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Periodic standing-wave approximation: Overview and three-dimensional scalar models
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The periodic standing-wave method for binary inspiral computes the exact numerical solution for
periodic binary motion with standing gravitational waves, and uses it as an approximation to slow
binary inspiral with outgoing waves. Important features of this method presented here are: (i) the
mathematical nature of the ‘‘mixed’’ partial differential equations to be solved, (ii) the meaning of
standing waves in the method, (iii) computational difficulties, and (iv) the ‘‘effective linearity’’ that
ultimately justifies the approximation. The method is applied to three-dimensional nonlinear scalar
model problems, and the numerical results are used to demonstrate extraction of the outgoing solution
from the standing-wave solution, and the role of effective linearity.
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1A periodic binary would have no secular change in its
energy, but gravitational waves intuitively remove energy.
This argument can be made mathematically complete using
the conservation law for H��	
, as defined in Misner et al. [14].
I. INTRODUCTION

A. Background

The inspiral and merger of a binary pair of compact
objects (holes or neutron stars) is one of the most prom-
ising sources of signals detectable by gravitational wave
observatories. For the ground-based detectors LIGO [1],
VIRGO [2], GEO600 [3], and TAMA [4], binary merger,
especially of intermediate-mass black holes [5], is an
exciting possibility; for the space-based LISA detector
[6,7], the detection of inspiral/merger of supermassive
holes is highly probable, and is one of the primary scien-
tific targets.

The need for theoretical waveforms for the inspiral/
merger has driven the effort to find a computational
solution for the details of the process, but the difficulty
of the task has made this problem also a measure of the
usefulness of numerical computation in general relativity.
The hope has been that numerical codes evolving initial
data can compute the orbital motion using Einstein’s
equations and, in the case of neutron stars, using hydro-
dynamical equations. These evolution codes would have,
as an intrinsic feature, the loss of energy by the binary
due to outgoing wave energy, and the gradual inspiral due
to this loss.

An important reason for the limited progress on this
problem is the matter of time scales. Near a black hole,
the time scale on which the gravitational field can change
is GM=c3, where M is the mass of the hole; for a neutron
star the time scale is several times longer. The time step in
evolution codes is governed by this short time scale.
(More precisely, the spatial grid near the compact objects
must be smaller than GM=c2, and to satisfy the Courant
condition the time step must be no larger than 1=c times

this grid size.) By contrast, the time scale
����������������
r3=GM

p
, for

orbital motion at radius r, is much larger than this, and
the time scale for the interesting dynamics the radiation-
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reaction driven inspiral is much greater yet. The conse-
quence of this incompatibility of time scales is that a very
large number of time steps is needed in order to see the
physics of interest. And computing a large number of time
steps is not yet possible. Instabilities [8,9] operating at the
short time scale prevent the code from giving useful
answers about the long time scale.

The origin of the difficulty suggests its cure: an ap-
proximation method that avoids the short time scales.
Here we describe such a method: a solution for periodic
sources and fields. We assume that the compact objects,
and their fields, rotate with a constant angular velocity (to
be denoted � below.) This approximation will fail of
course, in the very latest stages of inspiral merger, when
the orbit decays rapidly due to a secular instability or the
dynamics of the final merger. But that last stage is, by its
very nature, rapid; its time scale is only several times that
of the shortest time scale of the problem. This last stage,
then, can plausibly be handled by numerical evolution
codes. Indeed, evolution codes, especially with perturba-
tion theory handling the final ringdown [10], are already
near doing this. Our goal, then, is a method that can
approximate the solution up to the time that numerical
evolution codes can take over the task that only they can
handle. Our approach is not entirely new; it is similar in
underlying motivation to a method introduced by
Detweiler and collaborators [11,12], but our approach is
very different in its details and its implementation. It is
also very closely related to the approach being used by
Friedman and his collaborators [13].

Periodic motion and outgoing waves are, of course,
impossible in Einstein’s theory, both intuitively and
mathematically1. For this reason, we will solve for
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standing waves (to be defined and discussed below) in the
gravitational field. Our periodic standing-wave (PSW)
approach, then, will be to find exact (numerical) periodic
standing-wave solutions of the Einstein field equations
and to use these exact solutions as approximations to the
physical problem of slow inspiral with outgoing waves.

The most basic ideas behind this periodic standing-
wave solution have already been introduced in a previous
paper [15], but the implementation there was applied only
to two-dimensional models and was limited in other
ways; in particular, that paper did not discuss the general
meaning of standing waves. A general overview of the
PSW project has also been given [16]. Here we present a
more specific discussion, along with numerical results for
three-dimensional models. This paper is meant to serve
as the introduction to the PSW, with subsequent papers
presenting more detailed information on particular meth-
ods, and progress on solving the physical problem.

B. Effective linearity and uses of the method

A key idea in our approach is the relationship of
standing waves to outgoing waves. In a linear field theory,
a definition of standing waves is that they are half the sum
of an outgoing solution and ingoing solution. Here, as in
Ref. [15], we shall call this sum LSIO for linear super-
position of (half) ingoing and (half) outgoing solutions.
In a linear theory, such a superposition is itself a solution.
In our nonlinear field model theories, it will turn out
that — despite strong nonlinearities—this continues to
be very nearly true. This effective linearity, the approxi-
mate equality of the LSIO and a true standing-wave
solution, has already been demonstrated for simple two-
dimensional models, and results for three-dimensional
nonlinear models will be presented below. More impor-
tant, the basis for effective linearity appears to be robust.
This basis lies in the fact that the strong nonlinearities in
our model theories (and in the physical problem) are
confined to the near-field regions around the sources. In
these nonlinear near-field regions the solution is insensi-
tive to the distant boundary conditions; it is substantially
the same for ingoing boundary conditions as for outgoing.
In this near-field region then, the LSIO will be very nearly
a solution despite strong nonlinearities, since we are
superposing nearly identical solutions. Outside this
strong-field near zone the model theories, and the physical
theory, are nearly linear, so that again the LSIO is a
solution. The LSIO will therefore be a good approxima-
tion to a solution everywhere.

Below, we shall choose our definitions of standing-
wave solution to be close to that of a LSIO, and our
approximation to a large extent is based on interpreting
a standing-wave solution to be approximately a LSIO. In
the weak-field region this LSIO can be deconstructed into
outgoing and ingoing pieces and this deconstruction can
be continued to the strong-field source region. (In the
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source region, the outgoing piece is simply half the solu-
tion.) By doubling the outgoing piece thus extracted from
the standing-wave solution, we thereby arrive at an ap-
proximation to the outgoing solution for a nonlinear
problem. It is in this manner that we will extract an
approximation of an outgoing solution from a computed
standing-wave solution.

