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Cosmic inflation is envisioned as the ‘‘most likely’’ start for the observed universe. To give substance
to this claim, a framework is needed in which inflation can compete with other scenarios and the
relative likelihood of all scenarios can be quantified. The most concrete scheme to date for performing
such a comparison shows inflation to be strongly disfavored. We analyze the source of this failure for
inflation and present an alternative calculation, based on more traditional semiclassical methods, that
results in inflation being exponentially favored. We argue that reconciling the two contrasting
approaches presents interesting fundamental challenges, and is likely to have a major impact on ideas
about the early universe.
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I. INTRODUCTION

Over the last 20 years cosmic inflation theory [1] has
survived extensive theoretical and observational scrutiny
and has come to be seen as the leading theory of the
origin of the universe (see for example [2]). There are still
a number of fundamental open questions for cosmic in-
flation. Some of these questions are sufficiently significant
that their resolution could severely undermine cosmic
inflation as a theory of cosmic origins.

One of these open questions is the topic of this paper:
How inflation itself got started. The very first papers on
inflation treated inflation as a small modification to the
big bang, a particular phase in the evolution of a
Friedmann Robertson Walker (FRW) universe that
started (as usual) with the initial FRW singularity. But
very soon [3–7] another view developed that cosmic
inflation should be regarded as a mechanism which can
create the standard big bang (SBB) cosmology [8] out of a
fluctuation originating in some ‘‘meta-universe.’’ By
meta-universe we refer to whatever theory one has to
describe (and attach probabilities to) the range of fluctua-
tions which might possibly create a big bang universe
(and there are a variety of proposals for this). In this
newer picture, the preinflation cosmological evolution is
given by the random fluctuations in the meta-universe,
some of which gives rise to inflation.

One of the main attractions of inflation has been that it
offers an account of the origin of the universe that seems
‘‘more natural’’ or ‘‘more likely’’ than the standard big
bang taken on its own. This perception is typically based
on rather vague but intuitively reasonable arguments
about the attractor nature of inflationary dynamics and
about fine tuning of initial conditions. The only real
proposals to treat this aspect of inflation in a more rig-
orous way are ones that place inflation in direct competi-
tion with other mechanisms for creating the big bang
cosmology in which we live. If one can actually assign
relative probabilities to the observed big bang universe
fluctuating out of the meta-universe through different
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‘‘channels,’’ some including and others not including an
inflationary phase, one can then quantify the degree to
which inflation really is more likely to describe the
history of the region of the universe we observe. This
approach has been emphasized recently in [9–16].

In [10] Dyson, Kleban, and Susskind (DKS) provide
what is probably the most concrete calculation of this sort
to date. Their scheme is particularly attractive because it
defines the meta-universe as an equilibrium state, and
uses statistical mechanics to evaluate different probabili-
ties of fluctuations out of equilibrium. Thus dynamics,
rather than any ad hoc assumptions about ‘‘state of the
universe’’ determine the properties of the meta-universe
[17]. As discussed in [15], we believe that such a dynami-
cal approach offers a much more fundamental under-
standing of initial conditions of the universe.

Interestingly, DKS get results that are very negative for
inflation, and also for big bang cosmology in general.
According to DKS, inflation is exponentially less likely
than the big bang simply fluctuating into existence with-
out an inflationary period. Furthermore, the familiar big
bang history for the observed universe is exponentially
less likely than some much more random fluctuation
forming the universe as we see it today.

Our main goal is to investigate the general issue of the
start of inflation, and particularly the challenges for
inflation raised by the DKS paper (which we argue might
reflect a very general problem [19]). A key part of this
paper is an alternative calculation of the probability that
inflation formed our universe. Our calculation employs
much of the DKS framework, and also takes the meta-
universe to be a fluctuating equilibrium state. Our method
is different in the specifics of how the probabilities are
calculated, and represents what we argue is a more tradi-
tional approach (based on reasonably rigorous semiclas-
sical methods). Our calculation shows (in a quantified and
concrete form) that inflation is exponentially favored over
other histories of our observed universe. We also suggest a
modest extension of the DKS formalism that also predicts
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that the standard big bang history of the universe is
favored over the more random versions considered by
DKS [20].

This paper is related to questions about the relation-
ships between inflation, entropy and the arrow of time
which have appeared in one form or another since the
early days of inflation. Our discussion allows these issues
to take a more quantitative form. For completeness we
comment further on these connections in Appendix B.

