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I. INTRODUCTION

The study of influence of initial inhomogeneities upon
the evolution of cosmological models is an important
issue in cosmology, both in order to understand the for-
mation of large-scale structures as well the smoothing
away of these inhomogeneities. One way to deal with the
inhomogeneities is to consider perturbations of known
solutions, such as Friedmann-Robertson-Walker models
or homogeneous Bianchi-type solutions. Another way is
to assume inhomogeneous solutions from the beginning
and study their dynamical evolution; it is this that we are
concerned with here. The simplest inhomogeneous mod-
els are the so-called diagonal G2 cosmologies for which
the spacetime admits two commuting Killing vectors
whose orbits are two-dimensional spacelike surfaces.
They represent inhomogeneities of spatially homogene-
ous models and can be considered as gravitational waves
of a single polarization propagating over a homogeneous
background [1]. Using a few solution generating tech-
niques, a large number of exact solutions with different
sources have been found [2].

The asymptotic evolution of homogeneous Bianchi-
type models and both their behavior near the initial
singularity as well as their future state have been widely
studied [3]. One of the facts relevant to our paper is that at
late times Bianchi models can be described as self-
similar solutions. However, the asymptotic behavior of
inhomogeneous solutions, particularly G2 metrics, re-
vealed a task much more difficult than that of homoge-
neous models. Contrary to the homogeneous metrics for
which the Einstein equation reduce to an autonomous
system of differential equations that can be analyzed
using techniques from the theory of dynamical systems,
the field equations of inhomogeneous spacetimes are
partial differential equations. In Ref. [3], the evolution
of a particular class of G2 metrics is studied showing that
in that case all the solutions are asymptotically self-
similar. The same result was obtained in [4] and in [5]
where special families of G2 solutions were considered
with a scalar field. On the other side, it has been suggested
that fluctuations might evolve from arbitrary initial con-
ditions to a self-similar form [6]. From all these results, it
is reasonable to regard the self-similar solutions as de-
scribing the long-time asymptotic of inhomogeneous
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metrics. Hence, it would be worthy to analyze the asymp-
totic behavior of a general class of G2 metrics by using a
method that emphasizes the scaling properties of the
underlying field equations.

In this paper, we study the asymptotic evolution of
vacuum G2 metrics using a different approach than that
used in the above referred papers: We make use of renor-
malization group (RG) tools to study the structurally
stable characteristics of the inhomogeneous metrics.
Recently, RG techniques have been exhibited as a power-
ful implement to study the asymptotic behavior of partial
differential equations [7–10]. The RG method has been
applied to study a homogeneous and isotropic universe, a
spherically symmetric dust collapse [11], critical phe-
nomena related with gravitational collapse [12],
Newtonian cosmology [13], homogeneous flat causal
bulk viscous cosmological models [14], and the theory
of perturbations of an isotropic universe with dynami-
cally evolving Newton constant and cosmological con-
stant [15,16].

The plan of the paper is the following: In Sec. II we
illustrate the application of the RG method to a homoge-
neous Bianchi-type metric with a scalar field. This case
has been studied before and we recover the attractors of
the system by means of the RG method. In Sec. III we
apply the RG technique to the vacuum, diagonal, G2

metric. We find the fixed points and analyze their stability
as well. We conclude with Sec. IV.

THE RG METHOD: AN ILLUSTRATIVE
EXAMPLE

It is well known that the asymptotics of partial differ-
ential equations can often be found from the considera-
tion of scaling solutions (the equivalence of RG theory
and the theory of intermediate asymptotics was shown by
Goldenfeld et al. [17]). Though it is usual practice to find
the similarity variable to analyze scaling solutions from a
combination of variables using dimensional arguments,
however, there is a large class of problems where this
cannot be done [18]. RG provides a systematic approach
for finding the scaling variables as well as the asymp-
totics of partial differential equations.

The general (RG) method adapted to partial differen-
tial equations is well known [7]. Therefore, instead of
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reproducing the whole procedure, we explain this method
using an illustrative example which has been studied with
other methods and has a nontrivial asymptotic structure.
We consider a class of anisotropic cosmological models
given by [19]

ds2 � �dt2 � a�t�2dx2 � b�t�2e2mxdy2 � c�t�2e2xdz2:

(2.1)

This represents a one parameter (m) family of Bianchi
models with Bianchi III,V, and VI0 for, respectively,m �
0; 1, and �1, and Bianchi VIh (h � m� 1) for all other
values.