This is an appropriate place to point out, though not for
the last time, the importance of model problems. In
Einstein’s theory there is no obvious meaning to the
periodic outgoing solution, so one cannot make state-
ments about it, let alone carry out numerical studies.
Statements and computations are possible for nonlinear
model problems, so that tests of effective linearity with
such models are crucial.

The outgoing solutions extracted from our exact peri-
odic solutions can serve two purposes. First, we can use a
quasistationary sequence of outgoing approximations as a
model for the slow physical inspiral. In this approach the
mass of the system, measured in a weak wave zone far
from the orbiting sources, decreases due to the loss of
energy in outgoing radiation. When we find the system
energy as a function of orbit radius, and we compute the
outgoing radiation, we can infer the rate at which the
orbital radius decreases. The difficulty, as with any such
quasistationary sequence, is how to know that we are
comparing the ‘‘same’’ system at different radii. In the
case of neutron stars the answer is clear; baryon number
is an unchanging tag that identifies neutron stars to be the
same. For black holes, the equivalent tag would be some
local mass. The concept of an isolated horizon [17] might
give us that local mass.

The second use for our extracted outgoing solutions is
to provide initial data for evolution codes. A spacelike
slice of our extracted outgoing field will be an excellent
approximation to the physical initial data, and should be
very nearly a solution to the initial value equations. With
little change, our extracted outgoing initial data can be
made into exact (numerical) initial data through the use
of York’s decomposition [18,19].

These two purposes of our solution are not distinct. The
natural end point for a quasistationary sequence of PSW
solutions is the ‘‘last orbit,’’ the final stage of motion at
almost constant radius. This stage may end due to a
secular instability, like that of a particle in a black hole
spacetime, or due to the imminence of the merger, the
formation of the final black hole. In either case, this end
point must be handled by a numerical evolution code, and
in either case, the quasistationary sequence will provide
ideal initial data for the continuation of the problem by
numerical evolution.

C. The nature of the mathematical problem

In the standard approach to computing binary inspiral,
initial data are evolved forward in time. In our approach,
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FIG. 1. The PSW solution is meant to be an approximation to
the physical spacetime only in a limited region.
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with periodic symmetry imposed, there is no evolution in
the usual sense, and there is not the usual concept of
initial data. Rather we must satisfy boundary conditions
at large radius: outgoing, ingoing, or standing-wave
boundary conditions in model problems, and only
standing-wave conditions in general relativity. The
boundary value problems that we must solve differ in
two important ways from common boundary value prob-
lems. First, our partial differential equations (PDEs) are
of mixed type. They are of elliptical character in some
regions and hyperbolic character in others; this will be
particularly clear in the model problem to be presented
below. We will argue that the mixed character causes no
fundamental difficulty, and will demonstrate this with the
model problems. The mixed character, however, does
complicate the use of some of the most efficient numerical
means of solving boundary value problems. Second, we
must define what we mean by ‘‘standing-wave boundary
conditions.’’ Unlike outgoing and ingoing conditions,
there is no simple local condition corresponding to what
we will mean by standing waves in a nonlinear problem.
We will present two fundamentally different candidates
for the standing-wave condition, and here will present
results of computations with one of those two choices.
(The alternative choice of standing-wave condition is best
implemented with a special numerical method, and will
be presented elsewhere [20].)

Stepping back from such details, one may be led to ask
more fundamental questions about the whole approach.
Such questions arise especially because the PSW space-
time we compute has some awkward features. Since the
exact PSW solution contains an infinite amount of gravi-
tational wave radiation, it cannot be expected to meet the
asymptotic flatness conditions of the theorems about the
falloff of fields. But the spacetime is asymptotically flat in
that the spacetime curvature decreases with increasing
distance from the binary source. Another sign that the
PSW spacetime has rough edges is that it must not have
regular null infinities; Gibbons and Stewart [21] have
shown that spacetimes with well-behaved Scri� and
Scri� cannot be periodic.

It is useful, before diving into details, to clarify what
the relationship is between the slightly singular spacetime
we will be computing, and the physical problem that
really interests us. To make this connection we can think
of the binary system going through several orbits at al-
most constant radius. A weak wave zone exists at some
distance from the orbit during this epoch of the motion.
The stippled region in Fig. 1 shows the relevant region as
part of the larger physical spacetime. In this limited
region the source motion and the fields are almost peri-
odic, and it is in this region only that we hope to approxi-
mate the physical fields by the outgoing fields extracted
from the computed PSW solution. The imperfect asymp-
totic structure of the PSW spacetime is therefore irrele-
vant to its physical usefulness.
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In the remainder of this paper we will first present, in
Sec. II, the mathematical details of a nonlinear model
with which we clarify many aspects of the PSWapproxi-
mation. We then discuss, in Sec. III, the numerical meth-
ods needed to find PSW solutions, especially those
aspects of the numerical methods that are idiosyncratic
to the special features (mixed character, standing-wave
boundary conditions, nonlinearities) of our problem. In
this section, also, results are presented of the numerical
methods. The results are discussed, and put into the con-
text of the next steps in this project [20], in Sec. IV.
II. PERIODIC SOLUTIONS, STANDING WAVES,
AND MODEL PROBLEMS

A. Mixed PDEs and well posedness

As stated above, we seek a solution to Einstein’s equa-
tions in which the sources and the fields rotate rigidly. The
mathematical statement of this rigid rotation is that there
is a helical Killing vector, a Killing vector that is time-
like close to the sources and spacelike far from the
sources. (For more on helical Killing symmetry see
Ref. [22].) For fields in flat spacetime our Killing vector
~� takes the form

~� � @t ��@� (1)

in spherical or cylindrical spatial coordinates, and

~� � @t ���x@y � y@x� (2)
-3



FIG. 2 (color online). The ‘‘light cylinder’’ separating the
elliptic and hyperbolic regions of the problem intersects the
large spherical surface on which numerical boundary condi-
tions are imposed.
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in Cartesian spatial coordinates. The parameter �, which
must be a constant, can be thought of as the rotation rate
of the source and fields with respect to an inertial refer-
ence frame. For the flat spacetime case, the null surface
~� � ~� � 0 is a cylinder of radius 1=� coaxial with the
rotation axis. (Here and below we use units in which G �
c � 1.) This cylinder separates the inner region of time-
like ~� from the outer region of spacelike ~�, as shown in
Fig. 2. Since this surface, in a sense, represents the points
at which the rigidly rotating fields are moving at c, we
call this surface the ‘‘light cylinder,’’ in analogy with
pulsar electrodynamics.
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One immediate advantage of the helical symmetry is
that it reduces the number of independent variables,
thereby greatly reducing the computational difficulty of
a problem. In our simple flat spacetime models this re-
duction is most easily understood by the fact that heli-
cally symmetric scalars cannot depend in an arbitrary
way on the spherical Minkowski coordinates t; r; �;� but
can depend only on t and � in the combination ’ � ��

�t. Thus, in the t; r; �; ’ system the Killing vector is ~� �
@t. These ideas are clarified with a simple flat spacetime
model theory for a scalar field �:

�;�;�g
�� � �F � S: (3)

The term F��; x�� is included to allow for nonlinearity;
the constant � adjusts the strength of the nonlinearity. In
order for a helically symmetric solution � to exist, the
explicit coordinate dependence of F must be compatible
with the symmetry. That is, F can have explicit coordi-
nate dependence only on r, �, and ’. The most natural
choice for a model would be one in which there is no
coordinate dependence, one in which the background
spacetime is featureless. We include the possibility of
spatial dependence for convenience below. Changing the
spatial dependence will help to clarify the accuracy of the
PSW approximation when nonlinearities are important.

