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Intrinsic alignment-lensing interference as a contaminant of cosmic shear
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Cosmic shear surveys have great promise as tools for precision cosmology, but can be subject to
systematic errors including intrinsic ellipticity correlations of the source galaxies. The intrinsic
alignments are believed to be small for deep surveys, but this is based on intrinsic and lensing
distortions being uncorrelated. Here we show that the gravitational lensing shear and intrinsic shear
need not be independent: correlations between the tidal field and the intrinsic shear cause the intrinsic
shear of nearby galaxies to be correlated with the gravitational shear acting on more distant galaxies.
We estimate the magnitude of this effect for two simple intrinsic-alignment models: one in which the
galaxy ellipticity is linearly related to the tidal field, and one in which it is quadratic in the tidal field as
suggested by tidal torque theory. The first model predicts a gravitational-intrinsic (GI) correlation that
can be much greater than the intrinsic-intrinsic (/) correlation for broad redshift distributions, and that
remains when galaxies pairs at similar redshifts are rejected. The second model, in its simplest form,
predicts no gravitational-intrinsic correlation. In the first model, and assuming a normalization
consistent with recently claimed detections of intrinsic correlations, we find that the G/ correlation
term can exceed the usual /] term by >1 order of magnitude and the intrinsic correlation induced
B-mode by 2 orders of magnitude. These interference effects can suppress the lensing power spectrum
for a single broad redshift bin by of order ~10% at z;, = 1 and ~30% at z;, = 0.5. We conclude that,
depending on the intrinsic-alignment model, the GI correlation may be the dominant contaminant of
the lensing signal and can even affect cross spectra between widely separated bins. We describe two
ways to constrain this effect, one based on density-shear correlations and one based on scaling of the
cross correlation tomography signal with redshift.
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L. INTRODUCTION

Weak gravitational lensing has attracted considerable
interest recently as a means of measuring the density
perturbations in the universe at low redshifts because it
is directly sensitive to the matter distribution. It thus
avoids the astrophysical complications involved in other
means of measuring the matter distribution such as gal-
axy clustering. Recent first detections of the cosmic shear
autopower spectrum [1-8] have stimulated proposals for
more ambitious projects in the future, such as CFHTLS
[9], Pan-STARRS [10], SNAP[11], and LSST [12], which
aim for percent-level precision. Comparison of the shear
power spectra at different redshifts and/or to the primor-
dial fluctuation amplitude derived from cosmic micro-
wave background (CMB) anisotropy measurements can
constrain the cosmological growth factor and hence pa-
rameters such as the neutrino mass, amplitude of fluctua-
tions oy, and dark energy equation of state [13—18].

While the underlying physics of weak lensing is
“clean,” the shear measurements are subject to possible
systematic errors, including incomplete correction for
seeing and optical distortions, selection effects, and
noise-rectification biases [19—-24], and their cosmological
interpretation relies on accurate knowledge of the redshift
distribution of the source galaxies. Another possible
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systematic error is intrinsic (i.e. not lensing-induced)
correlations among the ellipticities of neighboring source
galaxies [25-34], which could arise if the galaxy ellip-
ticities are affected by large-scale tidal fields. This sys-
tematic error is particularly worrisome because it lies
outside the control of the observer, and is dependent
upon the poorly understood physics of galaxy formation.
One frequently proposed method to reduce this contami-
nation is to assign photometric redshifts to the source
galaxies, and then to down-weight or ignore pairs of
galaxies at similar redshifts when computing the shear
correlation function or power spectrum [35-38]; see
Ref. [39] for an implementation. The idea is that the pairs
of galaxies widely separated in redshift should have
independent intrinsic ellipticities, but should have corre-
lated gravitational shears induced by structures between
the observer and the more nearby source galaxy.

While cross correlation of different redshift bins is
expected to remove spurious power due to the intrinsic
alignment autocorrelation, there is another more subtle
effect by which even the cross correlations can be con-
taminated from intrinsic alignments. If the ellipticities of
galaxies are correlated with the tidal quadrupole field in
which the galaxies form, then the intrinsic ellipticity of a
nearby source galaxy will be correlated with the lensing
shear acting on a more distant source galaxy. This leads to
a nonzero cross correlation between the intrinsic elliptic-
ity and the gravitational lensing shear. Cross correlations
between the shear measurements at widely different red-
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shifts are actually more contaminated by this effect than
shear autocorrelations computed using only galaxies in a
narrow redshift slice because the radial separation is
necessary in order for the tidal field around the nearby
galaxy to lens the more distant galaxy. This intrinsic
lensing correlation will also affect attempts to cross
correlate cosmic shear surveys of galaxies with lensing
of the CMB [17,40,41] because the CMB is also lensed by
the tidal field surrounding the source galaxies.

This paper is organized as follows. In Sec. II, we
formally express the E- and B-mode shear power spectra
in terms of the background cosmology, power spectra of
matter density and intrinsic shear, and matter-shear cross
spectrum. In Sec. III we consider two crude models of
intrinsic alignments and calculate their predicted contri-
bution to the shear power spectrum. We discuss methods
to assess and/or remove the contamination in Sec. I'V, and
we conclude in Sec. V.

II. SHEAR POWER SPECTRA

Before developing the formalism, let us describe a
simple example of the effect, shown in Fig. 1. The tidal
field may lead to a stretching of the galaxy shape in the
direction of the tidal field. Gravitational shearing of a
background source leads to stretching of the galaxy in
perpendicular direction. As a result, the lensing effect
will be partially cancelled by the intrinsic alignment
effect and the two effects are coherent, as they depend
on the same underlying density field.