For a direct comparison with earlier works, we choose
the same variables, namely, shear (�) and expansion (�)
for our analysis. Note, however, that the feasibility of the
earlier analysis depends crucially on finding the ‘‘right’’
set of variables to work with; otherwise the system is too
complex to analyze completely, even in this homogeneous
case. Moreover, the choice of these variables is model
dependent and rather ad hoc. Therefore, one also needs to
be lucky to be able to analyze. With RG, one can directly
work with the metric functions, as will be done in the next
section.

The shear and expansion for this spacetime are given
by

� �
_a
a
�

_b
b
�

_c
c
; (2.2)
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2
�
: (2.3)

Here an overdot signifies the derivative with respect to t.
We consider the energy momentum tensor describing a
minimally coupled homogeneous scalar field ��t�, given
by

T�� � �;��;� � g���
1
2�;��;� � V����; (2.4)

with an exponential potential V��� � � exp�k��. Here,
� > 0 and k are both constants. The evolution equations
are then given by

_� � �2�2 �
�2

3
� _�2 � V���; (2.5)

_� � ���� p�m�
�
�2 � 3�2 �

3

2
_�2 � 3V���

�
; (2.6)

�� � �� _�� kV���; (2.7)

_V � k _�V; (2.8)

where p�m� � �1�m�=�3
��������������������������������
3�1�m�m2�

p
�. Since the

above system is an autonomous system of differential
equations, in the previous study [19] the theory of dy-
namical systems was used to analyze its asymptotic be-
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havior using ‘‘expansion-normalized variables.’’ We will
use, as an alternative method, the RG technique and
recover the same results. Again, our goal is to illustrate
the method in this section and apply it to a new scenario
in the next section.

We find it useful to work with a compact notation and,
therefore, define a new indexed variable ui�t� that signi-
fies the set {�; �; _�;Vg, for i � 1; 2; 3; 4, respectively. Our
interest is in the asymptotics of the solution of the form

lim
t!1

ui�t� � t��iu�i �1�; (2.9)

where argument ‘‘1’’ signifies the initial value of the
quantity. It is convenient to fix the initial time as t � 1.
Now we will illustrate how the RG method gives a
systematic procedure to fix �i and determine the scaling
function u�i �1� as fixed points of RG equations (in a
inhomogeneous case the argument of u�i will not be a
constant but will depend on a combination of time and
spatial variable, the scaling variable).

Let us consider transformations of the form

t! Lt; ui�t� ! Ui�t� � L�iui�Lt�; (2.10)

which leave the equations invariant; i.e., if ui�t� is a
solution so isUi�t�.We use a number L> 1 as a parameter
of scale transformation. Note that, unlike in the applica-
tion of the RG method to quantum field theories or
statistical mechanics, there is no natural way to choose
a scale L here. Moreover, L never appears explicitly in the
equations.

From equation set (2.5), (2.6), (2.7), (2.8), and (2.10), it
is straightforward to recover

�1 � �2 � �3 �
�4

2
� 1: (2.11)

Now, defining L � exp�"�, and using Eq. (2.10) in (2.5),
(2.6), (2.7), and (2.8), we get a new set of evolution
equations:

dUi

d"
� �iUi �

@Ui

@t
: (2.12)

The procedure of defining " is, in a sense, analogous to
summing over all degrees of freedom corresponding to
fluctuations of scale less than L and then rescaling every-
thing by L�1. This new set of evolution equations defines
the RG transformations. Since scaled quantities satisfy
the same evolution equations, the time derivative in the
equation set above can be replaced with Eq. (2.5), (2.6),
(2.7), and (2.8), and we have

dU1

d"
� U1 � 2U2

2 �
U2

1

3
�U2

3 �U4; (2.13)

dU2

d"
� U2 �U1U2 � p�m�

�
U2

1 � 3U2
2 �

3

2
U2

3 � 3U4

�
;

(2.14)
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dU3

d"
� �1�U1�U3 � kU4; (2.15)

dU4

d"
� �2� kU3�U4: (2.16)

All the quantities on the right-hand side are evaluated at
t � 1. Scale-invariant solutions emerge now from the
fixed-point structure of the RG map, which is defined by

dU�
i

d"
� 0; (2.17)

with U�
i being the fixed points. The complete set of fixed

points for this system is given in Table I.
Therefore, we have four exact scale-invariant solutions

of the form (2.9) with exponents �i given by (2.11) and
u�i �1� being the fixed points given above. Since the stabil-
ity properties of these solutions are well studied in lit-
erature [19], we move now to the more general
inhomogeneous case.We analyze the fixed-point structure
as well as their stability properties, which is not done
before.

