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Locality of the square-root method for improved staggered quarks
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We study the effects of improvement on the locality of square-rooted staggered Dirac operators in
lattice QCD simulations. We find the localization lengths of the improved operators (FAT7TAD and
ASQTAD) to be very similar to that of the one-link operator studied by Bunk et al. being at least the
Compton wavelength of the lightest particle in the theory, even in the continuum limit.We conclude that
improvement has no effect. We discuss the implications of this result for the locality of the nth-rooted
fermion determinant used to reduce the number of sea quark flavors, and for possible staggered valence
quark formulations.
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I. INTRODUCTION

One of the biggest headaches in lattice QCD calcula-
tions is the inclusion of quarks in a realistic and readily
simulated manner. Staggered fermions have the advan-
tage over Wilson-like quarks that their residual chiral
symmetry protects the light quark mass from additive
renormalization. Staggered fermions are also much
cheaper to simulate than those from the overlap formula-
tion. The disadvantage is that the formalism naturally
yields Nf � 4 degenerate fermion species (known as
‘‘tastes’’). In the continuum limit these tastes decouple,
but at finite lattice spacing, a, there are O�a2� taste-
changing interactions. Improvement of the action can
systematically reduce these interactions, leading to
smaller splittings in hadron mass multiplets [1], a more
physical Dirac spectrum [2,3] and the correct chiral
suppression of the topological susceptibility [4,5].

True QCD, however, requires a light ‘‘2� 1’’-flavor sea
quark mass degeneracy. The usual way of tackling this is
to replace the fermion determinant in the partition func-
tion by its nth-root, with n either two or 4, to give reduced-
taste staggered fermions [6,7]. This approach is inspired
by the continuum factorization into independent tastes. It
is not certain, however, whether this process yields a
theory that is sufficiently local that we are confident of
the universality in the continuum limit, and will arrive at
the correct theory, QCD, as a! 0.

To answer this we seek to prove at least the existence of
a local operator whose determinant matches that of the
reduced-taste sea quarks. Explicitly formulating this op-
erator would also provide a consistent description of the
valence quarks— currently lacking—and allow an un-
ambiguous perturbative analysis of the theory.
Attention so far has focused on the simplest candidate,
the nth-rooted Dirac operator, as �detD6 �1=n � det�D6 1=n�.

The square-root of the simplest, one-link staggered
operator was studied in [8]. Free fermions were shown
to be nonlocal both at finite a and in the continuum limit,
with a localization length of order the inverse of the
quark mass, m. The limits of the eigenvalue spectrum
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placed a similar upper bound on the interacting theory.
Numerical measurements showed the operator had a con-
tinuum limit localization length at least as large as the
correlation length of the lightest confined state, the
Goldstone pion.

In this Brief Report we investigate to what extent the
nonlocality (or otherwise) is due to the taste-changing
interactions. Using a similar methodology to [8], we
compare the locality of the FAT7TAD and ASQTAD im-
proved staggered operators at various lattice spacings.
We show the size of the taste-changing interactions has
almost no effect, and all the square-rooted staggered
operators are nonlocal in the continuum limit on a scale
at least that of the largest Compton wavelength. We dis-
cuss the implications of this for possible reduced-taste
formulations for valence and sea quarks in the context of
the expected properties of the infrared Dirac spectrum.
II. METHOD

An exponential locality length, rloc, can be defined as
follows [8]. Given a candidate Dirac operator D6 �x; y�, we
apply it to a point source ��y� � yz to define a wave
function  �x� �

P
yD6 �x; y���y�. The operator is exponen-

tially local if the locality function f�r� is bounded by

f�r� � max
jjx	zjj�r

fj �x�jg < exp
�
	

r
rloc

�
: (1)

We require rloc ! 0 in the continuum limit to guarantee
universality, as has been seen for overlap fermions [9].

We measure Eqn. (1) for the one-link, FAT7TAD and
ASQTAD staggered quark formulations [10,11]. The lattices
studied are described in Table I.We use periodic boundary
conditions and study three lattice spacings, choosing the
quark mass such that the pion (lightest singlet pseudo-
scalar meson) mass is fixed in physical units. For com-
patibility with [8], we choose m such that r0m� ’ 1:3 (or
520 MeV) [15–17]. The lattice size is fixed around 1:5 fm,
or four Compton wavelengths of the pion.
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FIG. 1 (color online). Relative accuracy of the localization
function using the polynomial approximation to the square-
root of the one-link staggered action. Measurements are on
16332 for the free theory and � � 6:0.

TABLE I. The Wilson gauge action ensembles studied. The
� � 6:0 configurations are from [12]. Tadpole improvement
factors u0 come from the mean plaquette [13]. We set the scale
using r0 [14].

� L3T Nconf r0 aL=fm u0 m

5.8 124 107 3.673 (5) 1.63 0.8680 0.017
6.0 16332 221 5.371 (15) 1.49 0.8778 0.010
6.2 244 94 7.380 (26) 1.63 0.8851 0.007
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FIG. 2 (color online). Scaling of the effective localization
length for reduced-flavor Nf � 2 ASQTAD fermions.
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We use the same m for calculations with the improved
fermion formulations. Whilst the different renormaliza-
tions will change the value of the pion mass, Ref. [10]
shows this effect is only slight, and does not affect the
conclusions of this study.

IfM is the staggered Dirac operator, thenMyM defined
on the even sites is a Hermitian, positive-definite matrix
representing Nf � 4 tastes [18,19]. We study the locality

of D6 �
������������
MyM

p
using Eqn. (1). In this, j � j is the SU(3)

color norm, and jj � jj the periodic L1 (‘‘taxi driver’’)
norm [8].