Weak gravitational lensing by large-scale structures is
detectable through its shearing of distant *“‘source’ gal-
axies. To lowest order, the shear of a galaxy i can be
broken down into a gravitational and an intrinsic shear
contribution y; = y% + yl. The gravitational shear is
well known and is equal to

0>0 0>0

FIG. 1. The effect of the density-intrinsic shear correlation
on the shear power spectrum. Density fluctuations in the
nearby plane (gray masses) induce a tidal field (arrows). A
source galaxy in a more distant plane (dashed ellipse) is
gravitationally sheared tangentially to these masses. If the
intrinsic shears of galaxies in the nearby plane (solid ellipse)
are aligned with the stretching axis of the tidal field, then
this results in an anticorrelation between the shears of galaxies
at different redshifts, i.e. C?E‘G1<O. (The opposite case,
CfE’GI > 0, results if galaxies are preferentially aligned with
the compressing axis of the tidal field.)
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(v&, v&) =972 L W(x, xi)(9% — 92,20,0,)8(xh,;)dx,
(1)

where the d derivatives are takes with respect to angular
position (i.e. have units of radians —1), 92 is the asso-
ciated inverse Laplacian, fi; is the angular position of
galaxy i, 6(ynf) is the fractional density perturbation at
distance y in direction f, and the lensing window func-
tion is

3 .
Wix, xi) = EQMH%(l + z)sing x(cotg y — cotgy,) (2)

for y < y; and O otherwise. Here sing and cotg are the
modified trigonometric functions, i.e.

K~ sin(K'2y) K>0
singx = {X K =0, (3)
|K|~"2sinh(|K|'2y) K <0

cotg y = ﬁ Insing y, and K is the spatial curvature of the
universe.

Now we imagine that a set of source galaxies in red-
shift slice @ with comoving distance distribution f,(x)
are observed. The gravitational contribution to a shear
Fourier mode is

¥5(a) = (cos2éby, sin2eby) [0 "W (08 (0dx, @)

where the integrated window function is

Wa(x) = L " L OO W x)dy. (5)

The intrinsic alignment contribution at a point is given
by

YA, o) = / " F 007 (x)dy, (6)
0

where the density-weighted intrinsic shear §/ =
(1+ 5g)yl is computed from the fractional overdensity
of galaxies 0, and average intrinsic shear of galaxies v
A density weighting is technically necessary in Eq. (5),
which makes W, (y) slightly dependent on angular posi-
tion. On subarcminute scales where the fluctuations in &,
are large this results in production of B-modes in the
lensing shear [42]; on larger scales the effect is unim-
portant. In contrast, intrinsically aligned pairs of gal-
axies tend to be close to each other where 5g =1, and
hence the factor of 1+ 6, in Eq. (6) cannot be safely
neglected except on very large scales.

The E-mode shear cross spectrum between two redshift
slices can be broken down into gravitational lensing
(GG), intrinsic alignment (I), and interference (GI)
terms
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Cif(ap) = (7% (ap) + ¢ (ap) + C7E (ap).

)

(The B-mode shear cross spectrum is similar, but con-
tains only an I/ term since there is no gravitational
contribution to the B-mode shear.) The gravitational lens-
ing contribution to the shear power spectrum can be
obtained on small scales (€ > 1) by Limber integration
[43], which computes the power spectrum of a radially
projected quantity. In this case we integrate Eq. (4) to get

C?E,GG(aIB)=/O w (X)WB(X) 5<k= in€

sin y

;)(>d)(-
®)

The intrinsic alignment contribution is most easily com-
puted by Limber integration of Eq. (6)

CEEH( ,3) ffa(X)fB(X)PEE<k 4

d ]
sin% y Y sing x X) X
(€))

where the projected power spectrum of the intrinsic
alignments is

{71 )7L (M Jolkx 1) + Jy(kx )]

+(FL O P CNJolkx ) — Jy(kx )]}
X xjdx;dx),

P = = |

(10)

where the () are two-point correlation functions of ¥ with
two points separated by comoving distance x| in the
radial direction and x; in the perpendicular direction.
The + and X components of the shear are measured
along the direction of separation x, and at 45 degrees
to this direction, respectively. Note that in general the
two-point correlation functions can depend on x| and x|,
independently (i.e., they are not just functions of the

separation ,/le + xﬁ) since the shear depends on viewing

geometry. To get the B-mode power, switch the + and X
labels in Eq. (10).

Given models for intrinsic alignment and galaxy clus-
tering, Egs. (9) and (10) are sufficient to compute the pure
intrinsic alignment contribution to the shear cross spec-
trum. However, note that as a second-order statistic,
Eq. (7) also contains interference terms due to correlation
of the gravitational shear with intrinsic alignments.
These have normally been ignored because the gravita-
tional shear acting on a particular galaxy is determined
by the integrated tidal quadrupole along the line of sight,
whereas the intrinsic shear is expected to be determined
by tidal fields in the vicinity of the galaxy. But in cosmic
shear studies, we correlate the shears of two galaxies
whose redshifts may be different. In this case, it is plau-
sible that the more nearby galaxy is intrinsically aligned
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by a quadrupolar tidal field that also lenses the more
distant galaxy. Therefore we must consider the interfer-
ence terms. These are given by

EE,GI e W (N fs(0) + W) fa(x)
Cap) _ﬁ) sin% y

¢
X Py i ——
>y <Sin1<X>dX’ (b

where the 3-dimensional cross spectrum P 5 is related to
the density-shear correlation function via

Pk x) = —27 f (B0 (Walhox ) dx .
(12)

ITII. MODELS

We now compute the predicted level of contamination
of weak lensing surveys from the ‘““interference’ terms,
Eq. (11). We consider two cases: first the case of galaxies
whose mean ellipticities are linear functions of the under-
lying tidal field; and second, the case of galaxies whose
mean ellipticities are quadratic functions of the tidal field.
In all of our numerical results below, we have taken the
bias to be b, = 1, used the best-fit scale-invariant (n, =
1) flat ACDM model of Ref. [44] (o3 = 0.966, O, =
0.0475, Q,, = 0.293, H, = 70.8 km/s/Mpc), and used
the adiabatic CDM + baryon transfer function of
Ref. [45]. The gravitational-gravitational shear power
spectra include the nonlinear correction of Ref. [46].