Section II reviews the DKS calculations and results. We
identify the few key ingredients that lead to problems for
inflation and argue that if one accepts these ingredients
the problems for inflation are likely to persist in a
wide variety of different scenarios. In Section III we
discuss the problems faced by the standard big bang in
the DKS picture. We show how a modest extension of the
DKS calculations (introduced in Section II D) alleviates
that particular problem, although we also argue in
Section III C that the problem is replaced with another
one that was first explored by Boltzmann a century ago.
As discussed in [15], inflation is the first idea with a
chance to resolve the so-called ‘‘Boltzmann’s brain para-
dox,’’ but in the extended DKS calculations (which dis-
favor inflation) the paradox remains.

Section IV presents our own calculation. We embrace
many of the same assumptions and formalism of DKS,
but at a crucial step where DKS use holographic consid-
erations we use standard semiclassical tunneling rates
from the existing literature. Section Vgives further inter-
pretation and discussion of the two methods. We argue
that at the very least we have constructed a concrete
formalism that reflects the standard intuition about in-
flation (and also resolves the Boltzmann’s brain paradox).
However, we also acknowledge the strong theoretical
basis for the DKS approach based on holography. We
conclude that further investigation contrasting the two
methods might yield very interesting insights into the
nature of quantum gravity and the early universe, insights
which stand to either validate or destroy key components
of modern theoretical cosmology.
II. REVIEW OF THE DKS RESULTS

A. The General Scheme

Dyson, Kleban, and Susskind [10] consider the case
where the current cosmic acceleration is given by a fun-
damental cosmological constant �. In that picture the
universe in the future approaches a de Sitter space, with
a finite region enclosed in a horizon filled with low
temperature Hawking radiation. The horizon radius R�

is given by

R� �

����
3

�

s
(1)

and the Hawking temperature is given by
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TH �
1

2�R�
: (2)

We use conventions where �h � c � kB � G � m�2
P �

l2P � 1. With our conventions for � the equivalent mass
density corresponding to � is given by �� � �=8�G.

DKS take the so-called ‘‘causal patch’’ view that, since
physics outside the de Sitter horizon is truly irrelevant to
physics inside, one should consider the physics inside the
horizon as the complete physics of the universe [21–25].
The points of view of different observers that might have
different horizons should be given by rearranging (proba-
bly in some highly nonlocal way) the same fundamental
degrees of freedom, without increasing the total number
of degrees of freedom required to describe the whole
universe.

In this picture, the entire universe is a truly finite
system which, when allowed to evolve sufficiently long
will achieve an equilibrium state, namely, the de Sitter
space. The entropy of this equilibrium state is given by
[26]

S� � �R2
�=l

2
P: (3)

One then has the following picture of the meta-universe:
The meta-universe is just the finite universe within the
causal patch. The meta-universe spends by far most of its
time in the equilibrium state: de Sitter space full of
Hawking radiation. This equilibrium state is constantly
fluctuating, and on very rare occasions extremely large
fluctuations occur. In this picture the universe as we see it
should be regarded as one of the very rare fluctuations out
of de Sitter equilibrium. Our own destiny is to return to de
Sitter equilibrium, a process that is just starting to be-
come noticeable with the detection of the cosmic accel-
eration. (Note, we are talking about statistical mechanics
here, not thermodynamics, so the entropy will go down
just as often as it will go up as the system fluctuates out of
and then back into equilibrium.)

DKS assume this system has a sufficient level of ergo-
dicity to use the following estimate of the probabilities of
different fluctuations. Let NT be the total number of states
available to the system:

NT � eS� : (4)

Any fluctuation F will start in equilibrium and evolve to
some state with minimum entropy SF, at which point the
entropy starts increasing and the system returns to the
equilibrium state.

The ergodic assumption (which says that the system
spends roughly an equal amount of time in each micro-
state) gives the following probability for a given fluctua-
tion F in terms of its minimum entropy SF:

PF �
NF
NT

�
eSF

eS�
� e�SF�S�� (5)
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whereNF is the number of microscopic states with coarse-
grained entropy SF.

B. Problems for Inflation

One can use this picture to compare the probabilities of
two different types of fluctuations that both lead to the
universe we observe today. One of these (labeled by I)
passes through a period of inflation; the other is simply
the ordinary big bang cosmology, with no inflation
(labeled by BB).

For SBB, the minimum entropy of the plain big bang
fluctuation, one can use the entropy of the standard big
bang cosmology in the early universe:

SBB � 1085: (6)

Black holes (such as those at the centers of galaxies)
dominate the entropy of the universe today and give larger
total value for the entropy (S � 1090), but the quantity
required for the DKS calculation is the lower value.

