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Gauge invariant wave equations in curved space-times and primordial magnetic fields
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The inflationary production of magnetic field seeds for galaxies is discussed. The analysis is carried
out by writing the wave equation of the electromagnetic field in curved space-times. The conformal
invariance is broken by taking into account the interaction of the electromagnetic field with the
curvature tensor of the form �R����F

��F��. Such a term induces an amplification of the magnetic field
during the reheating phase of the universe, but no growth of the magnetic field occurs in the de Sitter
epoch. The resulting primordial magnetic field turns out to have strengths of astrophysical interest.
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One of the open issues of modern astrophysics is the
origin of intragalactic magnetic fields, with the character-
istics that their amplitudes are of the order of �10�6 G
and they are uniform on scales of the order of �10 kpc.

A promising candidate to explain the primordial mag-
netic field generation is the dynamo mechanism discussed
by Zeldovich, Ruzmaikin, and Sokoloff [1], and by
Parker [2]. The dynamo effect induces an amplification
of a preexisting magnetic field, but it requires a seed field
at the epoch of galaxy formation coherent over a scale of
�1 Mpc. The question that arises is about the mechanism
that produced such a seed field.

Starting with the observation that the Universe, during
its evolution, has behaved as a good conductor, one ex-
pects that the evolution of a primordial magnetic field
may preserve the magnetic flux. This physical aspect is
encoded in the parameter r � 	B=	�, which remains
(with good approximation) constant and provides an in-
variant measure of magnetic field strength. Here 	B �
jBj2=8� is the energy density of a magnetic field, and
	� � �2T4=25 is the energy density of the cosmic mi-
crowave background radiation. In order to explain the
present value of r � 1 for galaxies, one needs a pregalac-
tic magnetic field to which corresponds (see, for example,
Refs. [3,4])

r ’ 10�34: (1)

Turner and Widrow have suggested that a magnetic field
might be generated by quantum fluctuations during an
inflationary epoch, and it could be sustained after the
wavelength of interest crossed beyond the horizon giving
the observed field today [3]. This model invokes a cou-
pling among the electromagnetic field and the curvature
tensors R and R��, which break the conformal invari-
ance. Nevertheless the field equations derived in Ref. [3]
are not gauge invariant. Turner-Widrow’s model has been
generalized by Garretson, Field, and Carroll [5] by in-
troducing a coupling of the photon with an arbitrary
pseudo-Goldstone boson (see also [6]). Ratra introduced
04=70(6)=063502(4)$22.50 70 0635
a coupling between the scalar field � and the electromag-
netic field via the interaction e�F��F��, where F�� is the
electromagnetic field strength, F�� � r�A� �r�A� [7].
The generation of a primordial magnetic field induced by
coupling terms of the form RnF��F

��, which preserves
the gauge invariance, has been studied by Mazzitelli and
Spedalieri [4], whereas Dolgov has studied the breaking
of conformal invariance in QED due to trace anomalies
[8]. For other mechanisms aimed to explain in what way
the primordial magnetic field might be generated, see
Refs. [9–20].

This paper concerns the origin of the primordial mag-
netic field in the framework of the nonminimal coupling
of electromagnetic field in curved space-time, whose
action is given by [21,22]

S �
Z
d4x

�������
�g

p
�
�
1

4
F��F�� 	 �R��	�F��F	�

�
; (2)

where the � term, although invariant under CPT and
general coordinate transformations, violates Einstein’s
equivalence principle. The motivation to introduce the
nonminimal coupling of electromagnetic field with the
gravitational field [22] was essentially to understand the
intricate relation between curvature and all forms of
energy and their variations. Though at the present epoch
this coupling could be very small for cosmological back-
ground (� < 1011 cm2 � 2:5
 1020 eV�2 [21]), at the
very early Universe the effect of the nonminimal terms
could become important, apart from breaking the con-
formal invariance which indeed is necessary for the
generation of large enough magnetic seed from the vac-
uum. The fact that this Lagrangian preserves the gauge
invariance but breaks the conformal invariance and gets
very small at the present epoch is indeed a very satisfac-
tory situation. In our approach of writing the wave equa-
tion for the fields [23], we get additional contributions
from the curvature terms apart from the nonminimal
terms that have been shown to arise from one loop quan-
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tum corrections [24], indicating the qualitative signifi-
cance of such a coupling in the early Universe scenario.