The first (linear) model has usually been used for
elliptical galaxies (since gravitational collapse in a gen-
eral tidal field is expected to result in a triaxial halo
aligned with the principal axes of the tidal field) and
the second (quadratic) model for spirals (since the orien-
tation of these is believed to be determined by angular
momentum acquired during gravitational collapse, which
requires one tidal quadrupole to supply the torque and
another tidal quadrupole to be torqued). The models
presented here are “toy” models in the sense that their
theoretical motivation does not apply to highly nonlinear
scales, and even on larger scales there is little observa-
tional basis for models of intrinsic galaxy ellipticity
alignments. An alternative to analytic models is to esti-
mate intrinsic alignments by calculating the ellipticities
or angular momenta of dark matter haloes in N-body
simulations [25-27,32], however one should keep in
mind that there can be misalignment between the dark
matter halo and the galaxy it contains [47], and so intrin-
sic alignment results based on N-body simulations are not
definitive. In principle it would be possible to derive
predictions for intrinsic correlations from a halo model,
however this would require adding a prescription for the
galaxy alignment to the current halo models. Such a
prescription would likely have to come from an analytic
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or N-body model. Undoubtedly there is much room for
improvement in both the theory—which must ultimately
address the complications of galaxy formation, mergers,
etc.—and the observations, which will be necessary to
measure or constrain the intrinsic alignment signal at
levels suitable for precision cosmology.

A. Linear alignment model

A simple model for the ellipticities of elliptical gal-
axies was proposed by [30]. The intrinsic shear of the
galaxy is assumed to follow the linear relation

Yl = (VZ

4 " 20V, V)S[W,], (13)

where W5 is the Newtonian potential at the time of galaxy
formation (assumed to be during matter domination), S is
a smoothing filter that cuts off fluctuations on galactic
scales, and V is a comoving derivative (as opposed to o
which is a 2-dimensional derivative on the unit sphere
with units of radians — 1). We have taken S to be a simple
cutoff in Fourier space at k.o = 1h/Mpc. Here C; is a
normalization constant (note that C; > 0 if the galaxy is
aligned along the “stretching’ axis of the tidal field). The
original motivation for Eq. (13) was the assumption that
galaxies are homologous with their haloes, and that the
halo ellipticity is perturbed by the local tidal field pro-
duced by large-scale structure [30]. On sufficiently large
scales, this relation can also be motivated by arguments
analogous to linear biasing theory for galaxies [48]: the
large-scale correlations in the intrinsic shear field must be
determined by the large-scale potential fluctuations; if
these large-scale potential fluctuations are sufficiently
small, then the intrinsic shear field should be a linear
and local function of the potential ¥p (which is & ¥ in
the linear regime); the only linear, local functions of ¥p
with quadrupole symmetry are Eq. (13) and derivatives
thereof; and on large scales we expect higher-derivative
terms such as V?(VZ—V22V,V)S[¥,] to be
negligible.

The primordial potential is related to the linear density
field via

o c@k 28, (K), (14)

Vp(k) = 50)

where p(z) is the mean density of the universe, D(z) «
(1 + z)D(z) is the rescaled growth factor normalized to
unity during matter domination, and G is the Newtonian
gravitational constant. On linear scales, we have §, =
b¢Olin, 8 = Ojin, and hence the weighted intrinsic shear is
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) (K3, — K3, 2kykny)
) = S [FRE TR ) 690

Shn(kl)i|d kl,

b,
e )3
15)
where k, = k — k; and we have chosen the wave vector
k to lie on the x-axis. (We are only interested in modes

with k perpendicular to the line of sight.) The power
spectrum of ¥ is

PEE(K) = 1” {Phﬂ(k) + 12 [ (k) + falky)]

Py (k) Py (ky)
@2m)’
2

where fr(w) = (w§ — wy)/w?. To get the B-mode power
spectrum, we replace f5 with fz(w) = 2w, w,/w?

X f5(k2) &k, } (16)

szB(k) 1p b3 f[fB(kZ) + fp(k)] X fp(ks,)
Phn(k )le(kz)
2m)?

Note that the B-mode intrinsic alignment power spec-
trum contains no O(PA") contribution. This is because the
tidal quadrupole field is a pure E-mode (this is even true
in the presence of nonlinear evolution), and produces only
an E-mode pattern of intrinsic alignments if a linear
model of galaxy ellipticities such as Eq. (13) applies.
Galaxy clustering modulates this field according to the
galaxy distribution, and thereby transfers some power
into B-modes.

The cross power of the matter density and weighted
shear is then found from Eq. (15)

&Pk, (17)

Cip .
Pyyi(k) = — %P{;“(k). (18)

B. Quadratic-alignment model

The apparent ellipticity of a spiral galaxy is deter-
mined principally by the orientation (and hence angular
momentum) of its disk. This angular momentum is be-
lieved to comes from external tidal fields perturbing the
collapsing galaxy to form an anisotropic moment of
inertia, which allows the galaxy to be “spun up” by a
tidal quadrupole. In this case, the angular momentum
vector L of the galaxy acquires an anisotropic probability
distribution, and leads to a mean intrinsic ellipticity. This
mean ellipticity vanishes to first order in the tidal field
since a tidal field is required both to produce the aniso-
tropic moment of inertia and then to apply a torque. The
second-order contribution is [30]

71 = Cz(Tf ~T?

y,w XM y,u)
where the tidal tensor is

19)
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T V.V, 5 V2 \|S[¥,]. 20
mv 47TG< 3 nv ) [ P] ( )
(Since the tidal shears T are spin 2, we recall from the
theory of addition of angular momenta that Eq. (19) is the
most general quadratic function of 7 with spin 2.) The

resulting density-weighted intrinsic alignment is

.
Phk) = 20 [ ek, k) 1)1,

b,
X [5<3>(kg) +( 8y (K4 )}ﬁk'cﬁk’z, (1)

)’
where we have retained the convention that k is chosen to
lie on the x axis, set k, = k,/|k,| and k} =k — k| —
k’, and defined the h-function by hy = h,, — h,, with

1 o 1
- § 6;LV><UAUV - § 5)\1/)' (22)

The B-mode intrinsic alignment is obtained by replacing
hg with hg = 2h,,. (See Ref. [49] for a similar calculation
without the density weighting 1 + &,.)