During cosmic inflation, the universe is dominated by
an effective cosmological constant and looks (for a finite
time) very much like de Sitter space. DKS estimate the
entropy of the universe at that time by the Gibbons-
Hawking entropy of the equivalent de Sitter space:

SI �
�
RI
lP

�
2
�

�
mP

mI

�
4
� 1010 (7)

where RI is the effective de Sitter radius during inflation
and mI is the characteristic energy scale of inflation.
(Throughout this paper when we assign a value to mI
we use mI � 10�2:5mP.)

Using Eq. (5) to construct the probabilities (with
Eqs. (6) and (7) for the entropies) gives the following
comparison:

PI
PBB

� e�SI�SBB� � e�SBB � 1: (8)

In this scheme fluctuations that produced the universe we
see via inflation are strongly disfavored compared to
fluctuations that produce big bang scenarios without
inflation.

C. The Reason for the Problem

Let us zero in on the origin of this result, which seems
exactly the opposite of the standard intuition about
inflation.

The standard thinking is that the fluctuation required
to start inflation (which after all requires a fluctuation
over just a few Hubble volumes at the inflation scale) is
surely much more likely than a fluctuation that gives rise
to the entire big bang universe directly. From this per-
spective, the small entropy of the inflating state seems to
be the key advantage of the inflationary picture, while
according to DKS, it is the feature that causes inflation to
be strongly disfavored.
063528
To illustrate the origin of these dramatically different
perspectives, consider an ordinary box of radiation in
equilibrium at temperature T. Consider two possible
rare fluctuations. In the first, all the radiation in a volume
of 1 cm3 in one corner fluctuates further into the corner
so it only occupies a volume of 1 mm3. The second
fluctuation is similar, but the initial region is 2 cm3 while
the final region is still 1 mm3. Intuitively, the second
fluctuation is much more rare, even though the entropy
of the1 mm3 region is larger for the second case. The
reason is that for fluctuation 1, more of the whole system
remains in equilibrium during the fluctuation, making
the corresponding state more likely. Specifically, the
entropy in Eq. (5) is the entropy for the entire system
which is larger for fluctuation 1 because more of the
system remains in equilibrium. Using entropy density
�5� 108 cm�3 for a photon gas at room temperature
and St for the total equilibrium entropy one can evaluate
Eq. (5) to get

P1

P2
� e�S1�S2� � e�St�5�108���St�109� � e5�108 	 1 (9)

which quantifies the intuitive result that fluctuation 1 is
more likely. (The positive contribution from the entropy
of the gas in the 1 mm3 region is completely
subdominant.)

So if inflation requires only a few inflation era Hubble
volumes to get started, why is not SI � S�? Surely while
one little region starts inflating, the rest of the universe is
free, at least at first, to be doing whatever it likes (which
would mean staying in equilibrium). Why does that not
mean that inflation is strongly favored over other paths to
the big bang that have a larger part of the entire system
participate in the fluctuation to begin with?

DKS use a very small value for SI because of the
principles of causal patch physics which they employ.
Because a horizon forms during the inflationary period,
these principles dictate that an observer inside the horizon
sees all the degrees of freedom of the universe inside the
horizon with him. From his point of view there simply is
no ‘‘outside the horizon,’’ and SI must be evaluated using
only what this observer sees. It is exactly this feature of
their analysis that turns what might seem like the main
advantage of inflation (the simplicity of the initial fluc-
tuation) into an extremely serious liability.

D. An Extension of DKS

The formation of the horizon is crucial to DKS’s evalu-
ation of SI. However the path to the SBB that does not
include inflation is usually not thought of as forming a
horizon and since SBB � S� one might think of this
fluctuation, at its minimum entropy state, as a small
localized perturbation on the de Sitter meta-universe. In
the far-field limit any such localized perturbation
will have a Schwarzschild geometry, and Gibbons and
-3
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Hawking [26] showed in this situation the Schwarzschild
perturbation changes the area of the de Sitter horizon
according to

R2
� ! R2

� � R�RS; (10)

where RS is the Schwarzschild radius of the perturbation.
This suggests that an improved estimate of SBB might be
[27]

~S BB � S� �
��������������
S�SBB

p
� SBB � S� �

��������������
S�SBB

p
: (11)

Using ~SBB in Eq. (8) gives

PI
PBB

� e�SI�~SBB� � e�S��
����������
S�SBB

p
� e�S� � 1; (12)

which even more strongly disfavors inflation. Here, in the
absence of a horizon within the BB fluctuation, we have
allowed the counting of entropy for the BB fluctuation to
include the ‘‘outside’’ part of the meta-universe. The BB
fluctuation has gained further ground compared with
Eq. (8) by the recognition that the BB fluctuation is small
and allows most of the meta-universe to remain in an
equilibrium state. That increases the total entropy asso-
ciated with the fluctuation, and thus increases its
probability.