In the application of the PSW method to holes, an inner
boundary condition will be used at a small, approxi-
mately spherical surface. For simplicity here, however,
we use an explicit source term,

S �
��r� a�

a2
���� �=2����’� � ��’� ��	; (4)

representing two points, each of unit scalar charge, in
equatorial circular orbits, with radius a and angular
velocity �. This source term S obeys the symmetry
property that is necessary if a periodic solution is to
exist: Its Lie derivative vanishes along the Killing orbit ~�.

If we are interested only in helically symmetric solu-
tions, then the field equation (3) reduces to
1

r2
@
@r

�
r2
@�
@r

�
�

1

r2 sin�

@
@�

�
sin�

@�
@�

�
�

�
1

r2sin2�
��2

�
@2�

@’2 � �F��; r; �; ’� � S�r; �; ’�: (5)
The mixed character of this PDE shows clearly in the
coefficient of @2’�. The light cylinder is at r sin� � 1=�
where this coefficient changes sign. Inside the light cyl-
inder (r sin� < 1=�) the equation is elliptical; outside it
is hyperbolic. For outgoing solutions of this equation we
impose an outer boundary condition @r� � �@t�, or
equivalently @r� � �@’�, on a spherical surface with
a radius large compared to 1=�. As illustrated in Fig. 2,
this spherical surface is well outside the light cylinder in
the equatorial plane, so our boundary conditions are
imposed on a surface that passes through both the elliptic
and hyperbolic regions of the problem.

Problems with boundary conditions on closed surfaces
are common in the case of elliptical PDEs. We argue here
that our boundary value problem with mixed PDEs may
be unusual, but is well posed [23]. Again, a simple model
problem will help to clarify issues. We set the nonlinear-
ity parameter � to zero in Eq. (5) so that we can solve the
resulting linear equation as an infinite series. If we choose
a Dirichlet condition
-4
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�jr�rmax
� 0; (6)

at a finite radius rmax, then the solution to this linear
problem can be written in terms of spherical Bessel
functions j‘; n‘ as

� �
X
‘

X
m�even

2m�Y�
‘m��=2; 0�Y‘m��; ’�

j‘�m�rmax�
j‘�m�r<�

� �n‘�m�r>�j‘�m�rmax� � n‘�m�rmax�j‘�m�r>�	:

(7)

Here r< (r>) indicates the smaller (greater) of the quan-
tities r; a. Vanishing of the j‘�m�rmax� denominator
means that the ‘‘cavity’’ r 
 rmax has a resonant mode
at frequency �. In the case that rmax has one of the
resonant values, the solution to the boundary value prob-
lem is not unique. Such values of r are of zero measure,
but are dense in the set of all r choices. This means that
the cavity is always arbitrarily close to a resonance, if
sufficiently high angular modes are computed. A conse-
quence of this is that a numerical computation does not
converge. (Computed solutions depend on the computa-
tional grid size, and become larger with increasing angu-
lar resolution.) The difficulty is not just one of
computational practice. The boundary value problem is
fundamentally ill posed as a representation of fields in an
infinite space. There is no meaningful rmax ! 1 limit of
Eq. (7).

Problems with mixed elliptic and hyperbolic regions
are of some interest in aerodynamics [24], but there are
few general results on well posedness. In those results that
do exist, the nature of the boundary conditions plays a
pivotal role. We have found that this applies to our peri-
odic solutions also. If we replace the Dirichlet conditions
of Eq. (7) with the Sommerfeld condition

�@r���@’��r�rmax
� 0; (8)

then the problem is found to be well posed. This is
particularly clear for the linear problem, where the closed
form solution takes the form

� � �out ��extra: (9)

Here �out is the usual ‘‘outgoing at infinity’’ solution

�out �
X
‘

X
m�even

�2im�Y�
‘m��=2; 0�Y‘m��;’�j‘�m�r<�

� h�1�‘ �m�r>� (10)

and

�extra �
X
‘

X
m�even

�2im�Y�
‘m��=2; 0�

� Y‘m��; ’�&‘mj‘�m�r<�j‘�m�r>� (11)

with
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&‘m � �

�
h�1�‘ �z� � idh�1�‘ �z�=dz

j‘�z� � idj‘�z�=dz

�
z�m�rmax

: (12)

Since the spherical Hankel function has the asymptotic
form h�1�‘ �z� � ��i��‘�1�eiz�1=z�O�1=z2�	, it follows
that j&‘mj is of order 1=rmax. Thus, � ! �out, as rmax !
1, suggesting that the linear problem is well posed [25].

Numerical results confirm this suggestion. With the
boundary condition in Eq. (8), we have encountered no
fundamental difficulty computing convergent solutions to
both the linear and nonlinear versions of Eq. (5), and have
confirmed that solutions do not depend on the particular
(large) value chosen for rmax.

B. Standing waves: iterative method

The solutions we will be computing in Einstein’s the-
ory, of course, are standing-wave solutions, but there are
no actual ‘‘standing-wave boundary conditions’’ analo-
gous to the Sommerfeld condition in Eq. (8) for outgoing
waves. It is useful, therefore, to explore the meaning of
standing-wave solutions with our model nonlinear theo-
ries. As pointed out in Sec. I, our paradigm for standing
waves is the LSIO of a linear theory, the linear superpo-
sition of half ingoing and half outgoing solutions. We
shall extend this definition of standing-wave to nonlinear
theories in two ways. The first is an extension of the Green
function method of Ref. [15], and is called there the TSGF
(time symmetric Green function) method. For the prob-
lem in Eq. (3) this method starts by writing the field
equation in the form

L ��	��� � *eff��	: (13)

Here the operator L��	 depends on � but — once � is
fixed— can be considered to be linearly operating on �.
Similarly *eff depends on �, but —once � is fixed—is to
be considered a fixed inhomogeneous term in the equa-
tion, an effective source term. There is no unique way of
putting the field equation into the form of Eq. (13) for a
nonlinear model problem, or for general relativity. The
quasilinearity of general relativity, and of our nonlinear
models, means that at least the principal part of L is
always unambiguous. There are also some obvious guide-
lines to follow. In particular, L and *eff should become �
independent in the weak-field limit.