The predicted intrinsic alignment power spectra P (k)
from this model can be derived by the same methods as
used in Sec. IIT A, although since y’ is second-order in
W, (and hence &y;,) there are more Feynman diagrams
that contribute. The result is

a8, %) = ( i,

PEE(K) = { f[hE<k,,k2)PWd3kl
# 503 [Thas, &) + gl k)
+ hp(KS KT
ra )P(;n:;e)pm(k d &’k d3k’2}. (23)
In Eq. (23) we have defined k, =k —k; and

ki =k — k| — K.

In the simple version of the quadratic alignment model
presented here, there is no density-shear correlation, i.e.
8y, and (1 + 8g)71 have zero cross correlation assuming
Gaussian dy;,, linear biasing 8, = b, 0y, and linear evo-
lution of the density field. We can see this as follows: since
the three-point functions of dj;, vanish, this correlation is
equal to that of &y, and Sgyl . Of the contributing dia-
grams, those connecting &y, to the &, vanish because
(y') = 0, hence we only consider the diagrams connect-
ing &y, to one of the two tidal quadrupoles T, that make
up y!. But these vanish by symmetry since they must
connect d,, a scalar, to another tidal quadrupole 7,
evaluated at the same point. This fact was first noted in
the context of intrinsic alignment contamination of
galaxy-galaxy lensing by Ref. [48], which also pointed
out that there can be nonzero cross power Pj 5:(k) if we
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consider nonlinear density evolution. We will not consider
these more complicated models here.

C. Normalization

We have normalized the intrinsic alignment amplitude
C, for the linear alignment model to match the shear
autopower observed by Ref. [33] in the SuperCOSMOS
data [50]. Ref. [33] gives the ellipticity variance o2(f) in
square cells of side length € instead of the shear power
spectra; these are related by

A 10 €,0 d?l
o2(0) = R ] 13(7)/0( : )(CEE R TeY)

where jo(u) = sinu/u and R = de/dy = 2 is the shear-
to-ellipticity conversion factor. We have assumed a pa-
rameterized redshift distribution of the form

dn o 7o~ (42/z2)" (25)

dz
where the median redshift for SuperCOSMOS is z,, =
0.1 [33]. The SuperCOSMOS ellipticity variances are an
order of magnitude greater than the weak lensing pre-
diction and hence must be dominated by intrinsic align-
ments and/or observational systematics; we have assumed
here that the intrinsic alignments dominate, which pro-
vides an upper limit if observational systematics are not
negligible. We have normalized to the largest scale obser-
vation given by Ref. [33], where Eq. (13) is best moti-
vated, and used the ellipticity covariance between the b,
and R bandpasses as this is less sensitive to systematics
than the variances; this yields o2 =1.6X 107 at
6 = 93.25 arc min.

For the linear intrinsic alignment model there is a
discrete degeneracy in C; since the sign cannot be deter-
mined from the ellipticity variance alone; we have used
in the plots the positive normalization C; > 0 because of
its physical motivation (stretching of the galaxy along the
tidal field).

D. Results

In Fig. 2, we have shown the estimated intrinsic-
alignment contamination of the shear power spectrum
for the linear alignment model. Panels 2(a)—2(c)show the
contributions to the E-mode shear power spectrum as-
suming a source redshift distribution given by Eq. (25)
with median redshifts z,, = 0.1, 0.5, and 1.0. In panels
2(d)-2(f)we have shown the intrinsic alignment contri-
butions to the cross spectra between different redshift
bins; only the gravitational-intrinsic correlation is non-
zero since the redshift distributions do not overlap. For
these panels we take the redshift distributions to be
Gaussian with o, = 0.1 (which is much less than the
separation of the bins). The contamination C¢' is only
weakly dependent on o, because the integral in Eq. (11)
receives a contribution from a range of radii Ay « o,
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Shear power spectra for linear alignment model

(a) Power spectrum (z,,=0.1)

(b) Power spectrum (z,,=0.5)

(c) Power spectrum (z,,=1.0)

-7 . .
10 EE total -
EE.GG ——
1078 [ T EE, Il
EE,GI
_ 10°
&
o
10710
1011t {101 | {101t
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(d) Cross-power (z=0.5, 1.0) (e) Cross-power (z=0.5, 2.0) (f) Cross-power (z=1.0, 2.0)
-7 . . . . . . .
10 EE total -
EE.GG ——
N EE,GI
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_ 107°
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1011t 1071 ’-._:10-11 L
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FIG. 2 (color online).

