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We suggest a new cosmological scenario which naturally guarantees the smallness of scalar masses
and vacuum expectation values , without invoking supersymmetry or any other (nongravitationally
coupled) new physics at low energies. In our framework, the scalar masses undergo discrete jumps due
to nucleation of closed branes during (eternal) inflation. The crucial point is that the step size of
variation decreases in the direction of decreasing scalar mass. This scenario yields exponentially large
domains with a distribution of scalar masses, which is sharply peaked around a hierarchically small
value of the mass. This value is the ‘‘attractor point’’ of the cosmological evolution.
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I. GENERAL IDEA

The radiative instability of scalar masses is the key
point of the gauge hierarchy problem. In the effective 4D
field theory, the scalar masses are quadratically sensitive
to the ultraviolet cutoff. The only known exceptions to
this rule are Goldstone bosons. This fact is hard to rec-
oncile with the observed smallness of the weak scale,
relative to the Planck mass Mp � 1019 GeV. So far su-
persymmetry is the only known symmetry that renders
masses of elementary scalars radiatively stable. The sca-
lar masses are controlled by supersymmetry breaking
scale. Given the fact that we do not understand the origin
of this scale, supersymmetry per se does not really ex-
plain the origin of the weak scale but rather makes the
gauge hierarchy technically natural.

In view of the above, it is crucial to explore other
possible mechanisms of scalar mass stabilization. In the
present paper we suggest an alternative mechanism that
can guarantee zero or very small scalar masses [and
vacuum expectation values (VEVs)] without invoking
supersymmetry or any other nongravitationally coupled
new physics at low energies.

In our scenario, a small scalar mass is selected with
probability one during the cosmological evolution. This
selection works as follows. We construct a simple frame-
work in which scalar masses (and VEVs) undergo discrete
variations due to nucleation of closed domain wall
bubbles (branes) during inflation. Values of the scalar
mass on different sides of the wall differ by a finite
step. The bubbles expand exponentially fast and create
domains of a new vacuum with a new value of the scalar
mass. New bubbles are created within the old, and the
scalar mass changes further. Since inflation is known to
be eternal [1,2], the process of wall nucleation continues
forever, populating the Universe with exponentially large
domains having different values of the scalar mass.
However, not all the values of the scalar mass (VEV) are
equally probable. In our model, in the absence of gravi-
tational backreaction, the probability is sharply peaked
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around zero because the step �� decreases towards small
values of the VEV � faster than � itself. That is,

��=� / �n; (1)

where n > 0 is some power. As a result, the density of
states diverges for small VEV (mass) of �.

Thus, in the first approximation, the probability distri-
bution for � has an infinitely sharp peak at � � 0. We
will show, however, that infrared effects, such as the
Gibbons-Hawking temperature and quantum fluctuation
of� during inflation, can shift the most probable value of
the scalar mass (and VEV) away from zero to a small
value and round off the maximum of the peak.

II. COSMIC ATTRACTORS

To introduce our mechanism, we use a simple toy
model. The main ingredients are: (1) a scalar field �;
(2) domain walls (branes) charged under an antisymmet-
ric three-form field A	
� with the field strength F	
� �
F�	
�. These objects are engaged in the following in-
terrelation. The branes are sources for the three-form
field. The value of the brane charge is determined by
the VEV of �. The VEV of � is in turn determined by
the three-form field strength F.

These couplings result in the following dynamics.
Nucleation of a closed brane changes the value of F.
The step of change (the brane charge) is determined by
�. We construct the model so that an increase in F
decreases �, which in turn decreases the charge of new
branes that can be nucleated. Decrease of the brane
charge diminishes the minimal step of change in F. As
a result, the subsequent decrease of� requires more steps,
and their number diverges towards small values of �.