To iterate for an outgoing solution, for example, one
would find an approximate outgoing solution �n

out, and
then would solve

L ��n
out	��

n�1
out � � *eff��

n
out	; (14)

for outgoing boundary conditions. The result would be the
improved approximation �n�1

out to the outgoing waves. To
find standing waves, this method is modified as follows.
An approximation �n

stnd is found to the standing-wave
solution. The equation
-5
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L ��n
stnd	��

n�1� � *eff��
n
stnd	 (15)

is then solved with the outgoing boundary conditions of
Eq. (8) to give �n�1

stout and is next solved with ingoing
boundary conditions � ! �� in Eq. (8) to give �n�1

stin .
The new approximation for the standing-wave solution is
taken to be

�n�1
stnd � 1

2�
n�1
stout �

1
2�

n�1
stin : (16)

We take the n ! 1 limit of �n�1
stnd in Eq. (16) to be our

computed standing-wave solution.
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We shall call the iterative method just described ‘‘direct
iteration.’’ This sort of direct-iteration is useful in solving
for the root of an equation x � f�x� only if f is slowly
varying. In iteration for � the equivalent condition ap-
plies to L�1 � *eff , where L�1 is the Green function, the
inverse of L for the boundary conditions (ingoing or
outgoing) of interest. For direct iteration to converge the
dependence of L�1 � *eff on � must be weak and this is
the case only for nonlinearities of moderate strength. For
strong nonlinearities another technique must be used.

In Newton-Raphson iteration, one uses the iteration �n

to make linear approximations for L and *eff .
Equation (13) then takes the form
L ��n	��� � ����n� �

�
@L��	

@�

�
���n

��n� � *eff��
n	 � ����n� �

�
@*eff

@�

�
���n

: (17)
This equation is linear in �, and its solution is taken to be
the next iteration �n�1. By choosing appropriate bound-
ary conditions we can use this scheme to iterate an out-
going or ingoing solutions. For our standing-wave
solution, we follow the same general scheme as with
direct iteration. Using the nth standing-wave approxima-
tion as �n in Eq. (17) we solve using both ingoing and
outgoing boundary conditions. As in Eq. (16), the (n�
1)th standing-wave approximation is taken to be half the
sum of the ingoing and outgoing solutions found this way.

C. Standing waves: minimization method

To explain our second, independent way of defining and
computing standing-wave solutions, it is best to start with
the standing-wave solution in the linear model problem.
This is simply half the sum of the ‘‘outgoing at infinity’’
solution in Eq. (10) and the equivalent ingoing solution.
The result is

�stnd �
X
‘

X
m�even

2m�Y�
‘m��=2; 0�Y‘m��;’�

� j‘�m�r<�n‘�m�r>�: (18)

In this solution each multipole has an equal amplitude for
ingoing and outgoing amplitudes waves, and one might
suspect that this property suffices to define standing
waves for a nonlinear model. This is not in fact the
case, since we could add a multiple of the homogeneous
solution j‘�m�r�j‘�m�a� to the ‘;m mode without
changing the balance between ingoing and outgoing.
This degree of freedom is equivalent to the degree of
freedom inherent in the phase between the outgoing and
ingoing waves. This extra degree of freedom exists also
(though not so transparently) in a nonlinear problem.

To resolve this degree of freedom we can use a general-
ization of a property that is unique, in the linear case, to
the correct standing-wave solution Eq. (18): In each mul-
tipole, the solution is required to have the minimum wave
amplitude of any solution with balanced ingoing and
outgoing waves [26].

This method, while very interesting in principle, is
difficult in practice to implement in a finite difference
boundary value approach. One could imagine using a
guess for the value of a multipole coefficient at some
outer boundary, and then searching for the value that
gives the minimum for the amplitudes of the waves in
that multipole. In a nonlinear problem, the values of each
multipole will influence other multipoles, so the search
for minimum waves will, in principle, be a search in a
many dimensional space.

The real difficulty of this numerical approach is that it
uses multipoles as part of the boundary condition. That
means that multipole coefficients must be extracted. Even
in spherical coordinates, the extraction of the multipole
coefficients involves a weighted sum over all angular grid
points. Most important, this sum would not be performed
as a postprocessing step on a computed solution, but
rather would have to be written as a set of equations
that would form part of the a priori problem to be solved.
The set of equations to be solved would then have, in
addition to great complexity, a boundary-related subset
connecting distant grid points. The matrix representation
of these equations would not have banded structure. In
addition to these technical difficulties, the use of spherical
coordinates is very ill suited to the structure of our source
objects, so coordinate patches for the sources would be
required.

For these reasons, we have not attempted to use the
minimization criterion in a finite difference code. We
have, however, implemented this criterion with a spectral
approach based on a specially adapted coordinate system.
Results from this approach are extremely encouraging,
but the approach poses new computational challenges, so
we are continuing to explore two distinct paths: finite
difference methods and the iterative definition of standing
waves, and a spectral/adapted coordinate technique for
-6
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the minimization criterion. Since the adapted coordinate
system necessary for the second approach requires a
separate development, and is not fundamental to the
PSW approximation, we confine the present discussion
to the first approach, finite difference boundary value
problems, with the iterative criterion for standing waves.
III. NUMERICAL IMPLEMENTATION AND
RESULTS

A. Extraction of an outgoing approximation

Model problems allow us to test a key idea of the PSW
approach, that a good approximation of the outgoing
solution can be extracted from the computed standing-
wave solution

�stndcomp �
X

even ‘

X
m�0;�2;�4;...

�‘m�r�Y‘m��; ’�: (19)

The coefficients �‘m�r� are computed from �comp, by
projection with Y�

‘m. From the reality of �stndcomp, the
coefficients will obey ��

‘m � �‘�m, and from the
standing-wave symmetry ( cosm’ only, no sinm’ terms)
they will also obey �‘m � �‘�m.

This form of the computed standing-wave solution is
compared with a general homogeneous linear (� � 0)
standing-wave (equal magnitude ingoing and outgoing
waves) solution of Eq. (5), with the symmetry of two
equal and opposite sources:

�stndlin �
X

even ‘

X
m�0;�2;�4;...