The gravitational (GG), intrinsic alignment (/]), and gravitational-intrinsic correlation (GI) contributions

to the shear power spectrum, for the linear alignment model. The B-mode shear power spectrum is labeled “B’’ and has only an
intrinsic-intrinsic contribution. The cross term (GI) is negative for this model, so we have plotted its absolute values on the log scale.
We show results for (a) the shear power spectrum for a survey with redshift distribution of Eq. (25) with z,, = 0.1;
(b) and (c) similar for z,, = 0.5 and 1.0, respectively; (d) the shear cross-power between redshifts z = 0.5 and z = 1.0 (the slices
have Gaussian redshift distributions with width o, = 0.1); (e) the shear cross-power between redshifts z = 0.5 and z = 2.0; and
(f) the shear cross-power between redshifts z = 1.0 and z = 2.0. The intrinsic alignment amplitude C; is normalized to
SuperCOSMOS. Panel (a) is cut off at € = 300, roughly the smoothing scale used for the intrinsic alignment calculation, since

the model does not make sense on smaller scales.

whereas the integrand contains a factor of fz(x), whose
peak value scales « o !,

The most striking result from Fig. 2 is that the
gravitational-intrinsic contribution dominates the con-
tamination of the shear power spectrum for the broad
redshift distribution [Fig. 2(c). Even if the intrinsic-
intrinsic shear correlations are small (in this case
they are 0.5% of the lensing signal for the broad redshift
distribution with z,, = 1.0 at € = 500), the gravitational-

intrinsic contamination to the cross spectra can still be
large (~ 5% at € = 500). This contamination is espe-
cially pronounced for the cross spectrum between the
widely separated bins at z = 0.5 and 2.0 [Fig. 2(e): here
|C§T/CGC] can be as large as ~30%.

As noted above, there is no correlation between the
gravitational and intrinsic shears in the quadratic align-
ment model. Thus there is only intrinsic alignment con-
tamination if the redshift distributions overlap, and the
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contamination is much lower because it scales as the
square of the intrinsic alignment amplitude « C3 instead
of linearly as in the case of the GI cross correlation.

IV. METHODS TO ASSESS THE
CONTAMINATION

So far we have considered the contamination of the
power spectra in cosmic shear surveys due to intrinsic
alignments, and shown that the interference between
gravitational and intrinsic shears can dominate the con-
tamination and reach levels that are important for high
precision studies of weak lensing. In this section we
discuss two methods to estimate the amplitude of the
effect and separate it from the weak lensing effect. The
first method is based on density-shear correlations, while
the second method is purely geometrical and uses only
scaling of the cross correlation signal with redshift.

A. Density-shear correlations

We are assuming there is a correlation between the
intrinsic alignment and gravitational potential field that
gives rise to shear: the latter can be reconstructed from
the density field. On large scales we can assume galaxy
density field is linearly proportional to the density field up
to a constant, the so called bias parameter. In fact, there is
no need to do the reconstruction itself: at the two-point
function level the full information on this correlation is
encoded in the density-shear correlation. We can thus
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constrain the intrinsic alignment models by comparing
them to the observed density-shear correlation from gal-
axy surveys.

To date these measurements have been done on small
scales <1h~'Mpc for the purpose of understanding con-
tamination of galaxy-galaxy lensing. The quantity mea-
sured in these studies is Avy(r), defined as the mean
tangential shear of a “satellite’” galaxy a transverse dis-
tance r from the “primary.” This is equal to

0 8,01 + 5,
Ayl FO+ 5,008,00dn 20

cf. Eq. (AS) of Ref. [51]. The idea behind this equation is
that we compute the galaxy-shear correlations for all
close angular pairs on the sky and then use the corre-
sponding galaxy-galaxy correlation to estimate what
fraction of these pairs is physically close also in three-
dimensional space. The signal is then boosted by dividing
by this fraction.

Noting that (I + 8,)y} = ¥%, and taking the Fourier
transform in the transverse dimensions, we get

J Ps, 5o (k)kdk [ Py ~i(k)J,(kr)kdk
[ Ps, (k) Jo(kr)kdk by [ Ps(k)Jo(kr)kdk’
27)

Ay(r) =

In Fig. 3 we have plotted Avy(r) as measured in the
Sloan Digital Sky Survey (SDSS) [51]; the sample was
dominated by objects at z = 0.1 and so we have displayed

Intrinsic shear correlation for linear model

0.015

0.01

0.005

" Data (all g'alaﬁ(ie's; ——

Data (-22<M,<-21) —m—
Keutof=1 IEV Mpc T
kcutoff=2h/MpC """""""

-0.005

-0.01 |

-0.015 Lo
0.1

1 10

r (h'1 Mpc comoving)

FIG. 3. The intrinsic shear statistic Ay(r) of Eq. (26). The SDSS data points are shown, with the horizontal error bars indicating
the range of radii used, the thick vertical error bars indicating 1o statistical errors, and the thin vertical error bars representing
99.9% confidence limits including systematics (principally shear calibration and removal of lensing signal) [51].
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the model prediction at that redshift. (The data points
were presented in Ref. [51] in physical separation units;
we have converted them to comoving separation at
z=0.1)

We see from Fig. 3 that the model predicts a constant
value of density-shear correlations on large scales, as
expected in a linear bias model. On scales smaller than
the initial size of a galactic halo one does not expect much
correlation. The transition scale is rather uncertain and
depends on the somewhat arbitrary value of the cutoff we
used in the calculation. A typical value should be given by
the scale length within which the enclosed mass is of the
order of a typical galactic halo mass, of order 10'2M,.
This gives kyopr ~ (1-2)h/Mpc, which are the two values
used in Fig. 3. We see that the current constraints are
inconclusive because they do not extend to sufficiently
large scales. The results from this figure also suggest that
galaxy-shear correlations are a powerful probe of identi-
fying this contamination and that there is plenty of sta-
tistical power in the SDSS data to estimate the
contamination by extending the analysis of Ref. [51] to
larger transverse separations.

B. Geometric projection

The analysis of intrinsic alignment contamination
should not be based solely on low-redshift information:
the local universe may not accurately reflect the intrinsic
alignments of the weak lensing source galaxies since (for
example) mergers could cause the intrinsic alignment
signal to evolve with redshift. Consistency of shear cross
spectra obtained from different types of galaxies in the
same range of redshifts would argue against significant
gravitational-intrinsic correlations, but if an inconsis-
tency is observed that is not attributable to observational
systematics, then some method of separating pure lensing
(GG) from gravitational-intrinsic (GI) signals will be
needed.

