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Compton scattering in the presence of Lorentz and CPT violation
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We examine the process of Compton scattering, in the presence of a Lorentz- and CPT-violating
modification to the structure of the electron. We calculate the complete tree-level contribution to the
cross section; our result is valid to all orders in the Lorentz-violating parameter. We find a cross section
that differs qualitatively from the Klein-Nishina result at small frequencies, and we also encounter a
previously undescribed complication that will arise in the calculation of many Lorentz-violation cross
sections: The Lorentz violation breaks the spin degeneracy of the external states, so we cannot use a
closure relation to calculate the unpolarized cross section.
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Recently, there has been a great deal of interest in the
possibility of there existing small CPT- and Lorentz-
violating corrections to the standard model [1–4]. Such
small corrections might arise from larger violations of
Lorentz symmetry occurring at the Planck scale. The
most general possible Lorentz-violating effective field
theory has been described in detail, and its renormaliz-
ability has been studied. These results open the way for a
wide variety of experiments that could test for the exis-
tence of Lorentz violation.

There are already many experimental constraints on
Lorentz-violating corrections to the standard model. The
tests have included studies of matter-antimatter asymme-
tries for trapped charged particles [5–8] and bound state
systems [9,10], frequency standard comparisons [11–13],
measurements of neutral meson oscillations [14–16], po-
larization measurements on the light from distant gal-
axies [17,18], and many others. However, although there
have been a number of kinematical analyses of the as-
trophysical consequences of Lorentz violation in particle
scattering [19–24], there has as yet been very little in-
vestigation into the possible effects of Lorentz-violating
dynamics in laboratory scattering experiments [25–27].
In this paper, we shall examine some of those effects.

We shall examine the process of Compton scattering, in
the presence of a particular Lorentz- and CPT-violating
modification of the electron sector. The study of Compton
scattering has historically been very important to the
development of quantum mechanics and quantum field
theory [28–30] and in the future might provide an im-
portant test of Lorentz violation.

The calculation of scattering cross sections in a
Lorentz-violating theory involves a number of subtleties
that are not present in the standard, Lorentz-invariant
case. Different reference frames are no longer necessarily
equivalent, and the correct definition of the particle flux
becomes potentially ambiguous. However, with appropri-
ate care, meaningful cross sections can be found, and a
ress: baltschu@indiana.edu
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general theory for their calculation is given in [26]. Our
analysis will also reveal an additional complication, not
discussed in [26], that may arise in Lorentz-violating
scattering processes. The various spin states of the scat-
tered particles may have differing energies, and this can
affect the velocity and phase space factors that appear in
the cross section. As a result, it may become impossible to
calculate an unpolarized cross section by the usual means.

The Lagrange density for our theory is

L � �1
4F

��F�� � � �i@6 �m� eA6 � b6 �5� : (1)

The action includes only the single Lorentz-violating
coefficient b�. This is the simplest perturbatively non-
trivial form of Lorentz violation that can exist in the
electron sector. The domain of validity of this Lagrange
density extends all the way up the Planck scale [3].

Considering a theory with only a b term would not be
reasonable for calculations beyond tree level; other
Lorentz-violating terms would be radiatively generated
at one-loop order [4]. We shall therefore consider only
tree-level effects. However, although we shall only be
working to leading order in the electromagnetic coupling
e2, our results will be correct to all orders in b.

In general, the spacetime direction of b is arbitrary.
However, we shall choose b to be purely timelike, b� �

�B; ~0�, in the laboratory frame. It is a common practice to
suppose that any Lorentz-violating coefficients have van-
ishing spatial components; this practice arises from the
observation that the Universe shows a very high degree of
isotropy in the rest frame of the cosmic microwave back-
ground. In this case, considering only a timelike b will
also substantially simplify our b-exact analysis of the
theory.

Since our Lorentz-violating Lagrange density (1) in-
volves no changes to the electrons’ kinetic term, and there
are no additional time derivatives not present in the
Lorentz-invariant theory, the electrons may be quantized
without any changes to the spinor representation [3,26].
The exact electron propagator may be read off directly
from the Lagrange density; it is
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S�l� �
i

l6 �m� b6 �5
: (2)

We may rationalize this expression and obtain [31,32]

S�l� � i
�l6 �m� b6 �5��l

2 �m2 � b2 � �l6 ; b6 ��5�

�l2 �m2 � b2�2 � 4�l2b2 � �l 	 b�2�
: (3)

This modification of the propagator represents one of the
ways in which the presence of b will affect the theory.

