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Polynomial interpretation of multipole vectors
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Copi, Huterer, Starkman, and Schwarz introduced multipole vectors in a tensor context and used
them to demonstrate that the first-year Wilkinson microwave anisotropy probe (WMAP) quadrupole
and octopole planes align at roughly the 99.9% confidence level. In the present article, the language of
polynomials provides a new and independent derivation of the multipole vector concept. Bézout’s
theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling).
The constructive nature of the proof leads to a fast, practical algorithm for computing multipole
vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples and
numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to
Monte Carlo skies to independently reconfirm the estimate that the WMAP quadrupole and octopole
planes align at the 99.9% level.
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I. INTRODUCTION

The first-year Wilkinson microwave anisotropy probe
(WMAP) data [1] reveal a somewhat planar octopole,
which approximately aligns with the quadrupole [2].
More recent studies confirm these conclusions at roughly
the 99.9% level [3] while revealing mysterious align-
ments with the ecliptic plane [4], suggesting either a
hitherto unknown solar system effect on the microwave
background or an error in the collection and/or processing
of the WMAP data. Other researchers find that the ‘ � 4
multipole is generic, the ‘ � 5 multipole is unusually
nonplanar at the 99.8% level, and the ‘ � 6 multipole is
unusually planar at the 98.6% level [5]. No explanation is
yet known for these strange results.

Multipole vectors provide a convenient means to quan-
tify the planarity of a given multipole as well as to
compare the alignment of two different multipoles [6].
The present authors, coming from a background in pure
mathematics, were unable to decipher the formalism and
terminology of Ref. [6] and chose instead to recreate the
multipole vector concept from scratch. The real-valued
spherical harmonics of order ‘ are precisely the homoge-
neous harmonic polynomials of degree ‘ in the variables
x, y, and z (for example, Y0

2 is the polynomial x2 � y2 �
2z2, up to normalization), so the present authors sought to
understand the multipole vectors of Copi, Huterer, and
Starkman (CHS) from a polynomial point of view.

Translated to the language of polynomials, CHS’s mo-
tivating goal [see Eq. (10) of Ref. [6]] was to factor every
homogeneous harmonic polynomial P of degree ‘ into a
product of linear factors
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P�x; y; z� � � � �a1x� b1y� c1z�

� �a2x� b2y� c2z�

� � �

� �a‘x� b‘y� c‘z�: (1)

Such a factorization is, of course, impossible in general,
as CHS implicitly acknowledge by their introduction of
suitable error terms. In the language of polynomials the
correct statement of the theorem is

Theorem 1.—Every homogeneous polynomial P of de-
gree ‘ in x, y, and z may be written as

P�x; y; z� � � � �a1x� b1y� c1z�

� �a2x� b2y� c2z�

� � �

� �a‘x� b‘y� c‘z�

��x2 � y2 � z2� � R; (2)

where the remainder term R is a homogeneous polyno-
mial of degree ‘� 2. The decomposition is unique up to
reordering and rescaling the linear factors.

Notes: (a) Theorem 1 lives entirely in the realm of real
polynomials: the coefficients of P, R, and all the linear
factors aix� biy� ciz are assumed to be real.
(b) Theorem 1 does not require the polynomial P to be
harmonic.

In cosmological applications, we are interested only in
the value of the polynomial on the unit sphere S2; we
ignore its value on the rest of Euclidean 3-space. On the
unit sphere, the factor x2 � y2 � z2 is identically 1, so in
this case Theorem 1 says that any homogeneous polyno-
mial P may be written as a product of linear factors
��a1x� b1y� c1z� � � � �a‘x� b‘y� c‘z� plus a remain-
der term R of lower degree. Applying this reasoning
recursively gives the easy
27-1  2004 The American Physical Society
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Corollary 2.—When restricted to the unit sphere, every
polynomial P of degree ‘ in x, y, and z may be written as

P�x; y; z� � �‘ � �a‘;1x� b‘;1y� c‘;1z�

� �a‘;2x� b‘;2y� c‘;2z�

� � � �a‘;‘x� b‘;‘y� c‘;‘z�

� . . .

��2 � �a2;1x� b2;1y� c2;1z�

� �a2;2x� b2;2y� c2;2z�

��1 � �a1;1x� b1;1y� c1;1z�

��0: (3)

The decomposition is unique up to reordering and rescal-
ing the linear factors within each term.

Note: Corollary 2 does not require the polynomial P to
be either homogeneous or harmonic.