Let us discuss this dynamics in more detail. The action
of a free three-form field in 4D can be written as

Z
3�1

F2: (2)

It is invariant under gauge transformations
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1Alternatively, we could require that A! 
A, while branes
are unaffected. In fact, the system is invariant under both as-
signments, independently.
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A	
� ! A	
� � @�	B
��; (3)

where B is a two-form. Because of this gauge freedom, F
contains no propagating degrees of freedom. The solution
to the equations of motion is an arbitrary constant value
of the field strength,

F � const: (4)

The situation changes in the presence of 2-branes, or
domain walls, which may act as sources for A due to the
following coupling:

q
Z
2�1

A; (5)

where the integral is taken over the 2� 1-dimensional
world volume and q is the brane charge. The role of such
branes can be played by the field theoretic solitonic do-
main walls [3] (see Appendix A), or by fundamental
branes of some sort. Their precise origin is unimportant
for the present discussion. The change of F across the wall
is given by

�F � q: (6)

Thus, F can undergo discrete variations due to nucleation
of closed branes [4].

This mechanism can be used to induce spatial varia-
tions of the field �, by coupling it to the F-form. We do
not require that the Lagrangian contains any small scale
(such as the supersymmetry breaking scale). We allow the
(renormalized) potential of � to be the most general
function, including all possible interactions with the
four-form field F,

V��	 �
�

m2 �

F2

M2
p
� � � �

�
j�j2 �

�
1�

F2

M4
p
� � � �

�
j�j4

� � � � : (7)

The dimensionless coefficients are not shown explicitly
and are assumed to be of order one. The couplings linear
in F are suppressed by parity symmetry. The couplings in
(7) effectively convert the mass and the VEV of � into
functions of the four-form field strength, e.g.,

�2 � �m2 
 F2=M2
p	: (8)

We shall assume that the F-independent part of the
mass m2 takes its natural value, m2 �M2

P. For definite-
ness, we shall assume the sign of this contribution to be
negative and the sign of the F-dependent contribution to
be positive. Then, the F-dependent contribution will lead
to a partial cancellation of the effective mass. This mass
will take different values in different parts of the
Universe due to nucleation of branes charged under F.

To ensure that the brane charge q is suppressed at small
values of �, we require that the system is invariant under
a Z2N symmetry, which acts on � as
063501
�! ei��=N	�; (9)

and at the same time changes branes into antibranes and
vice versa (leaving the three-form A invariant).1 The
coupling of the three-form to the branes (5) should then
be replaced by

Z
2�1

�N

MN
2
p

A: (10)

Note that for a nonconstant �, the above coupling is not
gauge invariant, and extra nonlocal terms have to be
added to the action to restore the gauge invariance. A
detailed discussion is given in Appendix A. These addi-
tional terms are particularly important for understanding
of the radiation of A-waves from the branes that occurs if
the background value of� changes in time (see Appendix
B). We have shown in [3] that a nonlocal action of this
type can arise from a local field theory in a two-
dimensional toy model after integration over some mass-
less fermions. It is not clear whether or not this mecha-
nism can be extended to 4D, and more generally, whether
or not the required type of action can be obtained in
effective field theory. We leave this question for future
investigation.

In the context of brane nucleation, however, the addi-
tional terms in (10) are unimportant. In the regime of
interest to us here (small �), each act of brane nucleation
changes � by a very small amount, so � can be regarded
as nearly constant, and additional terms are negligible.

The magnitude of the F-step between neighboring
domains is set by �,

�F / �N; (11)

and so is the change of the VEVof �,

��2 / �N: (12)

This is the key point of our mechanism. With every step
that decreases the VEV of �, we create a region in the
Universe where the brane charges are smaller. This allows
for finer and finer adjustment of the�-VEV, accompanied
by further decrease of the brane charges. Thus, the step
size of the field F (and therefore of �) decreases and the
‘‘level density’’ grows towards smaller values of�, and if
the process is not for some reason terminated, the total
number of levels diverges.