However, before we can investigate how the modified
propagator S�l� affects the dynamics of the scattering, we
must examine the effects of the Lorentz violation on the
kinematics. The coefficient b will affect the structure of
the theory’s asymptotic states. The photon states are, of
course, unaffected, but the incoming and outgoing spin-
ors will be significantly modified. We must solve the free
momentum-space Dirac equation, with the b term in-
cluded, to determine the propagation modes of the elec-
trons. Since the matrix �5 features prominently in the
theory, it is natural to use the Weyl chiral representation
for the Dirac matrices:

�0 �

�
0 1
1 0

�
; �i �

�
0 �i

��i 0

�
;

�5 �

�
�1 0
0 1

�
:

(4)

For an electron mode with energy E and three-
momentum ~p � p3ẑ, with p3 
 0, the Dirac equation
may be reduced to�

E� B� p3�
3 �m

�m E� B� p3�3

�
u�p� � 0: (5)

If the electron has spin s
2 along the z axis, then we may

replace �3 ! s. The eigenvalue condition for E then
becomes

E2 � m2 � �sp3 � B�2 � m2 � �sj ~pj � B�2; (6)

and the spinor is

us�p� �
� �����������������������������������������������������������������������������������������������������

m2 � �sp3 � B�2
p

� �sp3 � B�
q

�s�����������������������������������������������������������������������������������������������������
m2 � �sp3 � B�2

p
� �sp3 � B�

q
�s

�
; (7)

where the �s are basis spinors quantized in the z direction.
This solution may easily be generalized to describe elec-
trons with arbitrary three-momentum, so long as the spin
is quantized along the direction of the motion. Our spin-
ors satisfy the conventional normalization conditions
�us

0
�p�us�p� � 2m�ss

0
and us

0y�p�us�p� � 2E�p��ss
0
.

Note that even though there is no breaking of rotation
invariance, the energy depends upon the spin direction,
through the helicity s.

Just as in the Lorentz-invariant case, a great deal can
be learned about the scattering simply from an analysis of
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the energy-momentum relation (6). Let us consider an
experiment in which the initial electron has vanishing
three-momentum—p � �E; ~0� � �

������������������
m2 � B2

p
; ~0�; then

the incoming spinor is

usi �p� �
� ��������������������������������������������������

m2 � B2
p

� B
p

�s��������������������������������������������������
m2 � B2

p
� B

p
�s

�
: (8)

However, even though the electron’s three-momentum
vanishes, it is not really stationary; because of the
Lorentz violation, the group velocity for a wave packet
centered around ~p � ~0 is nonvanishing, and we must
account for this velocity in the definition of the electron
flux. In general, Lorentz-violating effects could also
cause the velocity and three-momentum of the electron
to point in different directions, but in this case, the two
quantities are always collinear.

The almost stationary electron is struck by a photon
with momentum k� � �!;!ẑ�. (This is a reasonable
setup for a low- or medium-energy experiment.) The
photon is scattered through an angle  and has outgoing
momentum k0� � �!0; !0 sin ; 0; !0 cos �. The scattered
electron has three-momentum ~p0, and the corresponding
adjoint spinor is

�u s
0

f �p
0� �

� ����������������������������������������������������������������������������������������������������������������
m2 � �s0j ~p0j � B�2

p
� �s0j ~p0j � B�

q
�0�s0����������������������������������������������������������������������������������������������������������������

m2 � �s0j ~p0j � B�2
p

� �s0j ~p0j � B�
q

�0�s0

�
T
;

(9)

where s0
2 is the spin, quantized along the ~p0 direction. For

the sake of brevity, we define C � s0j ~p0j � B. The energy
of the scattered electron is E0 �

������������������
m2 � C2

p
.