One possibility is to take advantage of the different
redshift dependence in the GG and GI signals when
applied to tomography between slices at redshifts z, <
zp (the redshift slices should be separated far enough to
eliminate overlaps in their distribution and hence /7 con-
tamination). In the idealized case where the photo-zs for
the nearby redshift bin z,, have negligible uncertainty, the
GI signal at a fixed € and z,, rises with increasing zz as

ctc [P0 o)

D4(0,2)

where D, is the comoving angular diameter distance
separating two redshifts and {(z) is the shear calibration
error for galaxies at redshift z (which ideally would be
made negligible). The GG (pure lensing) signal also rises
with increasing z g, but more slowly because z, in Eq. (28)
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is replaced by the redshift of the contributing structures,
which must be <z,. In principle, one could project out
signals in tomography that have the redshift dependence
of Eq. (28).

If the effective ratio of angular diameter distances g,z
is measured by cosmography—i.e., measurement of the
relative shear signal at different zz behind a sample of
lenses at z, —then provided that the same source sample
at zg is used for tomography as for cosmography, the
right-hand side of Eq. (28) is obtained directly [52,53]
up to an irrelevant multiplicative factor. This geometrical
method has the practical advantage of automatically ac-
counting for any shear calibration errors, even if they are
redshift-dependent, and eliminating the need for external
information about the angular diameter distance function
D,. Since the density-intrinsic shear correlation may
evolve with redshift, the deprojection of signals propor-
tional to Eq. (28) will have to be done separately for each
redshift slice z,. The method is more accurate if the slices
are narrow so that the effective z,, for the intrinsic align-
ment does not differ significantly from the effective z,, for
cosmography, thus precise photo-zs would be extremely
valuable.

The geometric method is model-independent in the
sense that it works for arbitrary k and z-dependence of
the density-intrinsic shear correlation, but of course some
cosmological information is lost. An alternative approach
would be to marginalize over a parametrization of
P 5i(k, z) (perhaps forced to match on to the P ;(k)
measured in the local universe at z = 0); this may retain
more cosmological information if Py z(k 7) is, e.g.,
forced to be a smooth function of z, but of course it
sacrifices the model independence of the geometric
technique.

V. DISCUSSION

In this paper, we have considered the contamination of
the power spectrum in cosmic shear surveys due to in-
trinsic alignments, and shown that the gravitational and
intrinsic shears need not be independent. For some mod-
els, the contamination is dominated by the gravitational-
intrinsic cross power rather than the power spectrum of
the intrinsic alignments themselves. One implication of
this is that the B-mode signal, frequently used as a
systematics test, may be a misleading indicator of intrin-
sic alignment contamination, since it is sensitive only to
the intrinsic-intrinsic autopower CfB'” but not to the
gravitational-intrinsic cross-power C%/, which can only
be nonvanishing for the E modes. Figure 2(c) provides an
extreme example: here the change in C%# due to intrinsic
alignments exceeds the B-mode power spectrum CffB by
>2 orders of magnitude. The opposite extreme is the
quadratic-alignment model in which there is no
gravitational-intrinsic correlation and the E and B
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mode contributions from
similar.

A realistic model of intrinsic alignments will likely
fall somewhere in between these two extremes. The linear
alignment model [Eq. (13)] obviously predicts maximal
correlation between the density and intrinsic shear fields
on large scales in the sense that the correlation coefficient
ps 5 (k) = Pg 51(k)/,|Ps(k)P5 (k) has absolute value ~ 1.
Any higher-order corrections to Eq. (13) will therefore
reduce the correlation coefficient. On the other hand, the
simplest form of the quadratic-alignment model
[Eq. (19)] is probably too optimistic, even though the
model is well-motivated by tidal torque theory. We found
P;5 5 (k) = 0 for this model not because of any fundamen-
tal symmetry principle, but rather because the assumed
Gaussianity of the density field causes third-order statis-
tics in 6 to vanish. In the real universe we can expect
tidally torqued galaxies to have P 5(k) # 0 because of
non-Gaussianity from nonlinear evolution [48], and be-
cause of third- and higher-order corrections to Eq. (19)
that we have neglected.

While we have presented these results for the power
spectrum, the non-Gaussianity of the density field, and
hence of cosmic shear, has motivated studies of other
statistics, most notably the bispectrum [54—-59]. The bis-
pectrum can in principle pick up three types of intrinsic
alignment contamination: the intrinsic shear bispectrum
(I1I), and the gravitational-gravitational-intrinsic (GGI)
and gravitational-intrinsic-intrinsic (GI[) cross bispectra.
If tomography is used, the measured bispectrum compo-
nents are Bfﬁify(aﬁy), where «, B, and 7y are indices
indicating the source bins centered at redshifts z, =
7 = z,,. Assuming that these bins do not overlap signifi-
cantly in redshift, the /7] contaminant is only nonvan-
ishing for the triplets where all three source galaxies lie
in the same redshift slice z, = zg = z,; this is only a
small fraction of the triplets and hence little statistical
power is lost by rejecting them [37]. GGI is produced by a
density-density-intrinsic shear bispectrum in the nearest
of the three slices, and it can in principle contaminate any
tomographic shear bispectrum in which z, <zz = z,.
GI1 is produced by the density-intrinsic-intrinsic bispec-
trum, again in the nearest of the three slices, but this time
in order to have the intrinsic shear be correlated and to
produce a lensing effect on the more distant slice, GII
satisfies a “selection rule” z, = zg <z,. Thus every
triplet of source screens is potentially contaminated by
exactly one of GGI, GII, or IIl. Note also that
the quadratic-alignment model (Sec. III B), which at
lowest order predicted no GI contamination to the
power spectrum, does predict a GGI contamination
B 5 5 (ky, ko, k3) # 0 because the intrinsic shear y/ is a
quadratic function of §. We defer a calculation of the
magnitude of this effect to a future paper.