Proof of Corollary 2.—Write P as a sum of homoge-
neous terms P � P‘ � P‘�1 � . . .� P1 � P0. First apply
Theorem 1 to the highest order term P‘, yielding
a factorization �‘�a‘;1x� b‘;1y� c‘;1z� � � � �a‘;‘x�
b‘;‘y� c‘;‘z� along with a remainder term R‘�2 of ho-
mogeneous degree ‘� 2. (The factor x2 � y2 � z2 may
be ignored on the unit sphere.) Fold R‘�2 in with P‘�2 and
proceed recursively, applying Theorem 1 to P‘�1, then
P‘�2, and so on.

To prove uniqueness, consider the even and the odd
parts of P separately. That is, write P � Peven � Podd,
where Peven contains all the even-powered terms and
Podd contains all the odd-powered terms. Say we have
two potentially different decompositions for the even part

Peven � ‘ �‘�2 �‘�4 � . . .�0

� 0
‘ �0

‘�2 �0
‘�4 � . . .�0

0: (4)

where each i is the ith term in a decomposition (3) and
where the leading index will be ‘ or ‘� 1 according to
whether ‘ is even or odd. To make these decompositions
homogeneous, multiply through by appropriate powers of
Q � x2 � y2 � z2,

Peven � ‘ �Q‘�2 �Q2‘�4 � . . .�Q‘=20

� 0
‘ �Q0

‘�2 �Q20
‘�4 � . . .�Q‘=20

0: (5)

This does not affect the value of P on the unit sphere,
because Q � 1 there. The uniqueness part of Theorem 1
implies that the leading order terms ‘ and 0

‘ must be
equal. So subtract off those leading terms, divide through
by Q, and apply Theorem 1 again to conclude ‘�2 �

0
‘�2. Continue recursively to finally reach 0 � 0

0.
The same argument then proves that the odd part of P
has a unique decomposition as well. Q.E.D.

II. PROOF OF THE MAIN THEOREM

Even though the statement of Theorem 1 lives wholly
in the world of real polynomials, its proof will dive
063527
deeply into the world of complex polynomials. So let
the variables x, y, and z range over the complex numbers,
while insisting that the coefficients of the polynomial P
remain real. Because P has homogeneous degree ‘, when-
ever one point �x0; y0; z0� satisfies P�x; y; z� � 0, every
nonzero constant multiple ��x0; �y0; �z0� satisfies it as
well. Thus, the equation P � 0 is well defined on each
equivalence class of points f��x0; y0; z0�j� 2 C � f0gg. In
other words, the complex curve P � 0 is well defined on
the complex projective plane CP2, which is the quotient
of C3 � f�0; 0; 0�g under the equivalence relation
�x0; y0; z0� � ��x0; y0; z0�. This leads us into the realm of
algebraic geometry and puts its powerful tools at our
disposal.

The most useful tool for our purposes is
Bézout’s theorem.—If P and Q are homogeneous poly-

nomials of degree m and n, respectively, then the curves
P � 0 and Q � 0 intersect in CP2
(i) i
-2
n exactly mn points, counted with multiplicity, if
P and Q share no common factor, or
(ii) i
n infinitely many points, if P and Q do share a
common factor.
For an elementary exposition of Bézout’s theorem, see [7].
In the present case, the only way the polynomial P may

share a factor with the irreducible polynomial
Q�x; y; z�  x2 � y2 � z2 is for P to containQ as a factor,
in which case Theorem 1 is trivially satisfied (take � �
0). So henceforth assume P does not containQ as a factor.
Bézout’s theorem now tells us that the degree ‘ complex
curve P�x; y; z� � 0 intersects the quadratic curve
Q�x; y; z� � 0 in exactly 2‘ points, counted with multi-
plicities. None of the intersection points may be purely
real, because real values cannot possibly satisfy
x2 � y2 � z2 � 0—recall that the definition of CP2 ex-
plicitly excludes �0; 0; 0�. Furthermore, because P and Q
both have real coefficients, whenever �x0; y0; z0� lies in the
intersection P � Q � 0, its complex conjugate �x0; y0; z0�
must lie there, too. So the 2‘ points of intersection
consist of ‘ pairs of nonreal complex conjugates
fp1; p1; . . . ; p‘; p‘g.