We may now derive a generalization of Compton’s
wavelength shift relation, 1� cos � m�1=!0 � 1=!�.
From three-momentum conservation, we have that
!0 sin � j ~p0j sin� and !�!0 cos � j ~p0j cos�, where
� is the angle through which the electron is scattered.
(More precisely, � is the angle describing the orientation
of the momentum. If j ~p0j is small enough that j ~p0j � sB <
0, then the three-momentum and the group velocity are
oriented in opposite directions, so the correct scattering
angle is #��.) Taken together, the equations for � give
us

� � tan�1 sin 
!
!0 � cos 

(10)

and

j ~p0j2 � !2 � �!0�2 � 2!!0 cos ; (11)

these equations do not depend upon B. Using (11), the
energy conservation condition becomes
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!�
������������������
m2 � B2

p
� !0 �

��������������������������������������������������������������������������������������
m2 � �s0

����������������������������������������������������
!2 � �!0�2 � 2!!0 cos 

q
� B�2

r
: (12)
By repeatedly squaring the equation (12), we can arrive
at a quadratic equation for �1� cos �:

!2�!0�2�1� cos �2 � 2!!0��!�!0��������������������
m2 � B2

p
� B2��1� cos � �m2�!�!0�2 � 0: (13)

Note that the s0 dependence of the energy has vanished
from this expression.

In the Lorentz-invariant case, B � 0, Eq. (13) is a
perfect square, with only one solution for �1� cos �.
For B � 0, (13) has two solutions. The correct one may
be identified by noting that forward scattering ( � 0)
must correspond to ! � !0. We then see that

1�cos �
1

!!0
��!�!0�

�����������������
m2�B2

p
�B2

�jBj
����������������������������������������������������������������������������
�!�!0�2�B2�2�!�!0�

�����������������
m2�B2

pq
�:

(14)

This relation represents the modification of the Compton
effect caused by the presence of the Lorentz-violating
coefficient b. If we then expand (14) to first order in B,
we find

1� cos � m
�
1

!0
�

1

!

��
1�

jBj
m

����������������������������
1�

2m
�!�!0�

s �
: (15)

Alternatively, to obtain the O�B� correction to the
Compton wavelength shift, we may replace !�!0 in
(15) with the B � 0 expression

!�!0 � !
1� cos 

m
!� �1� cos �

: (16)

This gives 1=!0 � 1=! as a function of jBj, !, and �1�
cos �. So the relations (10), (11), and (14) are sufficient to
express all the kinematically constrained variables in the
problem in terms of a single quantity— either the scat-
tered photon’s energy !0 or the scattering angle  .

To complete our discussion of the kinematics, we must
determine the flux normalization and phase space factors
that appear in the differential cross section. These factors
account for the properties of the initial and final states,
respectively. The flux normalization factor in the cross
section is 1=F, where

F � N�Nej ~v� � ~vej: (17)

N� and Ne are the photon and electron beam densities,
while ~v� and ~ve are the corresponding velocities in the
laboratory frame. All the particles obey conventional
normalization conditions, so N� � 2! and Ne � 2E �

2
������������������
m2 � B2

p
. The photon velocity is clearly ~v� � ẑ, and
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the group velocity for the electron wave packet is

~v e �
sB
E
ẑ: (18)

The impact of the outgoing states is more subtle. The
phase space integral is [26]Z

d��
Z d3k0

�2#�3
1

2!0

d3p0

�2#�3
1

E0
�2#�4�4�k0 �p0 �k�p�

(19)

�
1

16#2

Z
�!0�2d!0d�

1

!0E0
��!0 � E0 �!� E�: (20)

We use the � function to perform the !0 integration; this
gives us a factor of

1

j @
@!0 �!0 � E0 �!� E�j

�
1

1� �1� s0B
j ~p0j

� !
0�! cos 
E0

: (21)

Therefore, the phase space factor is given byZ
d� �

1

16#2

Z
d�

!0

E0 � �1� s0B
j ~p0j

��!0 �! cos �
:

(22)

Equations (18) and (22) depend explicitly upon s and s0,
so the impact velocity and the available phase space are
not independent of the electron’s spin. This is an impor-
tant observation, because it affects the way in which we
must calculate the cross section. In high-energy physics
experiments, one frequently measures only unpolarized
cross sections. Moreover, the unpolarized formulas are
often especially simple in form and easy to obtain,
thanks to Casimir’s trick of using the closure relation
for the Dirac spinors to perform the spin sum. However, in
order to use this trick, the velocity and phase space factors
must be independent of the incoming and outgoing polar-
izations. In the situation we are considering, Lorentz
violation has broken the spin degeneracy of the electron
states’ energies. We therefore cannot use Casimir’s
method to sum over the spin states. Instead, we shall
calculate the cross section using a basis of explicit polar-
ization states for all the incoming and outgoing particles.