III. INHOMOGENEOUS CASE

We begin with a family of metrics which have been a
very useful tool for studying inhomogeneous cosmologi-
cal models, known as the generalized Einstein-Rosen
spacetimes (see, for example, [20,21]). The line element
is of the form

ds2 � f2�dz2 � dt2� � %abdxadxb; a; b � 1; 2:

(3.1)

Here x1 � x, x2 � y, and both f and %ab are functions
only of z and t. Metric (3.1) is fairly general and includes
Bianchi-type models I to VII. In this paper we are inter-
ested in vacuum solutions only. We can impose now

d et%ab � t2; (3.2)

since in the vacuum case one of the field equation takes
the form

�det%ab�
�1=2�
;tt � �det%ab�

�1=2�
;zz � 0: (3.3)

t and z are two independent solutions of this equation.
Under this condition, the coordinates t and z are called
the canonical coordinates, and there is no loss of general-
TABLE I. Fixed points o

U1 U2

1. 1 �
����
2�

q
2. 6

k2
0

3. 2�1�m�2

27p�m�2�1�m2�
�1�m

9p�m��1�

4. �1� k2

27p�m�2
� 2�1�m�2

�k�2�1�m2�
�k2�2��1
9k2p�m��1
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ity in this choice [20]. To simplify the analysis, we now
specialize to the diagonal metrics, i.e., metrics with a
single polarization.

The spacetime can be written in the form

ds2 � f2�dz2 � dt2� � t�h2dx2 � h�2dy2�; (3.4)

where f and h are functions of t and z only. These metrics
admit an Abelian G2 group of isometries with two space-
like commuting killing vectors @x and @y. The set of
Einstein field equations in the vacuum case reduces to

h;t �
1

2t
f;z
f
h2

h;z
; (3.5)

f;t � �
1

4t
f� tf

�
h;z
h

�
2
�

1

4t
�f;z�2

f

�
h
h;z

�
2
: (3.6)

Equations (3.5) and (3.6) are the evolution equations for h
and f , respectively, and it is easy to check that the
remaining field equations are identically satisfied. We
now follow the prescription given in the previous section
to recover the exact scaling solutions.

Let us consider the following scale transformation:

z! Lz; t! L&t;

h�t; z� ! ��t; z� � L�h�L&t; Lz�;

f�t; z� !  �t; z� � L(f�L&t; Lz�:
(3.7)

Here � and  are the scaled quantities. Since scaled
quantities also satisfy the original equations, Eq. (3.6)
fixes

& � 1: (3.8)

The scaling relations (3.7) along with (3.8) and successive
transformations, first t! 1 and then L! t, give a scale-
invariant solution of the form

h�t; z� � t����1; z=t�; f�t; z� � t�( �1; z=t�: (3.9)

The equations above express an arbitrary solution in
terms of initial data (at t � 1). As stated earlier, we
work with t � 1 as our initial time and evolution is in
the sense of scaled time Lt with L> 1.

From simple dimensional analysis, we would have( �
0 and � � �1=2 (introducing a dimensional constant
multiplying either dx or dy). However, as we will see later
this would lead to a trivial solution: the homogeneous
f Bianchi VIh models.

U3 U4�������
3U3

6 U3 0

� 2
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0 0
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Kasner metric. The fact that we recover a Kasner solution
as a fixed point of a general inhomogeneous G2 metric
though is nontrivial, and it elucidates the appearance of
this solution in earlier studies; it is used as a seed metric
in different solution generating techniques, and more
importantly, is known to describe ‘‘generic’’ cosmologi-
cal singularity in the analysis of Belinskii et al. [22]. In
order to get a nontrivial structure in fix-point analysis, we
need to analyze the anomalous dimensions for both the
functions f and h. It is well known [23] that the anoma-
lous dimensions � � �1=2 and ( � 0 are fixed by initial
or boundary conditions. In our case, cosmological vac-
uum solutions, initial condition refers to geometry at t �
0. Since, metrics of the type (3.4) are singular at t � 0
there is no strict functional constraint on the system
described by (3.5) and (3.6). Nevertheless, interpreting a
posteriori the fixed points, we can give some hints to
understand the role of anomalous dimensions � and (.