Variation with respect to the four-potential A� yields
the field equations [21]

r�F
�� � �2��R��	�r�F	� 	 �r	R

�
�
F	��: (3)

We also note that the electromagnetic field F�� satisfies
the Bianchi identities

r�F�� 	r�F�� 	r�F�� � 0: (4)

Equations (3) and (4) give the Maxwell equations in
curved space-times. To infer the wave equations for
F��, we apply the covariant derivative r� to Eq. (3),
and by making use of Eq. (4) we get

�F�� 	 �r�;r��F�� � �r�;r��F��
� �2��r��R

��	��r�F	�
� 	 r���r
	R�� 
F	��
; (5)

where � � r�r� and �:; :� is the commutator. The Ricci
identity [25]

�r�;r��F�� � R	���F	� 	 R	�F�	; (6)

and the well-known cyclic identities of Riemann’s tensor
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R	��� 	 R	��� 	 R	��� � 0; (7)

allow one to cast Eq. (5) in the form

�F�� 	 R	��� F	� 	 R	�F�	 � R	�F�	
� 2�fr��R

�	�
� �r�F	�
� 	 r���r

	R�� 
F	��

���$ �
g: (8)

We now observe that the necessary and sufficient condi-
tion to have a system of coordinates in which the metric is
conformal to the Minkowski one is that the Weyl tensor
C���	 vanishes. As a consequence, the Riemann tensor
can be written in terms of the Ricci tensor and the scalar
curvature R [26], i.e. (in N dimensions),

R���	 �
1

N � 2
�g��R�	 � g�	R�� � g��R�	

	g�	R��
 �
R

�N � 1
�N � 2



�g��g�	 � g�	g��
:

After some algebras, for conformally flat space-times
(N � 4) Eq. (8) simplifies to the form
�F�� �
R
3
F�� � 2�fr��R

�	�
� �r�F	�
� 	 r���r

	R�� 
F	�� � ��$ �
g

� 2�
�
r�

�
R��r	F

	� � R��r
�F�� �

R
3
r�F��

�
	r���r

	R�� 
F	�� � ��$ �

�
: (9)
The metric components of the spatially flat Friedman-
Robertson-Walker cosmology are, in the conformal time,

g�� � a2��
diag�1;�1;�1;�1
; (10)

where a��
 is the scale factor. The field strength tensor
F�� has components

F�� � a2��


0 �Ex �Ey �Ez
Ex 0 Bz �By
Ey �Bz 0 Bx
Ez By �Bx 0

0
BBB@

1
CCCA; (11)

whereas Riemann’s and Ricci’s tensor components are

Rijkl � �
_a2

a4
��ik�

j
l � �il�

j
k
;

R0i0j � �
1

a2

�
�a
a
�

_a2

a2

�
�ij; Rij0k � 0;

(12)

Rij � �
1

a2

�
�a
a
	

_a2

a2

�
�ij � �u��
�ij;

R00 � �
3

a2

�
�a
a
�

_a2

a2

�
� �s��
; Ri0 � 0;

(13)

where the dot stands for derivative with respect to the
conformal time �. Observing that in the conformal met-
ric (10), the left-hand side of Eq. (9) for the spatial
component assumes the form

�Fij �
R
3
Fij �

1

a2
��Fij; (14)

where �� is the D’Alambertian in the Minkowski space-
time, i.e., �� � ���@�@� � @2=@�2 �r2

�, it follows
that Eq. (9) becomes

��Fij � 2�


�
2s
3
�Fij 	

�
u�

s
3

�
r2
�Fij

	

�
5�s� u


_a
a
� _u

�
_Fij � 6�s� u


�
_a
a

�
2
Fij

�
;

(15)

where s and u have been defined in (13). In terms of the
magnetic field and collecting the terms, Eq. (15) reads�
1	

4�
3
s
�
@2

@�2
�a2B
 �

�
1	 2�

�
u�

s
3

��



r2
��a

2B
 � 2�
�
5�s� u


_a
a
� _u

�



@
@�

�a2B
 	 12��s� u

�
_a
a

�
2
�a2B
 � 0: (16)
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TABLE I. Values of r � 	B=	� at 1 Mpc and for MGUT �
1016–1017 GeV, TRH � f109; 1015–1017g GeV, and T� �
f1012; 1015; 1016g GeV [3].

MGUT (GeV) TRH (GeV) T� (GeV) r�

1017 109 1012 10�37

1015 1015 10�33

1016 1016 10�45

1016 1015:56 10�34

1017 1016 10�32

1016 109 1012 10�50
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Taking the spatial Fourier transform

B ��;k
 �
Z d3x
2�

eik�xB��;x
; (17)

and using the notation

F k��
 � a2��
B��;k
; (18)

Eq. (16) can be rewritten as�
1	

4�
3
s
�
�Fk � 2�

�
5�s� u


_a
a
� _u

�
_Fk 	

n��


�2
Fk � 0;

(19)

where

n��
 � �2

�
1	 2�

�
u�

s
3

��
k2 	 12��s� u


�
_a
a

�
2
�
:

(20)

Let us now evaluate the magnetic field for the different
phases of evolution of the Universe [3]. In what follows
we concern ourselves with the evolutions of the magnetic
field fluctuations whose wavelengths are well outside the
horizon, according to [3], Lphys � aL� H�1 or k�� 1.
We shall use the notation Fk � jFkj �

���������������
F�
k � Fk

p
.