This completes our discussion of the Compton scatter-
ing kinematics, and we now turn our attention to the
details of the dynamics. The scattering matrix element
M is given by

iM � �us
0

f �p
0���ie���'0���k0�S�p� k���ie���'��k�u

s
i �p�

� �us
0

f �p
0���ie���'��k�S�p� k0�

���ie���'0���k
0�usi �p�; (23)
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where '�k� and '0�k0� are the polarization vectors for the
external photons. Although we have restricted the elec-
tron’s spin to be quantized along its direction of motion,
we may allow the photon polarization basis to remain
arbitrary, since there is no tree-level Lorentz violation in
the electromagnetic sector.

The propagators appearing in (23) have arguments of
the form l� � �

������������������
m2 � B2

p
��;�û�, where � � ! or

�!0, and û is a unit three-vector. So the denominator of
(3) reduces to the extremely simple form

�l2 �m2 � b2�2 � 4�l2b2 � �l 	 b�2� � 4�2m2: (24)

Using our explicit representation (4) of the gamma ma-
trices, the entire propagator then becomes

S�l� �
i

2�m2

��
mE ��� E��E� B�

��� E��E� B� mE

�
�

�
mB �B����E� B�

�B����E� B� mB

�
�û

�
;

(25)

where �û � ~� 	 û is the Pauli spin matrix corresponding
to the direction û.

We now need to evaluate us
0

f �
(S�l��)usi . The products

of Pauli matrices that will arise may be simplified by
noting that, since the polarization vectors '�k� and '0�k0�
are purely spacelike, ( and ) will take on only spacelike
values. Setting( � j and) � k, we see that we need only
evaluate the combinations

�j�k � �jk � i'jkl�l; (26)
�j�l�k � �jl�k � �kl�k � �jk�l � i'jkl: (27)

These expressions are to be contracted with ~'�k�, ~'0��k0�,
and û.

Ultimately, there are four terms in the matrix element,
since there are two diagrams in (23) and two terms in the
propagator (25). We shall evaluate each term individually.
We begin with the contribution M1 coming from the first
terms in both (23) and (25). If we contract (26) with the
external vectors and use the identity

m �

�������������������������������������������������
m2 � B2

p
� B

q �������������������������������������������������
m2 � B2

p
� B

q
; (28)

we find the final expression
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M1 �
�e2

2!m2

� ��������������������������������������������������
m2 � C2

p
� C

q �������������������������������������������������
m2 � B2

p
� B

q

���!� 2B�
������������������
m2 � B2

p
�!B�

�

��������������������������������������������������
m2 � C2

p
� C

q �������������������������������������������������
m2 � B2

p
� B

q
��!� 2B�

�
������������������
m2 � B2

p
�!B�

�
�� ~'0� 	 ~'���0ys0 �s�

�i� ~'0� � ~'� 	 ��0ys0 ~��s��: (29)

The second contribution from the same Feynman dia-
gram is similar:

M2 �
�e2

2!m2

� ��������������������������������������������������
m2 � C2

p
� C

q �������������������������������������������������
m2 � B2

p
� B

q

���!� 2B�B�!
������������������
m2 � B2

p
�

�

��������������������������������������������������
m2 � C2

p
� C

q �������������������������������������������������
m2 � B2

p
� B

q
��!� 2B�B

�!
������������������
m2 � B2

p
�

�
�� ~'0��3 ~' 	 ��

0y
s0 ~��s� � i� ~'0� � ~'�3

���0ys0 �s� � � ~'0� 	 ~'���0ys0 �
3�s��: (30)