This extension of the DKS calculation also lets one
express the regular intuition about inflation in the follow-
ing way: If one forgets about the principles of causal patch
physics and just forges ahead treating the inflationary
fluctuation in a similar manner to the BB fluctuation,
one might construct

~S I � S� �
�����������
S�SI

p
� SI � S� �

�����������
S�SI

p
(13)

which would lead to

PI
PBB

� e�~SI�~SBB� � �e�
����
SI

p
�

������
SBB

p
�

�����
S�

p

� �e
������
SBB

p
�

�����
S�

p
	 1: (14)

In this expression inflation gets credit for the small en-
tropy of the inflating region, in that the small value of SI
allows more of the rest of the universe to remain in
equilibrium. This allows the total entropy of the system
during an inflationary fluctuation to be larger, assigning it
a greater probability. Equation (14) expresses the standard
intuition about inflation but violates the principles of
causal patch physics. We will develop a more carefully
constructed expression for PI that has similar features in
Section IV.

E. The Generality of the Problem for Inflation

It is tempting to try and view the failure of inflation in
the DKS picture as a result of other assumptions and
details of their calculation. In particular, in the DKS
picture the finiteness of the whole meta-universe imposed
063528
by the late time de Sitter horizon R� appears to exclude
the possibility of eternal inflation (at least as it is tradi-
tionally understood). In eternal inflation [28], inflation
starts with some fluctuation and then continues eternally
into the future, seeding additional inflating regions via
quantum fluctuations. Also, infinitely large numbers of
regions stop inflating and reheat to produce ‘‘SBB’’ re-
gions that look like the universe we observe. It seems
reasonable to argue that in this picture the infinite num-
bers of SBB regions will overwhelm any suppression of
the probability to start inflation and allow inflation to win
any competition with other channels for producing SBB
regions.

However, as long as the principles of causal patch
physics require one to assign very small values to SI, it
is far from clear that eternal inflation can resolve the
problem. As one allows the size of the meta-universe to
diverge in order to accommodate eternal inflation it is
quite possible that PI=PBB will go to zero fast enough that
inflation never wins, despite the increasingly large num-
bers of SBB regions produced by inflation.

For example one can adapt Eq. (12) to this situation by
thinking of � not as the source of cosmic acceleration
today (which can be provided by quintessence) but simply
as a regulator that allows one to define the meta-universe
in a concrete way. If one lets � ! 0 the size of the meta-
universe R� will diverge, allowing more room for eternal
inflation, but S� will also diverge, driving PI=PBB ! 0.
In this analysis taking � ! 0 only increases the problem
for inflation, since to start inflation one now has to cause a
divergently large universe to fluctuate into a region with
finite entropy. (The divergent ‘‘volume factors’’ from
eternal inflation that enhance the probability of producing
the observed universe via inflation only appear as an
inverse power of � in the prefactor and are unable to
compensate for the huge exponential suppression.)

Of course, there are probably other ways of taking the
infinite universe limit. Our point here is that the infinite
universe limit (whether in the context of eternal inflation
or more general considerations such as the ‘‘string theory
landscape’’ [29]) is not a sure way to save inflation. The
causal patch arguments that assign low entropy to the
whole universe when there exists just a single inflating
patch can create even bigger problems for larger meta-
universes. At the very best, this limit throws inflation at
the mercy of problematic debates about defining measures
and probabilities for infinite systems.

III. THE PROBLEM FOR THE STANDARD BIG
BANG

A. The Problem According to DKS

The DKS calculations do not just create problems for
inflation. DKS consider variations to the SBB which
increase SBB to some new value we will designate by
SB2 > SBB. This could be a version of the big bang, for
-4



CAN THE UNIVERSE AFFORD INFLATION? PHYSICAL REVIEW D 70 063528
example, with a somewhat higher value for the tempera-
ture of the cosmic microwave background today.
Applying the DKS scheme one gets

PB2
PBB

� e�SB2�SBB� > 1 (15)

which favors the modified big bang scenario. Certainly
the B2 fluctuation requires some strange out-of-
equilibrium behavior in the early universe, in contrast
to the BB fluctuation. That does not mean much however,
because in this scheme the big picture is that anything
that looks at all like the SBB is an out-of-equilibrium
fluctuation of the meta-universe. Our job as cosmologists
is to make predictions based on the most likely fluctuation
to create what we see. Equation (15) is interpreted by DKS
as a (failed) prediction that our universe should be found
in a higher entropy state than we actually observe.