Y‘m��;’�
�
1

2
C‘mh

�1�
‘ �m�r�

�
1

2
C�
‘mh

�2�
‘ �m�r�

�
; (20)

where C‘�m � C�
‘m, from the reality of �stndlin. A fitting,

in the weak-field zone, of this form of the standing-wave
multipole to the computed function �‘m�r� gives the value
of C‘m.

By viewing the linear solution as half ingoing and half
outgoing, we define the extracted outgoing solution to be

�exout �
X

even ‘

X
m�0;�2;�4;...

Y‘m��; ’�C‘mh
�1�
‘ �m�r�: (21)

Since this extracted solution was fitted to the computed
solution assuming only that linearity applied, it will be a
good approximation except in the strong-field region. In
the problems of interest, the strong fields should be con-
fined to a region near the sources. In those regions, small
compared to a wavelength, the field will essentially be
that of a static source, and will be insensitive to the
distant radiative boundary conditions. As pointed out in
Sec. I, the solutions in this region will be essentially the
same for the ingoing, outgoing, and standing-wave prob-
lem. In this inner region then, we take our extracted
outgoing solution simply to be the computed standing-
064001
wave solution, so that

�exout �

�P
Y‘mC‘mh

�1�
‘ weak field outer region

�stndcomp strong field inner region:

(22)

The boundary between a strong-field inner region and
weak-field outer region would ideally be a closed surface
surrounding each of the source regions. This is easily
implemented with the adapted coordinates to be intro-
duced in a subsequent paper. Here, for simplicity, we take
the boundary to be a spherical surface around the origin.
In order for the extracted solution to be smooth at this
boundary, we use a blending of the inner and outer solu-
tions in a transition region extending between radii rlow
and rhigh and, in this region, we take

�exout � ��r�
X

Y‘mC‘mh
�1�
‘ � �1� ��r�	�stndcomp:

(23)

Here

��r� � 3
�

r� rlow
rhigh � rlow

�
2
� 2

�
r� rlow

rhigh � rlow

�
3
; (24)

so that ��r� goes from 0 at r � rlow to unity at r � rhigh
and has a vanishing r derivative at both ends.

In the case of our typical choice � � 0:3, the value of
rlow is chosen to be r � 1:3a, the value at which the static
and standing-wave solutions of the linear problem differ
by 10%. This value should decrease with increasing �, but
it must be larger than the orbital radius r � a, so we
choose it to be

rlow � a�1� 0:3�0:3=��	: (25)

In order to have a moderately thin transition region, we
somewhat arbitrarily take

rhigh � a�1� 0:6�0:3=��	: (26)

For the numerical results reported below, the extraction
details of Eqs. (19)–(26) are used, and extraction is car-
ried out using the ‘ � 0; 2; 4 multipoles.

B. Choice of model

To verify and demonstrate several innovative features
(well-posed mixed boundary value problem, standing
waves, effective linearity) of the PSW approximation,
we use the nonlinear scalar model of Eq. (5), with the �
function sources given by Eq. (4). We make the simplify-
ing assumption that the nonlinear function F in Eq. (5)
depends only on �, not on its derivatives. From this an
obvious simplification follows for the iteration method of
Eqs. (13)–(16). We replace Eq. (13) by

L ��� � *eff��	: (27)
-7
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with L taken to be

L �
1

r2
@
@r

�
r2

@
@r

�
�

1

r2 sin�

@
@�

�
sin�

@
@�

�

�

�
1

r2sin2�
��2

�
@2

@’2 : (28)

The effective source term includes both the true point
source and the nonlinear term

*eff��	 �
��r� a�

a2
���� �=2����’����’� ��	 � �F:

(29)

Our choice of the nonlinearity function F is

F �
�5

�4
0 ��4 : (30)

(We will comment below on the difference between this
choice and that made in previous work, including pre-
vious versions of this paper.) Here �0 is a second non-
linearity parameter (� being the first).We shall choose �0

to be less than unity; in the numerical results to be
presented, �0 is taken to be 0:15.

To understand the effect of this nonlinearity, let R
denote the distance from one of the point sources. Very
near a source point, at very small R, where the field is
strong, F has the limit F ! �, so that the solution of
Eqs. (27)–(30) approximately has the Yukawa form

� �
e�

������
��

p
R

4�R
near source point (31)

At some distance from the source —call it Rlin — the field
� becomes smaller than �0, and F can be approximated
as �5. Since � itself is less than �0, and hence less than
unity, this �5 nonlinearity is small enough to be consid-
ered a perturbative correction.

If the transition at Rlin takes place well inside the near
zone of the problem, then the effect of the nonlinearity
can be understood as follows: Near a source point the
solution has the form of a unit strength Yukawa potential.
At distance Rlin, the effect of the �F term is turned off
and the solution becomes a simple Coulomb potential.
The source strength for this Coulomb field, though, will
be less than unity. Because of the exp��

��������
��

p
R� Yukawa

factor, the source strength decreases in the region from
R � 0 to R � Rlin, and the effect of the nonlinearity is to
reduce the effective source strength by a factor of order
exp��

��������
��

p
Rlin�. Since this transition takes place well

within the near zone, it should be this reduced source
strength that is responsible for generating radiation. The
effect of the nonlinearity on radiation, then, will be the
same reduction factor exp��

��������
��

p
Rlin�, and we can easily

estimate the size of this nonlinear effect. One estimate
can be found by solving
064001
� �
e�

������
��

p
Rlin

4�Rlin
� �0 (32)

for Rlin, and using this value of Rlin in the expression
exp��

��������
��

p
Rlin� for the reduction factor. Another esti-

mate follows by solving the spherically symmetric static
nonlinear problem for a unit strength source

1

r2
@
@r

�
r2
@�
@r

�
� �

�5

�4
0 ��4 � �3�~r�: (33)

(Here the right-hand side is the unit � function at the
origin.) For this solution the ratio is found of the large-r
monopole moment to the small-r monopole moment, and
this ratio is taken as the reduction factor. Since these
methods for the reduction factor ignore the nonlinear
interaction between the two source points, and since
they assume that all the wave generation occurs far out-
side Rlin, they can only be considered an approximation
for the nonlinear reduction effect on the wave amplitude.
We shall see, however, that these estimates are accurate
enough to be taken as a good heuristic explanation of the
role of the nonlinearity.

In previous work, a form of the nonlinearity was used
that was different from that in Eq. (30). To give that
previous form we first defined the distance R� (R�)
from the source point on the x axis at x � a (x � �a)
to be given by

R2
� � �r sin� cos’� a�2 � r2sin2�cos2’� r2cos2�:

(34)

We then introduced the distance variable

. �
��������������
R�R�

p
: (35)

At either of the source points . ! 0, and far from the
sources . ! r. In terms of ., the form of the nonlinearity
previously used [27] is

Fprev �

�
.
na

�
n
e�n�.=a� �3

1��2 : (36)

The .-dependent prefactor �.=na�ne�n�.=a� was included
so that we could force the nonlinearity to be concentrated
near . � na. By choosing n to be 5 or 10 we could, in this
way, have strong nonlinearity in the wave zone, and we
could numerically demonstrate the failure of effective
nonlinearity. The .-dependent prefactor, however, makes
it difficult to find a numerical solution that is physically
meaningful.