For instance, imagine that we start in a domain where
F� 1 and �2 � � < 1 in Planck units. In these units, the
value of the brane charge in that domain is

q0 � �N=2: (13)

For the sake of definiteness, let us assume that �� 0:1 or
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so. After the first step of brane nucleation, the change in
F is

�F � q0 � �N=2 (14)

and the VEVof � is partially cancelled to

�2 ! ��
 �N=2	: (15)

Then it will take approximately n � 1=��N=2	
1 steps to
cancel �2 to �2 � �2. At this point the brane charge
becomes

qnew � �N; (16)

and now it will take n� 1=�N
2 steps to cancel � to

�2 � �3; (17)

and so on. In general, the number of steps required to
cancel �2 to an accuracy �k is

�number of steps	 � �Nk=2: (18)

All the allowed values of � near � � 0 have nearly
identical vacuum energies, and the corresponding regions
will therefore occupy equal fractions of the volume in the
post-inflationary universe. The corresponding prior
probability for � is then simply proportional to the den-
sity of states,

P ��	d� / d�=�N: (19)

Thus, regions with zero mass and VEVof � are maxi-
mally probable. This hierarchy attractor provides a dy-
namical mechanism for explaining a zero mass of an
interacting scalar without need for supersymmetry.

We note that although the wall charge vanishes as
�! 0, the wall tension remains large,  �M3

p, and in
the limit the walls become simply domain walls separat-
ing degenerate vacua. Nucleation of such walls is sup-
pressed by a huge factor [5] � exp�
�M2

p=H2	, where H
is the expansion rate during inflation. This, however, does
not change our conclusions, since eternal inflation pro-
vides unlimited time for the distribution (19) to establish.

In order to use this ‘‘attractor’’ mechanism for solving
the gauge hierarchy problem, we have to overcome the
fact that the attractor point is at exactly zero mass and
VEV of �. In the following section we will show that
curvature corrections to the potential V��	 generally
shift the attractor point away from zero to a small value
of �.
III. SMALL HIGGS MASS FROM QUANTUM
FLUCTUATIONS

In the above analysis we have ignored the effects of the
gravitational backreaction on the Higgs mass. One pos-
sible source of this backreaction is a nonminimal cou-
pling to the curvature,
063501
j�j2R: (20)

This will create an additional contribution to the Higgs
mass during inflation,

�m2
curvature �H2: (21)

Even in the absence of such coupling, � will get a
thermal-type contribution to its mass due to de Sitter
quantum fluctuations. This effect is analogous to that
of a thermal bath at temperature TGH �H (Gibbons-
Hawking temperature [6]). In the domains where the
Higgs VEV drops below H, the corresponding contribu-
tion to the Higgs mass is

�m2
GH �H2: (22)

(For �� H, the fields interacting with � get masses
greater than TGH and do not contribute to the Higgs
potential.)

To analyze the effect of these contributions on our
attractor mechanism, we shall first consider a simplified
picture where the expansion rate H remains nearly con-
stant during inflation. (This situation is realized in some
models of hybrid inflation [7].) Because of the mass
corrections (21), (22), which we shall assume to be posi-
tive, the Higgs VEV during inflation will not be given by
(8), but will rather be shifted to

�2
inflationary � �m2 
 F2=M2

p 
 �m2	; (23)

where �m2 � �m2
curvature � �m2

GH �H2. Now, the dis-
cussion in the preceding section indicates that � will be
driven not to the point where its post-inflationary VEV
(8) vanishes, but rather to the point where its inflationary
VEV vanishes. That is, most of the space in the Universe
will be occupied by domains where �2

inflationary � 0.
Now, it should be noted that light scalar fields with

masses m & H are subject to large quantum fluctuations
during inflation. Assuming the minimum of the potential
is at � � �0, the characteristic amplitude of the fluctua-
tions � is generally given by �V��0 � �	 
 V��0	� �
H4 [8]. In our case, if the mass of� is driven to zero, then
V��	 is reduced to the quartic term in (7), and we have
��H. This means that the field� can be driven to zero
only with an accuracy �O�H	,

�2
inflationary � �m2 
 F2=M2

p 
O�H2	� �H2: (24)

After the end of inflation, the gravitational (�H2) con-
tribution to the mass vanishes, and the VEV is shifted to

�2
today � �m2 
 F2=M2

p	 �H2: (25)

Thus, the post-inflationary Higgs mass will not be
exactly zero, but will rather be comparable to the infla-
tionary Hubble parameter. Because of the quantum fluc-
tuations, the infinite peak in the probability distribution
(19) will be smeared, and the distribution will be nearly
flat, P ��	 � const, for j�j & H. At larger values of �,
-3
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the probability suppression is at least as strong as in
Eq. (19). It can be even stronger, due to the effect of
differential expansion. Larger expectation values of �
correspond to smaller values of F, resulting in a smaller
vacuum energy (both because the potential (7) is more
negative, and because the F-field energy density, %F �
F2, is smaller). As a result, the inflationary expansion rate
is lower, which can lead to an exponential suppression at
large � [9].