B. Extended DKS Solves the SBB Problem

One can also apply the extended DKS formalism of
Section II D to the comparison of the B2 and BB fluctua-
tions discussed above, giving

PB2
PBB

� e�~SB2�~SBB� � �e�
������
SB2

p
�

������
SBB

p
�

�����
S�

p
� 1: (16)

The extended DKS scheme reverses the fortunes of the
standard big bang vs other B2 type fluctuations with
higher entropy. The reason for this reversal is that in the
extended DKS scheme larger values of SB2 mean more of
the meta-universe is tied up in creating the variant fluc-
tuation B2 and is thus removed from equilibrium. The
corresponding entropy reduction in the meta-universe
(

�������������
S�SB2

p
) is much greater than the entropy added back

in by the larger value of SB2, so the total entropy of the
system for the B2 fluctuation (~SB2) is lower than for the
BB case. Of course in this picture the big bang gets serious
competition from scenarios with SB2 < SBB. That topic is
addressed (in an extreme limit) in the next subsection.

C. Boltzmann’s Brain

A century ago Boltzmann considered a ‘‘cosmology’’
where the observed universe should be regarded as a rare
fluctuation out of some equilibrium state. The prediction
of this point of view, quite generically, is that we live in a
universe which maximizes the total entropy of the system
consistent with existing observations. Other universes
simply occur as much more rare fluctuations. This means
as much as possible of the system should be found in
equilibrium as often as possible.

From this point of view, it is very surprising that we
find the universe around us in such a low entropy state. In
fact, the logical conclusion of this line of reasoning is
utterly solipsistic. The most likely fluctuation consistent
with everything you know is simply your brain (complete
with ‘‘memories’’ of the Hubble deep fields, microwave
063528
background data, etc.) fluctuating briefly out of chaos and
then immediately equilibrating back into chaos again.
This is sometimes called the ‘‘Boltzmann’s Brain’’ para-
dox [30]. The DKS formalism (extended or otherwise)
certainly manifests the Boltzmann’s Brain paradox be-
cause it attaches higher probabilities to larger entropy
fluctuation.

As discussed in [15], cosmic inflation is the only idea
we are aware of that could potentially resolve this para-
dox. In models where inflation is the preferred route to the
observed universe many brains appear in a single inflated
region, so the probability per brain could be significantly
reduced. Also the brains produced via inflation come
correlated with bodies, fellow creatures, planets, large
flat universes with microwave background photons, etc.,
a much more realistic picture. But the DKS formalism
cannot exploit inflation to resolve the Boltzmann’s Brain
paradox because inflation itself is so strongly disfavored
in that formalism.

IV. THE SEMICLASSICAL CALCULATION

In this section we construct an alternative calculation
of the probability for a region to start inflating in the de
Sitter meta-universe.

There is a large body of literature addressing the for-
mation of an inflating region from a noninflating state
[5,31,32]. It has been well established that no classical
solution can evolve into an inflating region, but that it is
possible for certain classical solutions to quantum tunnel
into an inflating solution. Here we apply these results to
the process of forming an inflating region in the de Sitter
meta-universe described by DKS.

We apply the formalism of Fischler, Morgan, and
Polchinski (FMP) [31] and use their notation. Farhi
et. al. [32] achieve equivalent results using functional
methods, but we focus on the FMP work because their
Hamiltonian formalism is free of the ambiguities of the
functional methods noted in [32]. FMP consider solutions
with spherical symmetry and assume an inflaton exists
with a suitable potential to produce inflation. They also
assume that solutions with regions up and down the
potential can be treated in the thin wall approximation.
The quantum tunneling probability from the inflating to
the noninflating state is given by

Pq � e�2F: (17)

FMP do not calculate the prefactors to the exponential,
and we do not require them here for the very broad issues
at hand. The form of F is discussed in detail in
Appendix A, where we show that for our purposes F
can be extremely well approximated by

F �
�

2l2P
R2
I �

1

2
SI: (18)

Here RI is the de Sitter radius of the inflating region and
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RS is the Schwarzschild radius corresponding to the
classical solution that tunnels into the inflating state.