The prefactor is a difficulty because the solution near
the source can have either the Yukawa form
exp��

��������
��

p
R�, or the ‘‘anti-Yukawa’’ form

exp��
��������
��

p
R�. If there is any of the latter included in

the solution, then the field gets larger at larger distances
from the sources, so the strong nonlinearity is never sup-
pressed, the �F term continues to approximate ��, and
-8
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the sum of the Yukawa and anti-Yukawa forms continues
to be a valid solution. But if the anti-Yukawa part is
present, the solution cannot meet the falloff conditions
at an outer boundary at large r. Without the prefactor
then, the outer boundary conditions act to suppress the
anti-Yukawa part of a solution. With the prefactor present,
however, the nonlinearity can be turned off by the falloff
of exp��.=a�, even if the solution contains an anti-
Yukawa part close to the sources. The prefactor, in effect,
shields the inner region from the influence of the outer
boundary conditions. When the prefactor is included in
the nonlinearity, the solution in the inner region will be a
somewhat unpredictable mixture of Yukawa and anti-
Yukawa parts that is sensitive to grid spacing.

The choice made for the � dependence in Eq. (30),
rather than that in Eq. (36), is motivated by the fact that
F��3 falls off rather slowly in the weak wave zone.
Changing the form of F to �5=�1��4� cures this slow
falloff, but imposes a very sharp cutoff near the sources,
one that is too sharp for our relatively coarse computa-
tional grid. By taking F proportional to �5=��4

0 ��4�,
with a fairly small value of �0, the falloff of F is
smoothed out and moved to a larger distance from the
source.

C. Numerical methods

Since L is independent of � we can (as in Ref. [15])
compute once and for all the inverses of L, i.e., the Green
functions corresponding to specific boundary conditions.
In this way, we can compute L�1

out and L�1
in , the Green

functions for outgoing and for ingoing boundary condi-
tions. The direct iterative method of Eqs. (14) and (15)
then amounts to

�n�1
out � L�1

out�*eff��
n
out	�; �n�1

in � L�1
in �*eff��

n
in	�

(37)

�n�1
stnd � 1

2fL
�1
out �L�1

in g*eff��
n
stnd	: (38)

Since L has no � dependence, the basic Newton-
Raphson iteration simplifies to
�
L�

�
@*eff

@�

�
���n



� � *eff��

n	 ��n
�
@*eff

@�

�
���n

:

(39)

This Newton-Raphson approach can be applied to find
outgoing, ingoing, and standing-wave solutions analo-
gous to Eqs. (37) and (38).

Each iteration of Eqs. (37), (38), or (39) is equivalent to
the solution of a large set of linear equations. Such
systems are most typically encountered for elliptic
boundary value problems, and are typically solved most
efficiently with relaxation methods, or related methods
(e.g., multigrid) based on the geometry of the problem.
Such methods start with an approximate set of values for
064001
each of the unknowns at every point of the numerical
grid. At each point the solution is then recalculated on the
basis of the values at nearby grid points. This method
sweeps through all the points of the grid and is iterated
until an error criterion is met. Such a method must be
compatible with the domain of dependence for the points
of the grid. For an elliptic PDE, for example, the values of
unknowns are updated at a central point of a set of grid
points. For a hyperbolic PDE, on the other hand, the field
computation, or updating, must be done only at a point in
the ‘‘future’’ of those grid points being used. For a mixed
boundary value problem a relaxation method has special
difficulties, especially at the interface between elliptic
and hyperbolic regions. Nevertheless, relaxation methods
have been successfully applied to mixed PDEs in tran-
sonic aerodynamics, first by Murman and Cole [28]. The
slow convergence of this method at the interface (the
‘‘sonic surface’’ in transonic aerodynamics) can be im-
proved with special techniques that may need to be
specific to the problem [29].

We are presently investigating relaxation and other
numerical methods (e.g., decomposing the grid into re-
gions and applying different techniques, preconditioners,
etc.) for large grids and many variables. For our three-
dimensional scalar problem illustrated here, however, we
have been able to use a more-or-less straightforward
method of inverting the matrix for the finite difference
equations.

In one approach to finding an iterative solution, we use
matrix inversion at each step of the direct iteration of
Eqs. (37) and (38), and we take advantage of the fact that
L�1 is rotationally symmetric (i.e., it is translationally
symmetric with respect to ’), and we work with the
Fourier components �n

m�r; ��eim’ of the iterative solution.
At each step of iteration we project out the Fourier
components of the effective source. Because of the non-
linearity in the effective source, the Fourier modes of
�n

m�r; ��eim’ mix in this step, but L�1 is rotationally
symmetric so the Fourier modes do not mix in the step
of solving for �n�1. This method takes advantage of the
efficiency of a fast Fourier transform (FFT) and reduces
the random-access memory (RAM) needed to little more
than that for a two-dimensional r; � grid. This method,
therefore, allows a rather fine grid in r and �.

We have used this efficient FFT method extensively, but
direct iteration has the drawback already cited following
Eq. (16): It is limited in the strength of the nonlinearity it
can handle. Direct iteration will not converge for very
strong nonlinearity. The iterative Newton-Raphson
method of Eq. (39), on the other hand, does almost always
converge once one has a solution sufficiently close to the
correct solution. The operator on the left in Eq. (39),
however, contains the previous iteration �n, which is
not symmetric in ’, so that the FFT method cannot be
used with Newton-Raphson iteration. This has meant that
-9
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a relatively coarse grid, or large RAM, had to be used. We
have not yet implemented a parallelizable method for
solving the iteration steps, and have been restricting
most runs to 8 GB.

It is worth mentioning an interesting hybrid method
that we have explored. The problem in Eqs. (27)–(30),
outside the point sources, can be written as

�L� ��� � ��5
0

�

�4
0 ��4 : (40)

The nonlinearity on the right is never large; it is small
both for �>�0 near the sources, and for �<�0 far
from the sources. The weakness of the formal nonlinear-
ity suggests that a solution may converge with direct
iteration even for large nonlinear effects. The operator
�L� ��, furthermore, is rotationally symmetric, so the
FFT method can be used. The method, however, turns out
to have a serious flaw.Where � is small, the left-hand side
of Eq. (40) is dominated by ��, which is very nearly
equal to the right-hand side. In the analogy we gave,
following Eq. (16), to the iterative solution for a root of
x � f�x�, this is equivalent to f having a derivative very
close to unity at the root. It would appear that this
difficulty could be avoided by iterating Eq. (40) near
the source, where the nonlinearity is strong, and iterating
the standard form of the problem in the weak-field region.
Numerical experiments with this approach have been
inconclusive. Since we do not intend to use a single-patch
spherical coordinate system in the future, we have not
examined this hybrid method exhaustively.