The other two contributions to M are also similar in
form. They differ from M1 and M2 in three ways: We
must make the replacement !! �!0, reverse the signs
of the cross product terms (because the order of �� and ��

has been switched), and change û from ẑ to k̂0 �
�sin ; 0; cos �. The resulting contributions are

M3 �
�e2

2!0m2

� ��������������������������������������������������
m2 � C2

p
� C

q �������������������������������������������������
m2 � B2

p
� B

q

���!0 � 2B�
������������������
m2 � B2

p
�!0B�

�

��������������������������������������������������
m2 � C2

p
� C

q �������������������������������������������������
m2 � B2

p
� B

q
��!0 � 2B�

�
������������������
m2 � B2

p
�!0B�

�
�� ~'0� 	 ~'���0ys0 �s�

�i� ~'0� � ~'� 	 ��0ys0 ~��s��; (31)

M4�
�e2

2!0m2

� ����������������������������������������������
m2�C2

p
�C

q ����������������������������������������������
m2�B2

p
�B

q

���!0 �2B�B�!0
�����������������
m2�B2

p
�

�

����������������������������������������������
m2�C2

p
�C

q ����������������������������������������������
m2�B2

p
�B

q
��!0 �2B�B

�!0
�����������������
m2�B2

p
�

�
�� ~' 	 k̂0� ~'0� 	 ��0ys0 ~��s�

�i� ~'0�� ~'� 	 k̂0��0ys0 �s��� ~'0� 	 ~'�k̂0 	 ��0ys0 ~��s��: (32)
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An analysis of the general properties of the cross
section is difficult. The expression for M takes its sim-
plest form when the incoming and outgoing photons are
both polarized along the y direction: ~'� ~'0 � ŷ. Then
0 10 20 30 40 50 60 70 80 90
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

θ (degrees)

∆(
dσ

/d
Ω

)/
B

 (
b/

sr
/G

eV
)

ω = 10 keV 
100 keV
1 MeV  
10 MeV 

FIG. 1. Deviations of the differential cross section from the
Klein-Nishina form. Plotted is the leading-order contribution
to ��d�=d�� 	 B�1, for ~' � ~'0 � ŷ and s � s0 � 1. Although
B is given in units of GeV for convenience, we would not expect
these linearized results to be valid unless B� m and B� !.
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only the terms containing ~'0� 	 ~' are nonzero. Even with
this simplification, however, the expression for the cross
section
d�
d�

�
1

64#2

!0

!�
������������������
m2 � B2

p
� sB��E0 � �1� s0B

j ~p0j
��!0 �! cos ��

jM1 �M2 �M3 �M4j
2 (33)
is rather unwieldy. Nor does extracting only the O�B� part
of d�=d� simplify things very much. However, we may
still evaluate the cross section numerically. Figure 1
shows the O�B� contribution to the quantity
��d�=d�� � �d�=d�� d�=d�jB�0�, for one particu-
lar combination of polarization states— ~' � ~'0 � ŷ and
s � s0 � 1—and four representative values of !. For
other choices of spin states, the magnitudes of the devia-
tions are comparable. The scaling of ��d�=d�� with  
and ! is primarily controlled by the magnitude the
d�=d� itself. The cross section decreases with increasing
!, and, for the particular choice of polarizations used in
Fig. 1, it also decreases with increasing  .

We would also like to show that the cross section (33)
has qualitative properties that distinguish it strongly from
the usual Klein-Nishina formula. We shall therefore con-
sider a special limit —that of near-vanishing photon en-
ergy—in which (33) is completely dominated by the
Lorentz-violating contributions. Specifically, we consider
the case of !� B2=m� m. Since jBj is expected to be
small, this regime may not be accessible in a laboratory
setting; however, our results might still be testable astro-
physically. In this limit, we may set C � B and ! � !0
and neglect B2 compared with m2. Then the matrix
element becomes

M � �i
4e2B2

!m
� ~'0� � ~'� 	 ��0ys0 ~��s�: (34)