Inflationary de Sitter (dS) phase.—The scale factor for
this epoch of the Universe is

a��
 � �
1

HdS�
; (21)

where HdS � 3
 1024 eV [14]. Equation (19) reduces to
�1	 4�H2

dS
�
�Fk 	 k2Fk
 � 0, whose solution is Fk��
 �

sink�. It is worth noting that the � term does not affect
the growth of the magnetic field. For modes outside the
horizon, we have in fact that Fk depends on � as

Fk��
 � �� a�1: (22)

Phase of reheating (RH) and matter domination.—The
scale factor for this stage of the Universe is

a��
 � 1
4H

2
0R

3
0�

2; (23)

where R0 � 1026h�10 m (0:6 � h0 � 0:8) is the present
Hubble radius of the Universe, and H0 �
100h0 km=Mpc s is the Hubble parameter. The expres-
sions for u and s, defined in (17),

u��
 �
6

b2
1

�6
; s��
 � �u��
;

where b � 16�=�H2
0R

3
0

2, and the condition that the �

term is dominant �� b1=6, allow one to rewrite
Eq. (19) in the form
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�F k �
21

�
_Fk 	

72

�2
Fk � 0; (24)

whose solution is

Fk��
 � �18 � a9: (25)

Equation (19) shows that the magnetic field grows at a
very high power of scale factor a, which is the main
amplification for the seed of primordial magnetic fields.

Phase of radiation domination.—The scale factor of
the Universe is

a�H0R20�: (26)

Equation (19) reduces�
1�

4d

�4

�
�Fk �

32d

�5
_Fk �

48d

�6
Fk � 0; (27)

where d � �=�H0R
2
0

2. The solution is

Fk��
 � c01
12d	 5�4

12d�4
	 c02

20d	 3�4

20d�3
: (28)

Using as a boundary condition Fk ! const for increasing
conformal time, we get c02 � 0. Hence, the solution is
Fk��
 � 5=12d	 ��4. The last term is suppressed dur-
ing the evolution of the Universe, thus Fk � const, which
implies 	B � a�4, as expected.

The expressions of Fk��
 for different epochs of the
evolution of the Universe allow one to estimate the
strength of the primordial magnetic field. According to
Turner-Widrow’s model [3], if one assumes that the
Universe had gone through a period of inflation at grand
unification theory (GUT) scale (MGUT � 1016–1017 GeV)
and that fluctuations of the electromagnetic field have
come out from the horizon where the Universe had gone
through about 55 e-folding of inflation, then [3]

r � �7
 1025
�2�p	2

�
MGUT

mPl

�
4�q�p
=3

�
TRH
mPl

�
2�2q�p
=3




�
T�
mPl

�
�8q=3

L�2�p	2

Mpc ; (29)

where TRH is the reheating temperature, T� is the tem-
perature at which plasma effects become dominant (i.e.,
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the Universe first becomes a good conductor), and mPl �
1019 GeV is the Planck mass. Finally, p and q are the
exponents of the scale factor a��
 during the dS and RH
epochs which determine an increasing of the magnetic
field. In our case, p � �1 and q � 9 [see Eqs. (22) and
(25)]. The temperature T� can be estimated via reheating
processes [3] T� � minf�TRHMGUT


1=2; �T2RHmPl

1=3g, and

for T < T� 	B evolves as 	B � a�4.We note, however, that
the reheating temperature TRH is given by TRH �
f109 GeV;MGUTg. In Table I are reported the values of r.
The range of variability of r is r� 10�50–10�32, and we
also note that because of the contribution of � the value
for the seed field becomes extremely sensitive to the
values of the physical parameters entering in r. In par-
063502
ticular, MGUT � 1017 GeV, TRH � 1016 GeV, and T� �
1015:56 GeV imply r� 10�34.

In conclusion, the nonminimal coupling of the electro-
magnetic field with curvature terms, which breaks the
conformal invariance but preserves the gauge invariance
of the field wave equations, provides a scenario in which
magnetic fields may be amplified. Such a growing occurs
mainly during the reheating phase, whereas no amplifi-
cation arises in the inflationary stage. This picture allows
one to infer the order of magnitude of r necessary to
generate the seed of galactic magnetic fields.
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