In practice we have used the following eclectic ap-
proach to find solutions: (i) For linear models, for which
no iteration is required, we have taken advantage of the
RAM reduction of the FFT method. (ii) For strongly
nonlinear models we have used Newton-Raphson itera-
tion on a three-dimensional (non-FFT) grid, and have
used continuation (i.e.,‘‘ramping up’’) both in � and in �.
Despite RAM limitations, we have been able to confirm
that the solutions are second-order convergent. (iii) For
�� less than around 2, it has been possible to find
solutions with the direct-iteration, FFT method. These
solutions have been compared with the corresponding
solutions from the non-FFT, Newton-Raphson method,
and have been found to agree within the numerical un-
certainty in the solutions.

In applying the iteration methods, and looking for
convergence, we have used two error measures. One,
/iter � �n ��n�1, is the difference at a grid point be-
tween the computed value at a grid point, and the value
computed at the previous iteration. The second error
measure /soln is the value of fL��n� � *eff��

n	g at a
grid point. In our FFT computations the criterion for
convergence was to have the rms value of /iter (averaged
over the entire grid) fall below 1� 10�6. The value of
/soln was also monitored in the FFT computations and was
064001
found not to be larger than 1� 10�6 at any grid point,
and to have an rms value typically around 1� 10�7. A
much more stringent requirement for convergence was
used in the Newton-Raphson computations: The rms
value of /soln had to fall below 5� 10�11 for the solution
to be acceptable.

D. Numerical results

We first illustrate the fundamental concept of the PSW
method with various solutions of Eq. (5), with the non-
linearity given in Eq. (30). Figure 3 shows solutions in the
equatorial (� � �=2) plane; the amplitude of the field �
is plotted as a function of corotating Cartesian coordi-
nates x � r cos’, and y � r sin’. The source points are
on the x axis at x � �a, and the outer boundary is at r �
30a. For all four plots, a� � 0:3, � � �1, and �0 �
0:15. The results plotted are those from direct iteration
with the FFT method, for a computational grid using 361
radial divisions, 16 divisions in �, and 32 Fourier modes.
For all models, the computed results are dominated by
the monopole, so for clarity in the figures the ’ average of
the solution has been subtracted at every radius. It is
worth noting that this procedure not only removes the
monopole (the ‘ � 0 part of the solution), but also re-
moves the m � 0 part of the quadrupole, etc.

The plot in part (a) of Fig. 3 shows the outgoing
solution (solution for outgoing boundary conditions);
the plot in part (b) shows the corresponding ingoing
solution. The plot in part (c) is the computed standing-
wave solution for the same problem parameters. (Note:
This nonlinear standing-wave solution is not half the
superposition of the outgoing and ingoing solutions.
Rather, it is the nonlinear field equation solved with the
standing-wave definition discussed in Sec. II.) Part (d)
shows the key idea of the PSW approximation, the out-
going solution extracted from the standing-wave solution,
by the extraction method described in Eqs. (19)–(26).
When the PSW method is used in general relativity, it
will be possible only to compute the standing-wave solu-
tion; the extracted outgoing solution will represent the
approximation to the physical, outgoing solution.

Table I gives quantitative results for strongly nonlinear
outgoing waves. In that table, values are given for the
reduction factor due to the nonlinearity. As explained
following Eq. (31), this is the factor by which the non-
linearity decreases the amplitude of the waves. (For the
same a� and source strength, the amplitude of outgoing
waves for the linear problem � � 0 problem is compared
to the amplitude for a problem with � � 0.) The fact that
the reduction factors are significantly different from
100% shows that we are able to compute models in which
nonlinear effects are strong. In the table the computed
reduction is compared with estimates from heuristic
models of Eqs. (31)–(33) in which � is taken to have a
Yukawa form very near the source, and a Coulomb form
-10
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FIG. 3. The � field for two rotating point sources in the equatorial plane. The fields shown are nonlinear solutions of Eqs. (4), (5),
and (30), with a� � 0:3 and � � �1. For clarity, the ’ average is removed at each radius. Parts (a) and (b) of the figure show,
respectively, the nonlinear outgoing and ingoing solutions. Part (c) is the standing-wave solution, and part (d) is the outgoing
solution extracted from it. The vertical scale gives field strength (arbitrary units) and the horizontal coordinates are corotating
Cartesian coordinates in units of a, the distance of a source from the rotation axis.
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further out, but well within the near zone. The agreement
of the computations with the estimates is strong evidence
that the heuristic model captures much of the nature of the
nonlinear effect.

Table II gives information on the numerical errors of
the most computationally intensive solution type: that for
strongly nonlinear waves computed via Newton-Raphson
iteration. A single physical model (� � �10, �0 � 0:15,
a� � 0:3, outer boundary at r � 30a) is computed on
TABLE I. The reduction factor for outgoing waves due to the
nonlinearity. For all cases, �0 � 0:15. The second column
refers to Eq. (32). This equation is solved for Rlin. Estimate 1
uses this value of Rlin in exp��

��������
��

p
Rlin�. Estimate 2 is the

reduction factor found from a numerical solution of Eq. (33).
The last column gives the results from Newton-Raphson com-
putation with a� � 0:3, with the outer boundary at r � 30a,
and with a r; �; ’ grid of 120� 20� 32.

� Estimate 1 Estimate 2 Computation

�1 69% 87% 78%
�2 62% 73% 68%
�5 53% 65% 55%

�10 46% 54% 47%
�25 37% 41% 35%

064001
five different grids. As a measure of the truncation error
for grid k, the L2 difference (the square root of the
average square difference) is found between the results
for grid k and for grid k� 1 . This is listed in Table II as
the error in grid k. These results, especially for the finest
three grids, suggest quadratic convergence of the numeri-
cal process.