In order to solve the hierarchy problem, we require that
the peak of the probability distribution is at �� 1 TeV.
Then the Hubble expansion rate during inflation must be
H � 1 TeV and the corresponding vacuum energy den-
sity ��1011 GeV	4. This is a constraint that our mecha-
nism imposes on the inflationary scenario.

We now discuss the dynamics of the model in some
more detail. Quantum fluctuations of � occur on length
and time scales l� t�H
1. Fluctuations at the loca-
tions of domain walls cause fluctuations of the wall
charge q, which in turn cause variation of the F-form in
the adjacent domains. This variation propagates in the
form of waves (see Appendix B) from the walls to the
interior of the domains. The wavelengths of these waves
are stretched by the exponential expansion of the Uni-
verse, and as a result, the form field will vary on an
exponentially large scale in the domain interiors.
Shorter waves, emitted near the end of inflation, have
not travelled far away from the walls. The sizes of the
domains are huge compared to the present horizon, and it
will take an exponentially long time for the shorter waves
to propagate well into domain interiors.

After the end of inflation, the Higgs mass takes its
zero-temperature value and the Higgs rolls away to its
new minimum. At this point, the charge of the walls and
the values of F-form in the adjacent regions change, but
once again, this change propagates in the form of waves
and is confined to the neighborhood of the walls.
Moreover, the hierarchy is not destabilized even in re-
gions affected by the change. The change of F triggered
by the wall is proportional to the final charge of the wall,
which in attractor domains is set by today’s value of the
Higgs field �100 GeV. Thus, even after the new value of
the field strength is established, the change with respect
to the inflationary value will be �F� 10
17NM2

p.
Already for N � 2, the corresponding change in � is
��� 100 GeV, which does not upset the hierarchy. For
N > 2, the backreaction on � is negligible.

Let us finally discuss how the above scenario is modi-
fied in more generic models of inflation, in which the
value of H fluctuates during eternal inflation and then
gradually decreases during a prolonged slow-roll period.
To be specific, we shall assume that inflation is of the
‘‘new’’ type, with expansion rate Hmax � Mp at the
maximum of the potential andHmin at the end of inflation.
Another important parameter is the borderline value H
063501
between the regimes of eternal inflation and slow roll. In
the course of eternal inflation, the bubble walls will be
exposed to H in the range H & H & Hmax. Since the
bubble nucleation rate is so low, a typical geodesic will
go through the whole range many times between succes-
sive nucleations. This suggests that the accuracy with
which the attractor mechanism can drive �inflationary to
zero cannot exceed �Hmax. The slow-roll period is rela-
tively short and therefore affects only the immediate
vicinity of the bubble walls. Thus, in order to solve the
hierarchy problem, we have to require Hmax � 1 TeV.
IV. CONCLUSIONS

It is usually assumed that the solution to the hierarchy
problem requires introduction of some new physics at low
energies. In the present paper we have provided a counter-
example to this statement. We have suggested a novel
cosmological selection mechanism in which small scalar
masses and VEVs become attractors during the cosmo-
logical evolution.

The key idea is that (1) the scalar mass is dynamically
promoted to a stochastic variable that undergoes discrete
jumps during eternal inflation; (2) the size of the minimal
step is a continuous function of the ‘‘jumping’’ scalar
VEV �. That is, the order parameter in question controls
its own steps. As a result the probability distribution is
sharply peaked around a small value, for which the step
vanishes. We call such a value an attractor. The post-
inflationary value of the scalar mass is determined by
the mismatch of masses during and after inflation, due to
the Gibbons-Hawking temperature TGH �H, and by the
magnitude of quantum fluctuations of �, also �H. Thus,
the observed value of the Higgs mass in our scenario is
determined not by ultraviolet physics, but rather by the
maximal inflationary expansion rate Hmax. Our scenario
requires that Hmax � 1 TeV. It is obvious that this con-
straint is not in any respect analogous to the conventional
approaches invoking supersymmetry or some other new
physics around TeV.