But Pq gives the probability of tunneling into inflation
from a very specific classical state. The total probability
for starting inflation by this path will take the form

PI � PcPq (19)

where Pc is the probability of forming the classical state
used to calculate Pq.

To determine Pc we use the methods of DKS and write

Pc � e�Sc�S�� (20)

where Sc is the entropy of the de Sitter universe in the
presence of the classical solution in question. As dis-
cussed in Section II D Gibbons and Hawking have shown
that Sc is dominated by shrinkage of the de Sitter horizon

Sc � S� �
�����������
S�SS

p
(21)

where SS � �m2
PR

2
S taking RS to be the Schwarzschild

radius of the perturbation to the de Sitter space.
Combining the above results gives

Pc � e�
��������
S�SS

p
(22)

and

PI � e��
��������
S�SS

p
�SI�SS� � e��

��������
S�SS

p
�SI�: (23)

This expression depends on the mass of the classical
solution that tunnels through to inflation via the entropy
SS, and is maximized in the limit SS ! 0 (vanishing
mass).

The mass ! 0 limit is an intriguing one, in that is
seems to represent the formation of an inflating region
‘‘from nothing.’’ We proceed with caution here, however,
since we expect various aspects of our calculation (such
as the thin wall limit and semiclassical gravity) to break
down in zero mass limit. We take our formula to be valid
down to some lower cutoff value of SS given by Sl. If Sl is
set by the breakdown of the thin wall approximation,
perhaps Sl � �mP=mI�

2 � 105. Perhaps our formula
works all the way down to the Planck scale and Sl � 1.
The actual value of Sl is completely irrelevant for our
main points (even Sl � 0 is fine).

We now compare PI and PBB using extended DKS for
PBB and Eq. (23) for PI:

PI
PBB

� �e�
����
Sl

p
�

������
SBB

p
�

�����
S�

p
� �e

������
SBB

p
�

�����
S�

p
	 1: (24)

Instead of following the causal patch principles this cal-
culation uses conventional semiclassical methods. This
difference allows the (barely perturbed) entropy of the
de Sitter equilibrium to be included in the calculation of
the production rate of inflationary fluctuations. Our
scheme realizes the standard intuition about inflation
and strongly favors inflation over other paths to the uni-
verse we observe.
063528
V. DISCUSSION AND CONCLUSIONS

We have argued that a meta-universe picture, in which
inflation competes in a direct and quantifiable way with
other cosmological scenarios, is crucial to validating the
expectations that inflation is a ‘‘more likely’’ or ‘‘more
natural’’ origin of our observed universe.

The methods of Dyson, Kleban, and Susskind gave
the most concrete picture yet of a meta-universe which
allows one to quantify the competition between different
cosmologies, but the results of this competition are com-
pletely reversed from the expectations of most cosmolo-
gists. According to DKS inflation is exponentially less
probable than big bang scenarios without inflation, and
variants of the big bang which have a higher entropy for
the observed universe are exponentially favored over the
big bang scenario itself.

In this paper we have introduced alternative calcula-
tions which, while very much in the DKS spirit, are
different enough to reverse the order of preference: In
our calculations inflation is exponentially favored over
an inflation-free big bang, which itself is favored over the
variants of the big bang that beat inflation in the DKS
calculation.

The most important difference between our methods
and those of DKS is the role played by the principles of
causal patch physics. The causal patch rules state that
once a horizon forms in an inflating region the ‘‘entire
universe’’ is inside the horizon. The region outside the
inflating region is not represented by different degrees of
freedom, but is supposed to be described by the same
degrees of freedom reexpressed in terms of different
variables to account for the different observers. This
feature is at the heart of the negative results for inflation
from DKS. Specifically, it is the use of the entropy inside
the horizon of the inflating region along with ergodic
arguments that harms inflation in the DKS scheme. We
argue that any theory that follows these rules is likely to
disfavor inflation even if other aspects of the theory differ
greatly from the DKS scheme (by including, for example,
eternal inflation or a large string theory landscape).

Our calculation does not follow the specific causal
patch rules of DKS. Instead we view the formation of
an inflating region as a quantum tunneling event. We
calculate tunneling rates based on well established semi-
classical methods for tunneling through a classically
forbidden region, which one can hope would not get
significant corrections from a deeper theory of quantum
gravity. From the point of view of this paper, the key
aspect the semiclassical quantum tunneling problem is
that the different sides of the classically forbidden region
are described by different states in the same Hilbert space.
The tunneling process describes the flow of quantum
probability from one side of the barrier to the other, and
describes a global state of the entire system. This per-
spective seems to be in marked contrast to the causal
-6
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patch view that says that what we view semiclassically as
‘‘two sides of the barrier’’ are not actually represented by
different parts of the space of states. Instead, the ‘‘fluc-
tuating toward inflation’’ state and the inflating state are
seen as reparametrizations of the same state in the same
space. This difference is at the heart of the sharply differ-
ing results from the two methods.