The crux of the PSW method is that a good approxi-
mation to a nonlinear outgoing solution can be extracted
from a standing-wave nonlinear solution. Examples of
TABLE II. Convergence of finite difference computations.
Nonlinear outgoing solutions are computed with five different
grid resolutions for � � �10, �0 � 0:15, a� � 0:3 and outer
boundary at r � 30a. An L2 norm is computed for the differ-
ence between the solution for grid k and grid k� 1. This is
reported as the ‘‘Error’’ for grid k.

k nr � nr � n’ Error

1 90� 10� 16 2.71 E-5
2 120� 14� 22 1.60 E-5
3 150� 16� 26 8.68 E-6
4 180� 20� 32 5.22 E-6
5 210� 24� 38

-11
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FIG. 5 (color online). The same models as in Fig. 4, but in the
region of the sources. As in Fig. 4 continuous curves show the
computations of the true nonlinear outgoing waves, and dis-
crete points show the outgoing wave approximation extracted
from the nonlinear standing-wave solution.
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FIG. 4 (color online). Extracted outgoing nonlinear waves vs
true outgoing nonlinear waves. For � � 0;�2;�10, �0 �
0:15, a� � 0:3, with a 180� 20� 32 grid. The field � is
shown as a function of r along a radial line through the source
point, i.e., along the � � �=2, ’ � 0 line. Continuous curves
show computational results for outgoing waves. Discrete points,
for the nonlinear models, show the approximate outgoing
waves extracted from standing-wave solutions.
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this are given in the next two figures, the central numeri-
cal results in this paper.

Figure 4 shows results for computations of linear (� �
0) and nonlinear (� � �2 and �10) models for � along
the � � �=2, ’ � 0 lines. All models used rotation rate
a� � 0:3 and nonlinearity parameter �0 � 0:15 and the
180� 20� 32 grid with an outer boundary at r � 30a.
The nonlinear models were solved through Newton-
Raphson iteration with continuation in �. The figure
shows, as continuous lines, the computed solutions for
outgoing waves with � � 0;�2;�10. Included in the
figure also are the � � �2;�10 results for the approxi-
mate outgoing waves extracted from the nonlinear
standing-wave solutions by the method of Eq. (23). The
difference between these outgoing approximations and
the true outgoing waves is so small that the approximation
results are given as discrete data points to aid in
visualization.

Figure 5 shows the small-radius portions of the same
models as those in Fig. 4. (The � � 0 curve is nearly
indistinguishable from that for � � �2, and is omitted
from the figure.) The radial � � �=2, ’ � 0 line along
which the results are presented goes through the source
point at r � a, so Fig. 5 shows the computed solution in
the neighborhood of the source. TheYukawa-like effect of
the nonlinearity near the source is evident in more rapid
falloff of the � � �10 model away from the source point.

The results in Figs. 4 and 5 are graphical evidence for
the accuracy of the PSW method; the outgoing waveforms
064001
extracted from the nonlinear standing-wave solution are
excellent approximations to the true outgoing waves both
near the sources and in the wave zone. The agreement in
the intermediate zone (not shown in the figures) is
equally impressive. A quantitative measure of the agree-
ment is the L2 difference of the outgoing wave and the
extracted outgoing approximation. This measure is the
square root of the average (over all grid points) of the
squared difference between the true and the extracted
outgoing solutions. For � � �10 this L2 difference is
8:7� 10�6 and is of the same order as the error in
Table II for the 180� 20� 32 grid being used. Since
the numerical uncertainties are of the same order as the
difference between the true and the extracted outgoing
waves, we cannot claim to have computed any mean-
ingful inaccuracy in the PSW approximation.

This is unfortunate. In presenting numerical results it
would be useful to demonstrate that the PSW approxima-
tion is, after all, an approximation by showing a model in
which the extracted outgoing solution is significantly
different from the true outgoing solution. Our inability
to do this is related to limitations on numerical solutions.
Our arguments for effective linearity show that the PSW
approximation should fail only if the region of significant
nonlinearity overlaps the wave zone. For this reason we
used the .-dependent prefactor of Eq. (36) in an earlier
version of the present paper to allow us to force the
nonlinearity to be concentrated in the wave zone.
Although that technique did allow us to induce signifi-
cant errors in the PSWapproximation, we have explained,
following Eq. (36), why the solutions for the models with
-12
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the prefactor have undesirable features. If no unnatural .
dependence is explicitly injected in the source, the way
in which effective nonlinearity can be made to fail is for
a� to approach unity, i.e., for the source points to move
very relativistically (a case in which the PSW would be
expected to fail for binary inspiral). Unfortunately, we
have not been able to find convergent solutions for large
a�. Presumably this is due to the fact that large a�
means fields with sharp gradients, too sharp to be handled
by our necessarily coarse grids.
IV. CONCLUSIONS

We have given here the foundations of the PSW method
based on the extraction of an outgoing solution from a
computed standing-wave solution. We have also given the
details of the extraction calculation.

The results provided for convergent nonlinear models
are ‘‘proof ’’ by example that there is no fundamental
mathematical problem of well posedness of the mixed
PDE problem, with radiative boundary conditions on a
sphere that is in both the elliptic and hyperbolic regions of
the problem. We have, furthermore, presented limited
numerical evidence for the validity of the PSW method,
i.e., that the extracted outgoing solution is a good ap-
proximation to the true nonlinear outgoing solution. This
evidence helps make the case for the application of the
method to the general relativistic problem, in which only
the standing-wave solution will be computable, and the
extracted solution will be taken as the approximation to
the physical problem.

The numerical studies have also taught a lesson about
the limitations of the relatively straightforward numeri-
cal method used here, matrix inversion of the finite
difference equations in spherical coordinates. We have
found that this method is limited by the coarse grid that
can be used for the finite differencing. We could, in
principle, use a software engineering approach to increase
the range of nonlinearity and rotation rate that can be
handled. But the methods used here, spherical coordi-
nates and delta function sources, are meant only to pro-
vide a relatively simple context for establishing the
foundations for more advanced approaches.
064001
In a paper now in preparation [20], we will present an
important step forward in dealing with PSW problems, a
coordinate system that conforms to the geometry near the
sources and far from the source asymptotically goes to
spherical polar coordinates, the coordinates best suited to
the description of the waves. One advantage of this
method is that it allows us very simply to put in details
of the sources as inner boundary conditions rather than
point sources. In addition, the new coordinates turn out to
be very well suited to a spectral method that has shown
remarkable computational efficiency, but that poses new
computational problems. Computations using an adapted
coordinate system have already been carried out for the
three-dimensional nonlinear scalar problem with both
the finite difference and spectral formulation, and for
linearized general relativity using the finite difference
formulation. Since the details of adapted coordinates,
especially with the unusual spectral method, are not
directly related to the foundations of the PSW method,
those details are appropriate to a separate paper.

A very different approach to better numerics is to use
relaxation methods, already mentioned in Sec. III. In
view of the large number of uncertainties about their
application, we have started on a basic study of relaxation
methods in mixed PDE systems in PSW-type problems,
but will continue to explore a number of different nu-
merical approaches to the PSW problem.
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