intrinsic alignments are
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Our analysis clearly motivates observations to con-
strain the density-intrinsic shear correlation. Just as the
intrinsic shear autopower can be constrained by low-
redshift measurements where the lensing signal is negli-
gible [28,33], so it should be possible to use these same
low-redshift measurements to measure P 5 (k) provided
that a tracer of the density field is available. The number
density of galaxies is one possibility; recent observations
have probed the galaxy-intrinsic shear correlation on
0.02—1h_1Mpc scales [51,60], and it would be useful to
extend these studies to larger scales where linear biasing
is valid. (At least one density-shear correlation measure-
ment is available on large scales [29]. These authors were
interested primarily in using intrinsic alignments to re-
construct the density field; they therefore did not use
lensing shear estimators, and they measured three-
dimensional separations in redshift space, so their results
are difficult to interpret in the present context.) For such
observations, it would also be useful to distinguish types
of galaxies (e.g. early vs late); if one type of galaxy turns
out to have significantly greater Py ;(k), the shear power
spectra could be performed principally on the other types
so as to reduce contamination.

A second approach to eliminating the contamination is
to project out the information that correlates with the
known redshift scaling of the signal in the cross correla-
tions between narrow redshift bins, assuming these are
available from the photo-z methods. This method is geo-
metric and achieves perfect decontamination under these
idealized assumptions, but projection does destroy some
information in the data. It also puts severe requirements
on the accuracy of photometric redshifts, which may
require many passbands to achieve this [61].

In summary, we have shown that cosmic shear surveys
will need to consider the possibility of intrinsic align-
ment contamination from its interference with weak
lensing-induced shear. The magnitude of the effect is
extremely model-dependent and can range from essen-
tially zero (simplest quadratic alignment models) to se-
vere (simplest linear alignment models). In the latter case
it can exceed intrinsic correlations by an order of magni-
tude and cannot be identified using B-mode power spec-
trum, nor can it be eliminated using cross correlations
between different redshift slices. This result is disap-
pointing and implies that this effect could be very dam-
aging for efforts to use weak lensing as a high precision
test of cosmology with future surveys such as Pan-
STARRS, LSST or SNAP. However, the situation is far
from hopeless: here we have considered several possible
ways to constrain and/or suppress the contamination. The
next step observationally is a density-shear correlation
analysis with the shear computed using a lensing estima-
tor in a wide-angle, shallow survey such as the Sloan
Digital Sky Survey [62] to constrain P 5:(k, z << 1); the
next step theoretically is a thorough analysis of the vari-
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ous methods described above for suppressing the
gravitational-intrinsic contamination, in particular, to
understand how much degradation on the cosmological
parameters occurs and whether they increase sensitivity
to any of the other potential systematics such as photo-z
errors, shear calibration errors, and spurious power.

PHYSICAL REVIEW D 70 063526
ACKNOWLEDGMENTS

C. H. acknowledges the support of the NASA Graduate
Student Researchers Program (GSRP). U.S. is supported
by Packard Foundation, NASA NAGS5-11489 and NSF
CAREER-0132953.

[1] L.Van Waerbeke, Y. Mellier, T. Erben, J. C. Cuillandre, F.
Bernardeau, R. Maoli, E. Bertin, H. J. Mc Cracken, O. Le
Fevre, and B. Fort et al, Astron. Astrophys. 358, 30
(2000).

[2] D.J. Bacon, A.R. Refregier, and R. S. Ellis, Mon. Not. R.
Astron. Soc. 318, 625 (2000).

[3] J. Rhodes, A. Refregier, and E.J. Groth, Astrophys. J.
Lett. 552, 1.85 (2001).

[4] H. Hoekstra, H. K.C. Yee, M.D. Gladders, L.E
Barrientos, P.B. Hall, and L. Infante, Astrophys. J.
572, 55 (2002).

[5] M. Jarvis, G. M. Bernstein, P. Fischer, D. Smith, B. Jain,
J. A. Tyson, and D. Wittman, Astron. J. 125, 1014 (2003).

[6] L. Van Waerbeke, Y. Mellier, R. Pelld, U.-L. Pen, H.J.
McCracken, and B. Jain, Astron. Astrophys. 393, 369
(2002).

[7] M.L. Brown, A.N. Taylor, D.J. Bacon, M. E. Gray, S.
Dye, K. Meisenheimer, and C. Wolf, Mon. Not. R. Astron.
Soc. 341, 100 (2003).

[8] R. Massey, A. Refregier, D. Bacon, and R. Ellis, astro-ph/
0404195.

[9] http://www.cfht.hawaii.edu/Science/CFHLS/

[10] http://pan-starrs.ifa.hawaii.edu/public/

[11] http://snap.1bl.gov/

[12] http://www.lsst.org/

[13] W. Hu and M. Tegmark, Astrophys. J. Lett. 514, L65
(1999).

[14] D.J. Eisenstein, W. Hu, and M. Tegmark, Astrophys. J.
518, 2 (1999).

[15] M. Zaldarriaga, D. N. Spergel, and U. Seljak, Astrophys.
J. 488, 1 (1997).

[16] J.R. Bond, G. Efstathiou, and M. Tegmark, Mon. Not. R.
Astron. Soc. 291, L33 (1997).

[17] W. Hu, Phys. Rev. D 65, 023003 (2002).

[18] W. Hu, Phys. Rev. D 66, 083515 (2002).

[19] N. Kaiser, Astrophys. J. 537, 555 (2000).

[20] T. Erben, L. Van Waerbeke, E. Bertin, Y. Mellier, and P.
Schneider, Astron. Astrophys. 366, 717 (2001).