We feel that the reconciliation of the these two methods
presents a very interesting problem in quantum gravity
and cosmology. Perhaps deeper insights into quantum
gravity will show us that at least one of the approaches
is simply wrong. Another interesting possibility is that
one or both of these schemes require a more careful
implementation (for example a refinement of the ergodic
arguments) that will actually bring the two approaches
into quantitative agreement. Whatever the outcome, it
appears that the viability of the cosmic inflation theory
hangs in the balance. Different outcomes could either
enhance or end inflation’s prominence as a theory of the
origins of the universe.
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APPENDIX A: CALCULATING TUNNELING
RATES

Fischler, Morgan, and Polchinski consider noninflating
classical solutions that quantum tunnel to inflating clas-
sical solutions. The solutions are spherically symmetric
and they use a thin wall approximation where the stress-
energy is zero outside of some region, and has a cosmo-
logical constant � �I inside. The regions are separated
by a spherical wall with tension �. In the outside region
the spacetime is Schwarzschild with mass M. FMP use
semiclassical Hamiltonian methods which are described
in detail in [31] and references therein [33]. Although the
actual classical solutions that tunnel into inflation start
with a singularity, FMP discuss how in a more complete
treatment these solutions could emerge from excitations
other than a singularity. In our case we think of these
solutions fluctuating out of the thermal Hawking radia-
tion of de Sitter space. Their tunneling probability is
given by

P / e�2F (A1)

where

F � FI � FO � F̂ (A2)
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and

FI � FO �

8><
>:

�
2G �R

2
2 � R2

1�; Mcr >M >MS
�
2G �R

2
2 � R2

S�; MD <M <MS
�
2G �R

2
I � R2

S�; M <MD

: (A3)

Our RI is FMP’s Rd (the de Sitter radius during inflation),
and RS � 2GM. The values of the transverse radius at the
classical turning points between which the tunneling
occurs are given by R1 and R2. The third term in F is

F̂ �
R2
I

G 

Z !2

!1

!̂
�
arccos

�
� S=!̂

2� � !̂�1� 1
 �

2
������������������������
1� �!̂2= �

q �

� arccos
�
� S=!̂

2� � !̂�1� 1
 �

2
����������������������������
1� � S=!̂ �

q �
d!̂: (A4)

Here we use the rescaled variables

! �
R
RI

����
 

p
;  S �

RS
RI
 3=2: (A5)

The turning points !1 and !2 are the roots of

 
��
 S
!̂3

� 1
�
�

1

 


2
� 4

�
 S
!̂3

�
 

!̂2

�
� 0 (A6)

where

 �
�I

3G2�2 �

�
mP

mI

�
2
: (A7)

The mass scalesMD andMS in Eq. (A3) are worked out in
[34] to be

MS � �M
�
1�

1

4
#2

�
1=2

� �M�1�O�1= �� (A8)

and

MD � �M
1� 1

2#
2

1� 1
4#

2
� �M�1�O�1= �� (A9)

where

# �
2�������������

1�  
p (A10)

and �M � m2
PRI=2.

We use the quantity F in Eq. (19) to give PI � Pce�2F.
The classical part Pc is of a form that maximizes PI in
the  s ! 0 (small M) limit, so we want to evaluate F in
-7



FIG. 1 (color online). The values of FI � FO (top three
curves) and F̂ (the highly overlapping bottom curves) as a
function of the rescaled mass parameter  S over the range
10�10 <  S <  cr. The three values of the pair (mI=mP, )
shown here are given by (0.5, 33.5), (0.1, 838), and (0.05,
3350) in order of increasing  cr. The main point of this figure
is that FI � FO 	 F̂ for all relevant values of  S and for any
realistic value of  . More detailed features of this plot are
discussed in the text.
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this limit. This gives

FI � FO !
�
2G

R2
I �

�
mP

mI

�
4

(A11)

and

F̂ ! �
�
2

�
RI
lP

�
2 1

 2 � �1�O� �1��

� �
�
2

�
3

8�

�
3
� FI � FO (A12)