Our model involves nonlocal couplings of the form
field F, and we have emphasized that it is not presently
clear how this kind of coupling can be obtained in the
low-energy effective theory. We note, however, that this
coupling does not seem to have any of the pathologies
usually associated with nonlocal interactions. Another
unusual feature of our model is that it has solutions
describing waves of the field F propagating at the speed
of light. This suggests the presence of massless degrees of
freedom, which can potentially lead to testable predic-
tions. These issues need further investigation.

Finally, let us note that the attractor mechanism can be
combined with the usual anthropic approach to solving
the cosmological constant problem [10], if one is willing
to introduce more three-form fields. The main technical
problem in this approach has been to guarantee a suffi-
-4
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ciently small step of vacuum energy variation. With our
attractor mechanism this is trivially achieved, as it gen-
erates branes with tiny charges. Anthropic selection can
also be used to explain the observed HiggsVEV in models
of inflation with Hmax � 1 TeV.
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APPENDIX A: BRANES WITH CHARGES
SUPPRESSED BY SYMMETRIES

In this Appendix we shall give a more detailed dis-
cussion of branes and domain walls with field-dependent
three-form charges. Below Planck energies, such branes
can be treated as fundamental objects or be explicitly
constructed as field theoretic solitonic domain walls, as
it was suggested in [3]. The dynamics of three-form fields
in 3� 1 dimensions is in many respects analogous to the
�1� 1	-dimensional electrodynamics, with electrically
charged particles playing the role of ‘‘branes.’’ So
we shall first review our mechanism in a simplified
2-dimensional example, and then generalize to �3� 1	
dimensions. For simplicity, we shall work in Planck units,
and will set all the mass scales equal to one.

The action describing a �1� 1	-dimensional gauge field
interacting with pointlike charges can be written as

S1�1 �
Z
d2xF2 � q

Z
dx+A+; (A1)

where F is the field strength and x+ is the coordinate of a
point charge q. With q � const, the above action is gauge
invariant under A+ ! A+ � @+!. However, we would
like to promote the charge q to a function of a scalar field
�, that is, q � �N . With this substitution, however, the
action (A1) is no longer gauge invariant. In order to
restore the gauge symmetry, we shall modify it in the
following way:

S1�1 �
Z
d2xF2 �

Z
�Ndx+�+-A-; (A2)

where �+- � .+- 

@+@-
@2

is the transverse projector. The
modification is only significant for a varying �. For a
constant q � �N , the actions (A1) and (A2) are
equivalent.

The generalization of this action to a �3� 1	-
dimensional model with 2-branes is straightforward:
063501
S3�1 �
Z
d4xF2 �

Z
�Nd +-��

++0
�--0���0

A+0-0�0 ;

(A3)

where d +-� is the world-volume element. This action is
manifestly gauge invariant under (3).

An unusual feature of the actions (A2) and (A3) is that
the projection operators �+- are nonlocal. It appears that
such operators cannot be obtained from a local field
theory by integrating out a finite number of heavy parti-
cles. In Ref. [3], the action (A2) was obtained after
integrating over massless fermions in a �1� 1	-
dimensional model. However, it is not clear how generic
that model is and whether or not it can be extended to
higher dimensions. These issues require further study.

As we already mentioned, the branes (or charges) in
question can be regarded as fundamental objects or as
solitons of the effective field theory. We shall briefly
review the latter possibility. Following [3], we assume
that in the 4D low-energy effective theory F is mixed
with a certain phase field a,

q
2�
aF: (A4)

The interaction (A4) is invariant under the shift symme-
try

a! a� 2�; (A5)

as well as under gauge transformation of the three-form
field A+-	. The equation of motion of the three-form field
then demands that the variations of the field strength and
a with respect to any particular coordinate must satisfy

�F �
q
2�

�a: (A6)

Thus, any stable solitonic configuration across which a
changes by a finite amount inevitably acts as a source for
the three-form field. Such configurations do indeed exist.
Since a is a phase, the potential of a must respect the shift
symmetry (A5). As long as this is the case, irrespective of
the precise form of this potential, due to topological
reasons there must be domain wall solutions across which
a changes by �a � 2�. Then, according to (A6), such
walls acquire a charge q under A. Thus, the values of the
field strength on the two sides of the wall differ by

�F � q: (A7)

The charge q defines the minimal step by which F can
change from one region of the Universe to another.

