected by
appropriate relations between the two sets of generators
of the gauge transformations. From the point of view of
generality elegance and compactness of the derivation the
064002
BCH approach presented here is by far superior to that
followed in [5]. However, for practical purposes one is
interested in the gauge transformations at a given order,
e.g., (26), and in this perspective we believe that the
formulas with freely specifiable constants in [5] may still
be useful. Indeed, the typical problem (see, e.g., [3,9]) is
that one wants to know how to transform between two
preassigned gauges. In this case the unknowns of the
problem are the generators of the transformation. Then,
one faces integration calculations, and given that two
different choices of the freely specifiable constants cor-
respond to integration in a different order, it may turn out
that one specific choice of constants is better in solving
the problem.

We want to finish by discussing the potential applica-
tions of N-parameter NLPT. First of all, it is important to
remark that perturbation theory in general relativity, and
in other spacetime theories (some of them of great rele-
vance nowadays), remains the main alternative to fully
numerical methods in a context in which one has to deal
with sets of nonlinear field equations. Depending on the
physical problem at hand, it is sometimes necessary to go
beyond simple linear perturbations, considering higher-
order contributions. In this sense, a multiparameter per-
turbative scheme as the one presented here allows us to
select only the higher-order perturbative sectors relevant
for the physical problem under consideration, simplifying
in this way the calculations involved.

There are already quite few applications of the one-
parameter NLPT at second order in the literature. In
cosmology, the evolution of perturbations in two different
gauges is explicitly worked out [3,9] and applications to
the cosmic microwave background have been considered
[26]. Further applications in the cosmological context can
be found in [10,20]. In an astrophysical context there are a
number of studies of sources of gravitational radiation: in
[17,27] oscillations during gravitational collapse have
been analyzed; in [15] the so called close limit approxi-
mation is used to study the outcome of black hole merg-
ers; in [23] a second-order gauge-invariant perturbative
scheme for the Kerr metric has been developed. The
N-parameter NLPT opens the door for new applications
in spacetime theories (see [25] for an example). In the
general relativistic case, it can provide a new way of
studying slowly rotating relativistic stars, and it can be
the main tool to study other issues as for instance the
nonlinear coupling of oscillation modes of relativistic
stars, or in cosmology to study the combined effect of
magnetic fields and linear perturbations in the matter
distribution.
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