We claim that each pair fpi; pig determines a unique
line aix� biy� ciz � 0 with real coefficients. The proof
is easy. The conjugate pair fpi; pig lies on the line aix�
biy� ciz � 0 if and only if the real and imaginary parts
satisfy the following two totally real equations:

aiRepi;x � biRepi;y � ciRepi;z � 0;

aiImpi;x � biImpi;y � ciImpi;z � 0:
(6)

Geometrically, those two equations represent planes in
R3. If the coefficient vectors �Repi;x;Repi;y;Repi;z� and
�Impi;x; Impi;y; Impi;z� are noncollinear, then the two
planes are distinct and their intersection, which defines
the solution set for �ai; bi; ci�, is a line through the origin
in R3. In other words, the line aix� biy� ciz � 0 is
unique. Normalize the coefficients to unit length, i.e.,
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a2i � b2i � c2i � 1, and the only remaining ambiguity is
an overall factor of �1.

But what if the coefficient vectors Repi � �Repi;x;
Repi;y;Repi;z� and Impi � �Impi;x; Impi;y; Impi;z� had
been collinear? In this case the line aix� biy� ciz � 0
would be ill defined. Fortunately, this case does not arise.
For, if Impi were proportional to Repi, say, Impi �
�Repi, then the point pi, as an element of CP2, could
be rewritten as a scalar multiple pi �

1
1�i�pi � Repi,

showing that pi is totally real. In other words, pi would
lie in RP2 � CP2. In particular, pi would be its own
complex conjugate, and we can hardly expect a single
point pi � pi to determine a unique line. Fortunately, this
case cannot occur, because Q�x; y; z� � x2 � y2 � z2 � 0
admits no nontrivial real solutions.

So let Li denote the unique line aix� biy� ciz � 0
containing the conjugate pair fpi; pig. More precisely, let
Li � aix� biy� ciz be the unique (modulo rescaling)
real linear polynomial whose roots include both pi and
pi. The desired decomposition (2) becomes

P � �L1L2 � � �L‘ �QR: (7)

To prove that this equality holds, we again turn to
Bézout’s theorem. First, recall that the complex curve
P � 0 intersects the complex curve Q � 0 in precisely
the 2‘ points fp1; p1; . . . ; p‘; p‘g. By construction, the
product curve L1L2 � � �L‘ � 0 also intersects Q � 0 in
those same 2‘ points, and by Bézout’s theorem there are
no other points of intersection. Now pick any other point
q 2 fQ � 0g and define � to be the ratio

� �
P�q�

L1�q�L2�q� � � �L‘�q�
: (8)

Write a new polynomial

F  P� �L1L2 � � �L‘: (9)

This new polynomial F has degree ‘, yet has zeros at the
2‘� 1 distinct points fq; p1; p1; . . . ; p‘; p‘g � Q. In other
words, the complex curve F � 0 intersects the complex
curve Q � 0 at (at least) 2‘� 1 distinct points. By
Bézout’s theorem the polynomials F and Q must share a
common factor; because Q is irreducible, the common
factor must perforce be Q itself. Thus, we may factor F as

F � QR (10)

for some remainder termR. Combining (9) and (10) yields
the desired decomposition (7).

Let us now prove that � is real. In light of the factori-
zation (10), the polynomial F is clearly zero on the whole
complex curve Q � 0. In particular, for the point q
chosen earlier,
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F�q� � F� �q� � 0: (11)

On the one hand,

F� �q� � P� �q� � �L1� �q�L2� �q� � � �L‘� �q�: (12)

On the other hand, because P and Li all have real coef-
ficients,

F�q� � P� �q� � �L1� �q�L2� �q� � � �L‘� �q�: (13)

Comparing (11), (12), and (13), and recalling that q was
chosen to ensure Li�q� � 0, proves that � � ��; in other
words, � is real.

An elementary argument then shows that for all real
values of x, y, and z, R�x; y; z� � R�x; y; z� � R�x; y; z�,
implying that the coefficients of the polynomial R must
all be real.

This completes the proof of the existence part of
Theorem 1.

Let us now prove that the decomposition (2) is unique.
Assume we have two decompositions

P�x; y; z� � �L1L2 � � �L‘ �QR

� �0L0
1L

0
2 � � �L

0
‘ �QR0: (14)

Our goal is to show that each linear factor L0
i0 in the

second decomposition occurs as a factor Li in the first
decomposition as well, modulo a possible rescaling. A
given line L0

i0 � 0 intersects the quadraticQ � 0 in a pair
of conjugate points p and �p. Because p and �p satisfy both
L0
i0 � 0 and Q � 0, they satisfy P � 0 as well. Turning

our attention to the first decomposition, because p and �p
satisfy both P � 0 and Q � 0, they satisfy L1L2 � � �L‘ �
0 as well. Hence, p must satisfy one of the lines Li � 0,
and because the line’s coefficients are real, �p must satisfy
that same line. But we saw earlier that a pair of conjugate
points p and �p determines a unique line modulo normal-
ization [recall the essentially unique solution to Eqs. (6)].
Therefore, Li is a constant multiple of L0

i0 , and if the
coefficients of each have been normalized to length 1,
then Li � �L0

i0 . This proves the uniqueness of the
factorization.