Denoting L � exp�"�, the RG equations are

d�
d"

� ����0z�
1

2

�
 0
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�0

�
; (3.10)
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2
:

(3.11)

We now investigate the fix-point structure of the equation
set above, i.e.,

d��
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:

(3.12)

The system decouples to give

�
��0

��

�
� �

��������������
4

z2 � 1

s
; (3.13)

�
 �0

 �

�
�

2
�����
4

p

1� z2
�

�����
4

p
z� �

��������������
z2 � 1

p
�; (3.14)

where 4 � �2 � (� 1=4. The real solutions correspond
to 4> 0 for z2 > 1 and 4< 0 for z2 < 1.
Equations (3.13) and (3.14) can be easily integrated to
give the fixed points

�� � �z�
��������������
z2 � 1

p
��

���
4

p

; (3.15)

 � � cf�z�
��������������
z2 � 1

p
��2�

���
4

p

�z2 � 1��4; (3.16)

where cf is an integration constant. We have dropped the
constant of integration from  � since this can be absorbed
simply by scaling of x and y. Also, we note here that the
new parameter 4 relates our spacetime metric with the
063507
Kasner metric in the following way. The Kasner metric
can be written in the form

ds2 � t�d
2�1�=2�dz2 � dt2� � t1�ddx2 � t1�ddy2; (3.17)

where parameter d can be chosen positive or negative. A
direct comparison with the metric (3.4) using (3.9) gives
the Kasner relationship

4�2 � 4(� 1 � 0: (3.18)

Therefore, the 4 � 0 case corresponds to the Kasner
models. When 4> 0 (z2 > t2), the critical solution is

h�t; z� � t���
���
4

p

�z�
���������������
z2 � t2

p
�
���
4

p

;

f�t; z� � cft
���

���
4

p
�1=2����

���
4

p
�1=2��z�

���������������
z2 � t2

p
��2�

���
4

p

��z2 � t2��4: (3.19)

and when 4< 0 (z2 < t2) the critical solution is

h�t; z� � t�� exp
�
�

���������
�4

p
arccos

z
t

�
;

f�t; z� � c0ft
�2�4�1=4�t2 � z2��4

� exp
�
�2�

���������
�4

p
arccos

z
t

�
:

(3.20)

The spacetime is split into two regions separated by the
light cone z � t. In each region, the solution takes one of
the forms given by the expressions above. For 4 � 0, we
have the Kasner metric. In the general case (4 � 0),
solution (3.19) is the soliton metric that had been obtained
earlier by the inverse scattering transformation with real
poles from the Kasner metric, and the solution (3.20) is
the cosoliton solution generated also from the Kasner
metric. Both solutions have been studied in [24] (and
references therein). Depending of the parameters, the
light cone z � t is singular for the solution (3.19) but is
always singular for (3.20). This means that, even though
the metric and its first derivatives are continuous across
the light cone, the solutions cannot be matched across the
light cone (for a discussion on the matching of these
metrics, see [24]). We would like to note here that the �
sign in the above equations is actually related to the
symmetry under x$ y, and as we will see later in the
stability analysis the same results hold for both signs.
Moreover, we would like to stress here that the solutions
which we have obtained are actually the future asymp-
totic states, i.e., to which spacetime ‘‘prefers’’ to settle
down. This makes this analysis very powerful since not
only do we recover in a very simple fashion a whole class
of scale-invariant solutions but also, due to ‘‘universal-
ity,’’ these solutions actually are the preferred asymptotic
states.

We will consider now the linear stability analysis.
Since these solutions emerge as fixed points of the RG
map, the stability of these solutions is the stability of
these fix points. Let us define
-4
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� � ���1� *��; (3.21)

 �  ��1� * �; (3.22)

where *�� 1 and * � 1. The above form of pertur-
bations is chosen to facilitate the analysis since both
unperturbed functions �� and  � can diverge at z � �1
and z � �1.

The perturbation equations take the form

d*�
d"

�

�
��

��0

���
�� 2z

��0

��

�
d*�
dz

�
1

2

d* 
dz

�
;

d* 
d"

� �

�
��

��0

��
2
�
�2 �4� 2�z

��0

��

�
d*�
dz

� �
d* 
dz

�
:

(3.23)

We shall compute normal modes assuming the following
form for the perturbations:

*� � e!",�z�; * � e!"��z�; (3.24)

where! is a constant. The perturbation Eqs. (3.23) can be
written as �

�� 2z
��0

��

�
,0 �

1

2
�0 �

��0

��
!,;

�2
�
�2 �4� 2�z

��0

��

�
,0 � ��0 �

��0

��
!�:

(3.25)

From these equations it is easy to see that

!� � �2
�����
4

p ��������������
z2 � 1

p
,0 � 2�!,: (3.26)

Taking the derivative of this equation and substituting in
(3.25), we get

,00 �
z

z2 � 1
�1� 2!�,0 �

!2

z2 � 1
, � 0: (3.27)

Thus, the problem of solving linear perturbations around
the fixed points has been reduced to finding solutions of
the above equation, and (3.26) completes the solution. The
general solution of (3.27) is given by

,�z� � �z2 � 1�!=2�1=4�c1P
!�1=2
�1=2 �z� � c2Q

!�1=2
�1=2 �z��;

(3.28)

where P�� and Q�
� are Legendre functions of first and

second kind, respectively, and c1 and c2 are arbitrary
constants. From (3.26), the solution for � can be easily
obtained:

��z� � �2
�����
4

p
�z2 � 1�!=2�1=4fc1�zP

!�1=2
�1=2 �z�

�P!�1=2
1=2 �z�� � c2�zQ

!�1=2
�1=2 �z� �Q!�1=2

1=2 �z��g

�2��z2 � 1�!=2�1=4�c1P
!�1=2
�1=2 �z� � c2Q

!�1=2
�1=2 �z��:

(3.29)

We require that the perturbations be regular for all z.
Since the differential Eq. (3.27) has four regular singular
063507
points at z � �1;�1, we must consider three different
regions: 1< z<1, �1< z<�1, and �1< z< 1. The
first and the second region are equivalent. Let us first
analyze the behavior in the first region. It is easy to see
that the leading terms of the two linearly independent
solutions ,1 and ,2 of (3.27) in the neighborhood of z �
1 are, respectively, ,1 � z! �O�z!�2� and ,2 �
,1 lnz�O�z!�2�. Both solutions are regular if ! � 0.
Furthermore, from (3.26), � is also regular provided that
! � 0. At z � 1, the leading terms of the two linearly
independent solutions for , are �z� 1�!�1=2 �O��z�
1�!�3=2� and const�O��z� 1��. For �, the leading terms
are �z� 1�! and const�O��z� 1��. Since ! is negative,
the first independent solution must be neglected so that we
have regular solutions. For instance, tacking c2 � 0 in
(3.28) the solution is regular.

Making the scale transformation given by (3.7), (3.8),
and (3.9), we get the behavior of the solution near the
fixed point :
*� � t!,�z=t�; * � t!��z=t�; (3.30)
with ! � 0 and z > t. Since the solution above is valid in
the region z > t, taking limit t! 1 means z! 1 as
well. We can therefore distinguish two different situ-
ations. First, when we approach infinity in such a way
that we encounter the light cone z � twithout crossing it.
In this case asymptotically z=t � 1 and, bearing in mind
the behavior of the regular solutions of (3.27) close to the
point z � 1, the above perturbations behave as:
*� � * � const� t!: (3.31)
In the second situation, we approach infinity through a
path that does not encounter the light cone. In this case
z=t tends to a constant greater than 1, and the perturba-
tions behave in a similar way than that given by the above
expressions. So, in both cases the perturbations tend to
zero when t! 1 which means that the fixed solution
outside the light cone is stable.

Let us perform this analysis in the region �1< z < 1.
The leading terms of the independent solutions of (3.27)
close to z � 1 are those described earlier for the same
point changing z� 1 by 1� z. When z � �1 the behav-
ior is the same changing z� 1 by z� 1. From this we
cannot obtain a definite conclusion about the values of !
which make the solution regular. To do that is convenient
to transform Eq. (3.27) to a hypergeometric differential
equation with coefficients a � b � 1=2 and c � 1=2�
!. It is not difficult to see that one of the independent
solutions, the solution of (3.27) and (3.26), is given by
-5
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,�z� � c1�1� z�!�1=2F
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1
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2
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1� z
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����������
j 4 j

p
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p
�1� z�!�1=2

��
!�

1

2

�

�F
�
1

2
;
1

2
;
1

2
�!;

1� z
2

�
�

1

4� 8!
�1� z�

�F
�
3

2
;
3

2
;
3

2
�!;

1� z
2

��
� 2�c1�1� z�!�1=2

�F
�
1

2
;
1

2
;
1

2
�!;

1� z
2

�
: (3.32)