The square-root function is approximated using a
Tchebyshev polynomial [20] of order npoly � 500. The
analytic upper bound on the truncation error is O�10	2�
[21]. Before discussing the results, we must first be sure
that the truncation errors in the polynomial do not affect
our estimates of the locality function.

Measuring f�r� for various npoly < 500, the error
should decrease exponentially, and so

��r; npoly� � jf�r; npoly� 	 f�r; 500�j

� Ae	Bnpoly�1	 e	B�500	npoly��

’ Ae	Bnpoly for 0< npoly � 500 (2)

and A�r�; B�r�> 0. We plot � at various fixed r in Fig. 1,
for free fermions and for a representative gauge back-
ground at � � 6:0. Extrapolating the linear region to
npoly � 500, we estimate the truncation error to be
O�10	8�. This is an order of magnitude smaller than the
minimum of f�r�. As improved fermions should lie some-
where between the free and the one-link interacting case,
we use npoly � 500 in all our analysis.

We may ask why the actual error is so much smaller
than the theoretical bound. A heuristic argument is that
the errors on the Tchebyshev approximation are heavily
concentrated at the lower end of the spectrum. The ei-
genvalues of the Dirac operator are, by contrast, relatively
sparse here. Assuming the localization function is not
completely dominated by the infrared modes, it is rea-
sonable that truncation errors towards the middle of the
operator spectrum (which are many of orders of magni-
tude smaller) are more representative of the error on f�r�.
057502
III. RESULTS

Using the locality function, we define an effective
localization length reff

�r�

loc at distance r by

reffloc

�
ri � ri�1

2

�
�

�ri�1 	 ri�
log�f�ri�=f�ri�1��

(3)

for each pair of subsequent distances ri.
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We plot this function for the square-rooted ASQTAD

operator in Fig. 2, scaling everything in units of r0. At
small distances f�r� is almost a power law (with exponent
somewhere between 	3 and 	4). Comparing our results
with larger volumes aL ’ 2:1 fm, only results for r=r0 &

3 are free of finite volume effects. In this range there is no
clear evidence for a crossover to exponential locality, so
localization length estimates must be treated as lower
bounds only. Nonetheless, these bounds do not scale to
zero with the lattice spacing, but rather remain constant. It
therefore seems highly likely that the actual localization
length also remains finite in physical units in the contin-
uum limit.

We conclude, then, that the square-rooted ASQTAD

Dirac operator is severely nonlocal in the continuum
limit. In Fig. 3 we compare at fixed lattice spacing the
three operators. The effective locality lengths are ex-
tremely similar. This was also the case at the other lattice
spacings. It would therefore appear that the improvement
program for staggered quarks has no effect on the locality
of the square-rooted Dirac operator.
IV. DISCUSSION

Understanding how to consistently reduce the number
of staggered tastes for the sea and valence quarks is vital
to realistic QCD simulations. A proposed solution for the
sea quarks is to take the nth-root of the fermion determi-
nant. The locality (and legitimacy) of the reduced-taste
theory is not clear, but may be answered by attempting to
find a local reduced-taste Dirac operator with the same
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FIG. 3 (color online). A comparison of the effective locality
length for various reduced-flavor Nf � 2 staggered operators at
� � 6:0.
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determinant. Using this same operator to describe the
valence quarks (rather than the Nf � 4 staggered opera-
tor used at present) would also avoid the potential mode
mismatches seen for other mixed valence/sea fermion
combinations [22].

We have examined a candidate two-flavor Dirac opera-
tor, inspired by the nth-root trick used to reduce the
number of sea quark tastes. We have seen that the locality
of this square-rooted operator is as bad for improved
staggered formulations (FAT7TAD and ASQTAD) as it was
for the one-link case [8]: the locality length for 5:8 <

� < 6:2 shows no signs that rloc vanishes in the contin-
uum limit. By contrast, rloc appears to be at least the
Compton wavelength of the lightest particle.

In many areas improved staggered quarks show a defi-
nite improvement over the one-link case [1,2,4,5]. That
there is almost no commensurate change in the locality
suggests that the nth-rooted operator is not a useful way of
formulating the valence quarks. It is therefore unlikely to
be a good choice for studying the locality of the deter-
minant; a better choice would be an operator with more
physical properties.

Given a sufficiently smooth gauge background of topo-
logical charge Q, a lattice Dirac operator should have an
infrared spectrum characteristic of the number of tastes/
flavors it represents. The Atiyah-Singer Index Theorem
predicts that there should be (at least) NfjQj near-zero
modes [2,3,23]. The remaining low-lying modes should
lie in near-degenerate Nf-plets, with any splitting due to
taste-changing interactions [2,3]. The multiplets should
follow a universal distribution given, for instance, by
random matrix theory [2,24]. Taking the nth-root will
reduce neither the number of zero modes nor the multi-
plicity of other eigenvalues by factors of n. In addition,
eigenvalue ratios h�1=n

s i=h�1=nt i can no longer agree with
the universal distribution.

By analogy with the reduction of 16 naı̈ve fermion
species to four ultralocal staggered tastes, it seems likely
that a physical reduced-taste staggered Dirac operator
will, if it exists, be obtained by projection rather than
rooting. Unlike naı̈ve to staggered, however, taste-
breaking interactions prevent this being exact at finite
lattice spacing, but improved staggered spectra already
show much closer taste symmetry [2,3]. It is not clear
whether such a reduced-taste operator would be local or
even renormalizable. It is, however, important to study
this to understand the systematic uncertainty of using the
nth-root method in precision lattice QCD simulations.
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