This is the dominant contribution to M unless B � 0 or
the cross product is near vanishing. To determine a spe-
cific cross section, let us take ~' � ŷ and have ~'0 �
�cos ; 0;� sin � lie in the xz plane. Since the scattered
electron has a nearly vanishing three-momentum, we
may take the quantization axis for the outgoing spin to
be along the z direction. The phase space factor ap-
proaches its usual Lorentz-invariant form in this limit,
so the cross section is

d�
d�

�
e4

4#2

B4

!2m4

�
1� ss0

2
cos2 �

1� ss0

2
sin2 

�
; (35)

which grows rapidly as !! 0. This is in sharp contrast
with the behavior of the Lorentz-invariant expression,
which approaches the frequency-independent Thomson
result as !! 0. Although the Thomson cross section is
sometimes held to be a ‘‘universal’’ consequence of gauge
invariance [33–36], derivations of this fact rely on addi-
tional assumptions, such as Lorentz symmetry, regularity
of the scattering amplitude at ! � 0, or the electron
propagator having a specialized form. Each of these
assumptions is violated in this instance. Moreover, our
nonperturbative analysis was necessary for the correct
understanding of this limit. Since B2=m! is a large
parameter, terms with arbitrarily high powers of B could
potentially contribute to the cross section. Without a non-
perturbative argument, we could not know what power of
B would be most important.

We see that the presence of Lorentz violation can
change the structure of the Compton scattering cross
section in a significant way. Our calculations have been
exact to all orders in b. Moreover, in addition to deter-
mining the cross section for this particular process, we
have also noted a general property of Lorentz-violating
scattering; when the Lorentz violation breaks the spin
degeneracy of the energy-momentum relations for the
external particles, Casimir’s trick for performing polar-
ization sums may not work, because the velocity and
phase space factors in the cross section may depend
upon the particles’ spins. Our results show the feasibility
-5
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of scattering calculations for specific models of Lorentz
violation, and this work further demonstrates that such
calculations may even be performed nonperturbatively.
As such, this represents a major advance in the theory of
Lorentz-violating physics.
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[6] R. Bluhm, V. A. Kostelecký, and N. Russell, Phys. Rev. D
57, 3932 (1998).

[7] G. Gabrielse, A. Khabbaz, D. S. Hall, C. Heimann, H.
Kalinowsky, and W. Jhe, Phys. Rev. Lett. 82, 3198 (1999).

[8] H. Dehmelt, R. Mittleman, R. S. Van Dyck, Jr., and P.
Schwinberg, Phys. Rev. Lett. 83, 4694 (1999).

[9] R. Bluhm, V. A. Kostelecký, and N. Russell, Phys. Rev.
Lett. 82, 2254 (1999).

[10] D. F. Phillips, M. A. Humphrey, E. M. Mattison, R. E.
Stoner, R. F. C. Vessot, and R. L. Walsworth, Phys. Rev.
D 63, 111101 (2001).

[11] C. J. Berglund, L. R. Hunter, D. Krause, Jr., E. O. Prigge,
M. S. Ronfeldt, and S. K. Lamoreaux, Phys. Rev. Lett. 75,
1879 (1995).
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[14] V. A. Kostelecký, Phys. Rev. D 61, 016002 (2000).
[15] Y. B. Hsiung, Nucl. Phys. B, Proc. Suppl. 86, 312 (2000).
[16] K. Abe et al., Phys. Rev. Lett. 86, 3228 (2001).
[17] S. M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D 41,

1231 (1990).
[18] S. M. Carroll and G. B. Field, Phys. Rev. Lett. 79, 2394

(1997).
[19] T. Kifune, Astrophys. J. Lett. 518, L21 (1999).
[20] R. Aloisio, P. Blasi, P. L. Ghia, and A. F. Grillo, Phys.

Rev. D 62, 053010 (2000).
[21] G. Amelino-Camelia and T. Piran, Phys. Rev. D 64,

036005 (2001).
[22] T. Jacobson, S. Liberati, and D. Mattingly, Phys. Rev. D

66, 081302 (2002).
[23] T. J. Konopka and S. A. Major, New J. Phys. 4, 57 (2002).
[24] D. Heyman, F. Hinteleitner, and S. A. Major, Phys. Rev. D

69, 105016 (2004).
[25] H. Arfaei and M. H. Yavartanoo, hep-th/0010244.
[26] D. Colladay and V. A. Kostelecký, Phys. Lett. B 511, 209
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