[21] D.J. Bacon, A. Refregier, D. Clowe, and R. S. Ellis, Mon.
Not. R. Astron. Soc. 325, 1065 (2001).

[22] G. M. Bernstein and M. Jarvis, Astron. J.123, 583 (2002).

[23] L. Van Waerbeke and Y. Mellier, astro-ph/0305089.

[24] C. Hirata and U. Seljak, Mon. Not. R. Astron. Soc. 343,
459 (2003).

[25] R.A.C. Croft and C. A. Metzler, Astrophys. J. 545, 561
(2000).

[26] A. Heavens, A. Refregier, and C. Heymans, Mon. Not. R.
Astron. Soc. 319, 649 (2000).

[27]
(28]

[29]
(30]

(31]

(32]
(33]

[34]
[35]

[36]
[37]
(38]
[39]
[40]
[41]
[42]

[43]
(44]

[45]
[46]
[47]

(48]
[49]

[50]

[51]

063526-10

J. Lee and U. Pen, Astrophys. J. Lett. 532, L5 (2000).
U. Pen, J. Lee, and U. Seljak, Astrophys. J. Lett. 543,
L107 (2000).

J. Lee and U. Pen, Astrophys. J. 555, 106 (2001).

P. Catelan, M. Kamionkowski, and R.D. Blandford,
Mon. Not. R. Astron. Soc. 320, L7 (2001).

R.G. Crittenden, P. Natarajan, U. Pen, and T. Theuns,
Astrophys. J. 559, 552 (2001).

Y. P. Jing, Mon. Not. R. Astron. Soc. 335, L89 (2002).
M. L. Brown, A.N. Taylor, N.C. Hambly, and S. Dye,
Mon. Not. R. Astron. Soc. 333, 501 (2002).

J. Lee and U. Pen, Astrophys. J. Lett. 567, L111 (2002).
L. King and P. Schneider, Astron. Astrophys. 396, 411
(2002).

C. Heymans and A. Heavens, Mon. Not. R. Astron. Soc.
339, 711 (2003).

M. Takada and M. White, Astrophys. J. Lett. 601, L1
(2004).

L.J. King and P. Schneider, Astron. Astrophys. 398, 23
(2003).

C. Heymans, M. Brown, A. Heavens, K. Meisenheimer,
A. Taylor, and C. Wolf, Mon. Not. R. Astron. Soc. 347, 895
(2004).

W. Hu and T. Okamoto, Astrophys. J. 574, 566 (2002).
C.M. Hirata and U. Seljak, Phys. Rev. D 67, 43001
(2003).

P. Schneider, L. van Waerbeke, and Y. Mellier, Astron.
Astrophys. 389, 729 (2002).

N. Kaiser, Astrophys. J. 388, 272 (1992).

M. Tegmark, M. A. Strauss, M. R. Blanton, K. Abazajian,
S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, L
Zehavi, N. A. Bahcall er al, Phys. Rev. D 69, 103501
(2004).

D.J. Eisenstein and W. Hu, Astrophys. J. 496, 605
(1998).

J. A. Peacock and S.J. Dodds, Mon. Not. R. Astron. Soc.
280, L19 (1996).

E C. van den Bosch, T. Abel, R. A. C. Croft, L. Hernquist,
and S. D. M. White, Astrophys. J. 576, 21 (2002).

L. Hui and J. Zhang, astro-ph/0205512.

J. Mackey, M. White, and M. Kamionkowski, Mon. Not.
R. Astron. Soc. 332, 788 (2002).

N.C. Hambly, H.-T. MacGillivray, M. A. Read, S.B.
Tritton, E.B. Thomson, B.D. Kelly, D.H. Morgan,
R. E. Smith, S. P. Driver, J. Williamson et al., Mon. Not.
R. Astron. Soc. 326, 1279 (2001).

C.M. Hirata, R. Mandelbaum, U. Seljak, J. Guzik, N.
Padmanabhan, C. Blake, J. Brinkmann, T. Budavari, A.



INTRINSIC ALIGNMENT-LENSING INTERFERENCE AS...

(52]
[53]
[54]
[55]

[56]

[57]

Connolly, L. Csabai et al., Mon. Not. R. Astron. Soc. 353,
529 (2004).

G. Bernstein and B. Jain, Astrophys. J. 600, 17 (2004).
B. Jain and A. Taylor, Phys. Rev. Lett. 91, 141302 (2003).
A. Cooray and W. Hu, Astrophys. J. 548, 7 (2001).

L. Van Waerbeke, T. Hamana, R. Scoccimarro, S.
Colombi, and E Bernardeau, Mon. Not. R. Astron. Soc.
322, 918 (2001).

T. Hamana, S.T. Colombi, A. Thion, J. E. G.T. Devriendt,
Y. Mellier, and E Bernardeau, Mon. Not. R. Astron. Soc.
330, 365 (2002).

T. Zhang, U. Pen, P. Zhang, and J. Dubinski, Astrophys.
J. 598, 818 (2003).

[58]
[59]

[60]

[61]

[62]

063526-11

PHYSICAL REVIEW D 70 063526

S. Ho and M. White, Astrophys. J. 607, 40 (2004).

M. Takada and B. Jain, Mon. Not. R. Astron. Soc. 348,
897 (2004).

G.M. Bernstein and P. Norberg, Astron. J. 124, 733
(2002).

D.J. Bacon, A.N. Taylor, M. L. Brown, M. E. Gray, C.
Wolf, K. Meisenheimer, S. Dye, L. Wisotzki, A. Borch,
and M. Kleinheinrich, astro-ph/0403384.

D.G. York, J. Adelman, J. E. Anderson, S.F. Anderson,
J. Annis, N. A. Bahcall, J. A. Bakken, R. Barkhouser,
S. Bastian, E. Berman et al, Astron. J. 120, 1579
(2000).