If we evaluate the two decompositions (14) on the
complex curve Q � 0, we get

�L1L2 � � �L‘ � �0L0
1L

0
2 � � �L

0
‘; (15)

proving that, if the coefficients of Li and L0
i0 are consis-

tently normalized, then � � �0. It then follows easily that
R � R0 as well.

This completes the proof that the decomposition (2) is
unique, thus completing the proof of Theorem 1.
III. COMPUTATIONAL CONSIDERATIONS

The proof presented in Sec. II is almost constructive,
but not quite. It relies on Bézout’s theorem for the exis-
-3
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tence of the root pairs fp1; p1; . . . ; p‘; p‘g but does not say
how to find them. This section fills the gap.

The key observation is that the quadratic curve Q �
x2 � y2 � z2 � 0 is topologically a 2-sphere. More to the
point, it is a copy of the complex projective line CP1,
which happens to be homeomorphic to the 2-sphere. Let
us parametrize the curve Q � 0 as

�u; v� � �x�u; v�; y�u; v�; z�u; v��

� �i�u2 � v2�;�2iuv; u2 � v2�; (16)

where u and v are homogeneous coordinates in CP1.
Clearly, the mapping (16) takes all points �u; v� 2 CP1

to the curve Q � 0, by construction. The question is,
which of those points happen to satisfy the given poly-
nomial P as well? Write

P�x; y; z� � P�i�u2 � v2�;�2iuv; u2 � v2� (17)

to express P as a function on CP1.
If v � 0, then �u; v� and �uv ; 1� represent the same point

in CP1. If we define �  u
v , then expression (17) effec-

tively reduces to a polynomial in a single variable,

P�x; y; z� � P�i��2 � 1�;�2i�; �2 � 1�: (18)

The roots of this polynomial are the desired root pairs
fp1; p1; . . . ; p‘; p‘g.

If, on the other hand, v � 0, then �u; v� � �u; 0� �
�1; 0�. Thus, �u; v� � �1; 0� may represent an additional
root, which would not be found as a root of P��� in (18).

Once we have found the parameters �u; v� for all 2‘
roots of P, the easiest way to group them into conjugate
pairs is to observe that the parametrization (16) maps
‘‘antipodal points’’ �u; v�; �� �v; �u� 2 CP1 to conjugate
points �x; y; z�; � �x; �y; �z� 2 CP2. In other words, ��; 1� and
��1; ��� � ��1= ��; 1� map to a pair of conjugate points in
CP2.

IV. EXAMPLES

To illustrate how the algorithm works in practice, let us
apply Theorem 1 to several concrete examples.

A. Toy quadrupole

Consider the quadratic polynomial

P�x; y; z� � xy� yz� zx� x2 � z2: (19)

First, dismiss the special case �u; v� � �1; 0� by noting
that the parametrization (16) maps �u; v� � �1; 0� to
�x; y; z� � �i; 0; 1� for which (19) gives P�i; 0; 1� � i � 0.

Now consider the general case, for which Eq. (18)
becomes

i�4 � 2�1� i��3 � 4�2 � 2�1� i��� i � 0 (20)

with roots
063527
�1 � 1�
���
2

p
; �2 � 1�

���
2

p
;

�3 � i�1�
���
2

p
�; �4 � i�1�

���
2

p
�;

(21)

corresponding, respectively, to the four points of CP2,

p1 � �1;�1;�i
���
2

p
�; p2 � ��i

���
2

p
; 1;�1�;

p1 � �1;�1;�i
���
2

p
�; p2 � ��i

���
2

p
; 1;�1�:

(22)

Solving the line equations (6) converts the preceding two
pairs of conjugate points to the two lines

L1 �
��
1
2

q
x�

��
1
2

q
y � 0; L2 �

��
1
2

q
y�

��
1
2

q
z � 0; (23)

which give us the two multipole vectors �
��������
1=2

p
;

��������
1=2

p
; 0�

and �0;
��������
1=2

p
;

��������
1=2

p
�.