(where the last approximation assumes � � m3
I ). So in

this limit the first part of F dominates and we can take

F �
�
2G

R2
I (A13)

to an excellent approximation.
In [34] it is also shown that the turning point solutions

do not exist for M>Mcr. In that regime there is no
tunneling and no chance to produce inflation. Like MS
and MD, Mcr also takes the form Mcr � �M�1�O�1= ��.
For realistic models of inflation mI � O�10�2:5�mP, so
again taking � � m3

I , 1= � 1. Thus for realistic mod-
els, M<MD holds for all M except for a tiny range
�M � �M= near the maximum value Mcr � �M. The
form of Pc dictates that minimum values of M are the
relevant ones, so we can use the M<MD part of Eq. (A3)
for FI � FO in Pq for all values of M without producing
any significant errors.

Figure 1 shows FI � FO and F̂ for three different
values of mI (and  , which we take to be specified
uniquely from mI by using � � m3

I in Eq. (A7)). We
have chosen unrealistically large values of mI so that
key features can be shown more easily on the plot. The
pair of curves corresponding to each value of mI extends
all the way to the maximal value of  S �  cr �
 S�Mcr� �  3=2�1�O�1= �� corresponding to the given
value of mI.

We see that the M ! 0 limit is a good approximation
for F̂ for values of  S up to  S � 1. Above  S � 1, F̂
increases, but remains orders of magnitude smaller than
FI � FO except possibly in the tiny (unresolved) region
near the maximal value  cr. Note that the F̂ curves
coincide (over their defined ranges) except for corrections
O�1= � which are barely visible on this plot due to the
(large) chosen values of  .

As discussed in Section IV, the most significant values
of Pq are those corresponding to masses given by the
cutoff value ml (which we expressed in terms of the
corresponding black hole entropy Sl). The corresponding
cutoff value of  S is given by  l �

������������
Sl=SI

p
 3=2 ��������������

SS=SI
p

 cr. One can see from Fig. 1 that with the possible
exception of values of  l extremely close to  cr (over a
region too narrow to resolve on this plot), F � FI � FO
will be an excellent approximation for the purposes of our
063528
calculations. Since the maximum value of the cutoff
proposed here gives Sl �

�����
SI

p
,  l �  cr so we are always

considering values well away from the narrow  S �  cr
zone. Even at the closest approach shown F̂ � FI � FO,
and the gap widens with decreasing mI. Thus throughout
this paper we take

F � FI � FO �
�
2G

�R2
I � R2

S� �
�
2G

R2
I (A14)

in Pq.
APPENDIX B: RELATIONSHIP TO ISSUES
RAISED BY PENROSE AND OTHERS

There is some connection between our discussion here
and conceptual issues that have been discussed over some
time in connection with inflation, especially the work of
Page [35] (in responding to Davies [36]) and later Penrose
[37], Unruh [38] and Hollands and Wald [39]. Page and
Penrose emphasize the point that initial conditions which
had given the big bang a thermodynamic arrow of time
must necessarily be low entropy and therefore ‘‘rare.’’
There is no way the initial conditions can be typical, or
there would be no arrow of time, and this fact must apply
to inflation and prevent it from representing ‘‘completely
generic’’ initial conditions.

The position we take here (which was suggested by
Davies in [40] and is the same one taken by DKS and
emphasized at length in [15]) is basic acceptance of this
point. If you can regard the big bang as a fluctuation in a
-8
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larger system it must be an exceedingly rare one to
account for the observed thermodynamic arrow of time.
Also, we believe that this is the most attractive possibility
for a theory of initial conditions. Other theories of initial
conditions seem to us more ad hoc, and less compelling.

There is an additional point that appears in [38,39], but
which many (including one of us, A. A.) recall also being
discussed orally (but apparently not in print) by Penrose:
It might be argued that inflation, which has a lower
entropy initial state than the big bang, must necessarily
be more rare than a fluctuation giving a big bang without
inflation. For a number of reasons this point of view never
really caught on. One reason is that intuitively it seemed
063528
likely that a careful accounting of degrees of freedom
outside the observed universe would reverse that conclu-
sion. Hollands and Wald specifically note this view,
although they also seem drawn to the Penrose argument.

All these issues play out in this paper, but in a more
concrete form. DKS have a specific reason why they
ignore the external degrees of freedom (there are not
any separate external degrees of freedom in the causal
patch analysis). DKS are able to quantify the serious
problems that this causes for inflation. Our calculation
explicitly does account for external degrees of freedom
and we show quantitatively that that change does indeed
reverse the fortunes of inflation.
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