The form of the second independent solution depends on
the values of !. In any case, the above solution is regular
when ! is positive, except when ! � n� 1=2 (n a posi-
tive integer). Therefore, with jzj< t, the modes with !
positive dominate and the solution in the interior of the
light cone is not stable.
IV. DISCUSSION

In this paper we have shown how the RG method can
be used to obtain the asymptotic regime of cosmological
solutions. We have first illustrated the method applying it
to homogenous cosmological models with a scalar field.
These models have been extensively analyzed using,
mainly, the so-called ‘‘expansion-normalized variables,’’
which are a set of dimensionless variables [3]. In those
works the role of self-similar solutions in describing the
asymptotic regime has been stressed. Since a fixed point
of the RG transformation is a scale-invariant solution, it
is reasonable to think that the RG method will naturally
render the same results (and we have manifestly shown
this here, Sec. II) as those obtained using the ‘‘expansion-
normalized variables.’’ It is worthy to stress also that
those normalized variables are well adapted to the di-
mensional and similarity analysis [18]. These results
bring the asymptotic behavior of the homogeneous cos-
mological models in a new perspective. Moreover, its
simplicity as well as systematic approach show that it is
a practical idea to implement RG for studying asymptotic
behavior of spacetimes in general relativity.

We have also applied the RG method to a diagonal,
vacuum inhomogeneous G2 metric. In this case, the sys-
tem reduces to a set of coupled partial differential equa-
tions whose analysis using the RG method is not difficult.
The fixed point is an exact solution depending on two
parameters. This solution belongs to the class of soliton
solutions. Soliton solutions are intended as those solutions
which can be obtained by the inverse scattering trans-
formation from a known one [20]. In particular, the found
fixed point is a soliton solution with real poles with origin
at z � 0, whose ‘‘seed’’ metric is the Kasner metric
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(soliton origin marks the origin of the light cone z2 �
t2). Since the metric (3.4) is invariant under a z trans-
lation, the fact that the origin is at z � 0 is not important.
Moreover, a more general class of soliton solutions is that
corresponding to a sum of solitons each with a different
origin. Since the RG method gives the long-time behavior
of the solution, the difference in the origins tends to zero
as t tends to infinity leaving only one origin. It is interest-
ing to note that, generically, the solution does not ho-
mogenize, let alone isotropize, for the final state is
inhomogeneous. There is, however, a few particular cases
for which the metric tends to a homogeneous solution:
When 4 � 0 the solution is the Bianchi-type I Kasner
metric, and for a particular value of the parameters � and
4 the solution is Ellis and McCallum family of vacuum
Bianchi models [25]. Finally, we would like to note that
the fixed points recovered in the RG technique give all
the scale-invariant exact solutions of vacuum G2

cosmologies.
Now we can understand the relation of the anomalous

dimensions � and ( with initial conditions: Exponent �
gives the Kasner parameter of the seed metric to generate
the soliton solution by means of the inverse scattering
technique. The parameter 4 (which fixes () determines
the number of solitons in our solution. So, the two ‘‘initial
conditions’’ used in the inverse scattering technique,
number of solitons and the Kasner seed metric, fixes the
anomalous dimension of system comprising of Eqs. (3.5)
and (3.6).

The RG method allows us to study the linear pertur-
bations around the fixed points as well. We have shown
that the solution outside the light cone, which corresponds
to the soliton solution with real poles, is stable against
bounded perturbations, contrary to the solution inside the
light cone (cosoliton solution) which we find to be un-
stable. Let us note that, although the stability analysis
does not have any apparent dependence on the 4 parame-
ter, one should be very cautious to extend these results to
the case 4 � 0. This case corresponds to the Kasner
solution and this is the only case for which the fixed-point
results in ��0 �  �0 � 0, which makes the system of
equations for the perturbations singular.

There remain a few open questions that we hope to deal
with in future works. First is related to the role of soliton
solutions with complex poles. These can be obtained as a
complex translation along the z axis of the soliton solu-
tion with real poles and they are regular in all the space-
time, even on the light cones. Since this complexification
does not alter the structure of the field equations, it would
be worthy to investigate whether the complex pole soliton
solutions can represent an asymptotic state of the inho-
mogeneous metrics. Second, it would be interesting to
extend the analysis performed in this paper to general
inhomogeneous nonvacuum metrics. Solutions with a
scalar field are of particular interest in order to inves-
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tigate issues such as isotropization, scaling solutions, etc.
Finally, this technique can be used to analyze long-time
behavior of spacetimes with more that four dimensions,
for example, brane world scenarios.
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