To find the correct �, evaluate Eq. (8) for, say, q �
�1; i; 0�, giving

� �
P�q�

L1�q�L2�q�
�

�1� i

� 1
2 �

i
2

� 2: (24)

Of course, any other choice for q would have given the
same answer � � 2, just so we make sure q lies on
the curve Q�q� � x2 � y2 � z2 � 0 and exclude
q 2 fp1; p1; p2; p2g.

We may now write down the polynomial F from
Eq. (9), namely,

F � P� �L1L2

� �xy� yz� zx� x2 � z2�

�2�
��
1
2

q
x�

��
1
2

q
y��

��
1
2

q
y�

��
1
2

q
z�

� �x2 � y2 � z2; (25)

and divide byQ � x2 � y2 � z2 to get the remainder term
R � F=Q � �1. Thus, the final decomposition promised
by Theorem 1 becomes

xy� yz� zx� x2 � z2 � 2�
��
1
2

q
x�

��
1
2

q
y��

��
1
2

q
y�

��
1
2

q
z�

� �x2 � y2 � z2���1�:

(26)
B. Toy octopole

The cubic polynomial

P�x; y; z� � x2y� y3 (27)

illustrates some nongeneric behavior which may arise,
namely, the possibilities of (a) a ‘‘missing root’’ and
(b) multiple roots. We will follow the same algorithm as
in Sec. IVA, pointing out only the differences.
-4
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The first difference is that the special case �u; v� �
�1; 0�, corresponding to �x; y; z� � �i; 0; 1�, is indeed a root
of P in (27). So we record that root and proceed onward in
search of the other roots.

The next difference we encounter is that the polyno-
mial
2i�5 � 4i�3 � 2i� � 0 (28)
has degree only 5, not degree 2‘ � 2� 3 � 6 as one
expects in the generic case. This polynomial’s five roots
supplement the one exceptional root �i; 0; 1� we found in
the previous paragraph, to give the required total of six
roots. In other words, the existence of the exceptional root
�i; 0; 1� forces the degree of the polynomial from 2‘ down
to 2‘� 1.

The roots of (28) turn out to be f�i; i;�i; i; 0g. Unlike
more generic polynomials, this one has multiple roots,
implying a repeated factor in the product L1L2L3.
Specifically, those five roots correspond to
p1 � ��i; 1; 0�; p1 � ��i; 1; 0�; p2 � ��i; 1; 0�;

p2 � ��i; 1; 0�; p3 � ��i; 0; 1�; (29)
and then the one exceptional root �i; 0; 1� completes the
pattern
p 3 � ��i; 0; 1�: (30)
From here the algorithm is routine. The lines are
L1 � z � 0; L2 � z � 0; L3 � y � 0; (31)
the scalar multiple is � � �1, and the final factorization
is
x2y� y3 � �1�y��z��z� � �x2 � y2 � z2��y�: (32)
WMAP quadrupole and octopole

Our first task here is to convert a given set of coeffi-
cients a‘m to a homogeneous harmonic polynomial.
Converting the standard spherical harmonics Ym‘ to poly-
nomials in x, y, and z is easy. For example, for the
quadrupole,
063527
Y�2
2 �

���������
15

32�

s
sin2�e�2i’ �

���������
15

32�

s
�x� iy�2;

Y�1
2 �

�������
15

8�

s
sin� cos�e�i’ �

�������
15

8�

s
�x� iy�z;

Y0
2 �

���������
5

16�

s
�3cos2�� 1� �

���������
5

16�

s
�3z2 � 1�

�

���������
5

16�

s
�3z2 � �x2 � y2 � z2��

�

���������
5

16�

s
��x2 � y2 � 2z2�;

Y1
2 � �

�������
15

8�

s
sin� cos�ei’ � �

�������
15

8�

s
�x� iy�z;

Y2
2 �

���������
15

32�

s
sin2�e2i’ �

���������
15

32�

s
�x� iy�2: (33)

Using the coefficients a2;m for the Doppler-quadrupole-
corrected (DQ-corrected) Tegmark map of the first-year
WMAP quadrupole gives

P�x; y; z� � �0:012 627 39x2 � 0:023 020 19xy

� 0:006 776 25y2 � 0:009 506 98xz

� 0:010 640 14yz� 0:005 851 13z2: (34)

Following the same algorithm, as illustrated in Secs. IVA
and IV B, we get the polynomial