For our purposes, however, q cannot be truly constant,
because it has to depend on �. Also, if we want to think
of a as a phase of a certain complex order parameter,

X � jXjeia; (A8)

with a VEVaround the Planck scale, jXj � 1, then q will
depend on jXj as well. In terms of the fields X and �, the
-5
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gauge-invariant coupling (A3) can be written as

A+-��++0
�--0���0

�i�+0-0�0	�X@	Xy 
 Xy@	X	�N�:

(A9)

This is the lowest possible a
 A-mixing operator invari-
ant under gauge (3) and shift (A5) symmetries, and under
the Z2N symmetry which acts on the field � as

�! ei
�
N�: (A10)

The action of this symmetry on the other fields can be
defined in two alternative ways. One possibility is to
demand

a! 
a; A! A; (A11)

or equivalently, X ! Xy. Note that the transformation
a! 
a replaces solitons by antisolitons and vice versa.
An alternative choice would be to demand

a! a; A! 
A: (A12)

Equation (A9) is invariant under both of these choices. At
low energies, where� and jXj can be treated as constants,
the above coupling reduces to the one of (A4). Note that
we are not demanding any approximate or exact U�1	
symmetry under the shift a! a� const. For the exis-
tence of the wall, all that we need is that jXj � 0 be a
maximum of the potential. This suffices to ensure the
existence of a stable configuration across which a changes
by 2�. The corresponding change of F through the wall
will be

�F��N: (A13)

APPENDIX B: F-WAVES FROM THE WALLS

In 3� 1-dimensions, gauge-invariant free three-form
fields [just as the �1� 1	-dimensional electromagnetic
field] have no propagating degrees of freedom, so there
are no wave solutions. The situation is different in our
framework, where brane charges depend on the field�. At
the end of inflation,� rolls away from zero, and the brane
charges change in time. This change triggers the corre-
sponding change of the three-form field strength, which
propagates away from the brane in the form of a shock
wave. We shall now discuss this dynamics.

To illustrate the point, we shall restrict ourselves to
a �1� 1	-dimensional example. Generalization to �3� 1	
063501
dimensions is straightforward. Labeling the two space-
time coordinates x+ by t and z, we shall consider an
isolated static brane located at z � 0. The gauge-invariant
Lagrangian of interest is

L � 

1

4
F2 � A+�

+0��N�z	� � j@+�j
2


 �
m2
eff j�j

2 � j�j4	; (B1)

where meff is the effective mass of � after inflation, and
we have ignored higher-order terms in the potential of �.
When � rolls away from � � 0, the change of the brane
charge induces a backreaction on �. This backreaction is
suppressed by the brane charge ��N . Since in the do-
mains of interest, the final VEV of � is very small, the
backreaction on � is negligible, and we shall ignore it.

Thus, we shall study the dynamics of a gauge field in
the background of a time-dependent charge. This dynam-
ics is governed by the following equation

@+F+- � �-0��N�t	�z	�

� .-0�
N�t	�z	 


Z dp2

�2�	2
p-p0

p2 e
ipx ~�N�p0	;

(B2)

where p is the two-momentum, and ~�N�p0	 is the
Fourier-transform of �N�t	. A straightforward integra-
tion gives the following two equations

@zF10 �
1

2
@z��

N�t
 z	3�z	 
�N�t� z	3�
z	�; (B3)

@tF10 �
1

2
@t��

N�t
 z	3�z	 
�N�t� z	3�
z	�; (B4)

which are solved by

F10 �
1

2
��N�t
 z	3�z	 
�N�t� z	3�
z	�: (B5)

This solution describes waves propagating away from the
brane in two opposite directions. From this solution it is
also obvious that after the transition is finished and �
assumes a constant value �today, the change of F across
the brane is given by

�F � �Ntoday: (B6)
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