�0:018 478 52� i0:009 506 98� � �0:046 040 38

� i0:021 280 27��� 0:040 657 52�2

� �0:046 040 38� i0:021 280 27��3

� �0:018 478 52� i0:009 506 98��4 (35)

leading to the lines

L1 � 0:939 660x� 0:187 066y� 0:286 437z � 0;

L2 � �0:437 088x� 0:792 820y� 0:424 724z � 0:

(36)

Converting the coefficients of these lines to spherical
coordinates gives multipole vectors

v̂ �2;1� � �11:26�; 16:64��; v̂�2;2� � �118:87�; 25:13��;

(37)

in full agreement with those that CHS found using their
tensor algorithm [Eq. (3) of Ref. [4]].

An analogous computation for the octopole yields
multipole vectors v̂�3;1�, v̂�3;2�, and v̂�3;3�, again in full
agreement with those reported in Eq. (3) of Ref. [4].
-5
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V. HOW WELL DO THE WMAP QUADRUPOLE
AND OCTOPOLE ALIGN?

Following Ref. [4], we define the quadrupole plane
normal vector

w2;1;2  v̂�2;1� � v̂�2;2� (38)

and the three octopole plane normal vectors

w3;1;2  v̂�3;1� � v̂�3;2�; w3;2;3  v̂�3;2� � v̂�3;3�;

w3;3;1  v̂�3;3� � v̂�3;1�:
(39)

Still following Ref. [4], we judge the alignment of the
quadrupole plane with the three octopole planes via the
dot products

A1 � jw2;1;2 � w3;2;3j; A2 � jw2;1;2 � w3;3;1j;

A3 � jw2;1;2 � w3;1;2j:
(40)

Finally, in contrast to Ref. [4] (whose statistics we ques-
tion—see Ref. [3]), we let the sum

S � A1 � A2 � A3 (41)

provide a numerical measure of how well the quadrupole
plane aligns with the octopole planes. For the DQ-
corrected Tegmark map, the sum evaluates to S0 � 2:395.

To judge how unusually large S0 is, we evaluated S for
100 000 random quadrupoles and octopoles and found
that only 118 trials produced S > S0. This 99.9% confi-
dence level, while weaker than the controversial confi-
dence levels of Ref. [4], is completely consistent with
Huterer and Starkman’s revised statistical analysis [8].

Like Schwarz, Starkman, Huterer, and Copi, we find
this result astonishing. In particular, we find it difficult to
believe that the quadrupole and octopole align so well
merely by chance. Whether the alignment is imposed by
the global topology of a small finite universe, is due to
some previously unknown solar system effect, or is
merely the result of an error in the collection and/or
processing of the WMAP data remains to be seen.
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In the meantime, we emphasize that our simulations
use an entirely different algorithm from that of Refs. [4,6]
as well as completely independent computer code. This
effectively rules out the possibility of error in computing
the 1-in-1000 estimate, forcing us to take that estimate
quite seriously.

We should point out that our Monte Carlo simulations
chose random quadrupoles and octopoles independently
of each other, relative to spherically symmetric distribu-
tions on the spaces of all spherical harmonics of degree 2
and 3, respectively. In other words, we used independent
Gaussian coefficients a‘m.

VI. AN OPEN QUESTION

Corollary 2 motivates a broader question, first raised by
Copi, Huterer, and Starkman [9]. One would like to
decompose an arbitrary real-valued function f:S2 ! R,
for example, the temperature function on the microwave
sky, as a sum f �

P
1
‘�0��‘

Q‘
i�1 L‘;i�. In other words, this

approach would bypass the spherical harmonics entirely
and, instead, write the function f directly as the sum of
totally factored polynomials �‘

Q‘
i�1 L‘;i, one for each

degree ‘.
Corollary 2 almost makes such a factorization possible.

For example, if we approximate the microwave sky tem-
perature by the sum of its first 837 multipoles, T �P837
‘�0

P‘
m��‘ a‘;mY

m
‘ , then Corollary 2 lets us reexpress

it as T �
P837
‘�0��‘

Q‘
i�1 L‘;i�. The question is, what hap-

pens when we add in the 838th spherical harmonic?
For sure we will add an 838th term �838

Q838
i�1 L838;i to

our factored-polynomial decomposition. Almost surely
the 836th term will change significantly as it inherits
the remainder R from the newly added 838th term. But
what about the lower order terms? Will the second,
fourth, and sixth terms remain stable? Or will they swing
wildly every time we add a new high-order term to the
series? In other words, is the decomposition stable?
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