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Pion-nucleon scattering relations at next-to-leading order in 1=Nc
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We obtain relations between partial-wave amplitudes for �N ! �N and �N ! �� directly from
large Nc QCD. While linear relations among certain amplitudes holding at leading order (LO) in 1=Nc
were derived in the context of chiral soliton models two decades ago, the present work employs a fully
model-independent framework based on consistency with the large Nc expansion. At LO in 1=Nc we
reproduce the soliton model results; however, this method allows for systematic corrections. At next-to-
leading order (NLO), most relations require additional unknown functions beyond those appearing at
LO and thus have little additional predictive power. However, three NLO relations for the �N ! ��
reaction are independent of unknown functions and make predictions accurate at this order. The
amplitudes relevant to two of these relations were previously extracted from experiment. These relations
describe experiment dramatically better than their LO counterparts.
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I. INTRODUCTION

It is now 30 years since ’t Hooft noted that treating the
number Nc of QCD colors as an expansion parameter
yields a limiting theory with substantial predictive power
[1]; in 1979, Witten extended this general idea to the
generic properties of baryons [2]. During the subsequent
years, two main approaches to understanding the spin and
flavor dependence of baryon properties arose. The first is
the chiral soliton approach of Witten, Adkins, and Nappi
[2–4] which reinterprets Skyrme’s original soliton idea
[5] in the context of large Nc QCD. It was noted early on
that many relations among observables in such models
depend only on the overall structure of the soliton models
and are completely independent of the dynamical details
[4]. This suggested that these relations directly reflect
general results of large Nc QCD. An alternative fully
model-independent approach based on consistent power
counting of Nc factors in baryon-meson scattering pro-
cesses was invented by Gervais and Sakita [6] and Dashen
and Manohar [7], and then systematically developed by
Dashen, Jenkins, and Manohar [8]. In this approach, an
underlying contracted SU�2Nf� spin-flavor symmetry (Nf
being the number of light quark flavors) emerges asNc !
1. The apparently model-independent relations of soliton
models then automatically emerge at leading order in
1=Nc as results of the group structure of this emergent
symmetry. The approach based on large Nc consistency
conditions has two obvious advantages over the soliton
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approach: It is manifestly model independent, and it
allows for systematic 1=Nc corrections.

The systematic treatment of 1=Nc corrections comes at
a cost. As in any effective theory, one must generally add
new unknown coefficients at subleading orders. The
power counting in the 1=Nc expansion implicitly con-
strains the typical size of these coefficients via natural-
ness criteria, but when an unknown coefficient enters a
relation at next-to-leading order (NLO), one essentially
has no predictive power beyond what is seen at leading
order (LO). However, there exist certain relations that
hold even after the inclusion of NLO coefficients; we
denote such relations as ‘‘gold-plated.’’ The gold-plated
relations hold at NLO and, hence, should have errors of
O�1=N2

c� relative to the O�N0
c� amplitudes. Since 1=N2

c �
1=9 for the physical world, these gold-plated relations
may be taken to be semiquantitative predictions. In fact,
these relations are often satisfied quite well. For example,
one predicts g�N�=g�NN � 3

2 �1�O�1=N2
c�	 [8], and the

experimental value of the ratio deviates from 3=2 by only
a few percent. In contrast, ordinary ‘‘silver-plated’’ rela-
tions (those holding only at LO in 1=Nc) are typically of a
more qualitative nature.

In this paper we use the large Nc consistency condition
approach to deduce relations among partial-wave ampli-
tudes for the processes �N ! �N and �N ! ��, which
involve only the two light quark flavors u and d. LO
relations were derived long ago in the context of chiral
soliton models [9,10]. Since these results were found to be
independent of the dynamical details of any particular
soliton model, it was generally assumed that they are
fully model-independent consequences of large Nc
QCD, holding at LO (N0

c) for meson-baryon scattering
amplitudes. It was recently noted that these LO relations
can be obtained directly from the group structure arising
04-1  2004 The American Physical Society
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from large Nc consistency conditions [11]. As observed
above, one clear advantage of this approach is that it
provides a straightforward formalism for working to
higher order in 1=Nc. If one insists upon model-
independent constraints, one in fact gains no predictive
power at higher order except through gold-plated rela-
tions, for which the LO correction terms cancel. In this
paper, we show that such gold-plated relations do exist,
but they necessarily involve the process �N ! ��. We
also show that these gold-plated relations hold moder-
ately well experimentally, while the analogous silver-
plated relations work quite poorly. Thus we find that one
can at least semiquantitatively understand some aspects
of the �N ! �� reaction from ab initio large Nc QCD
considerations.

Before proceeding, it is useful to discuss the original
derivation of the relations among partial-wave ampli-
tudes from the soliton model and to explain why this
result is considered to hold at LO in 1=Nc [9]. While we
derive in this paper a general large Nc rather than merely
a soliton model result, we believe that first seeing the
result in a concrete realization is instructive, and makes a
connection with the older literature. In chiral soliton
models, baryons are supposed to arise from hedgehog
configurations, which are the static, finite-energy solu-
tions (solitons) of a (nearly) chirally symmetric tree-level
pion Lagrangian. Such configurations can be assigned
baryon number unity, but break both isospin and rota-
tional symmetry while preserving ‘‘grand spin’’ ~K 
 ~I �
~J. Note that classical configurations are justified by large
Nc considerations, since quantum fluctuations [associated
with the excitation of only a few of the O�Nc� constitu-
ents] contribute only at relative orderN�1

c . Static rotations
of such classical soliton configurations lead to energeti-
cally degenerate solutions of the classical equations, im-
plying the existence of a multiplet of degenerate states at
large Nc. Slow rotational motion (with angular velocity
�N�1

c ) among such states is orthogonal to intrinsic quan-
tum excitations of the soliton and may be quantized
separately. This quantization leads to nearly degenerate
physical states with the usual physical quantum numbers
and mass splittings ofO�1=Nc�. The underlying hedgehog
structure implies that each physical state has I � J,
whose common value we label by R. The R � 1

2 states
are identified as nucleons and R � 3

2 states are identified
as � resonances for the Nc � 3 world, while states with
higher values of R are generally assumed to be large Nc
artifacts.

Physical pions are treated as fluctuations about the
soliton; the action is expanded perturbatively in the num-
ber of pion fields, which is justified for largeNc since each
additional pion field suppresses the amplitude by a factor
�1=

������
Nc

p
. The scattering is then described in terms of the

Green function of the pion-soliton system. The standard
machinery of semiclassical projection then allows one to
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obtain amplitudes for states with well-defined I � J in
both the initial and final states. The S matrix for such a
channel in this formalism is given by

SLL0RR0IsJs �
X
K

��1�R
0�R

���������������
�R	�R0	

p
�K	

�K Is Js
R L 1

�

�

� K Is Js
R0 L0 1

�
sKLL0 �O�N�1

c �; (1.1)

where �x	 
 2x� 1, R (R0) is the spin/isospin of the
initial (final) baryon, L (L0) is the relative orbital angular
momentum of the initial (final) pion about the baryon,
and Js, Is indicate the total spin and isospin, respectively,
as measured in the pion-baryon s channel. Note that the S
matrix is a reduced matrix element (in the sense of the
Wigner-Eckart theorem) in terms of both angular mo-
mentum and isospin, in that dependence on the quantum
numbers �Is�3 and �Js�3 has been factored out.

The explicit ‘‘1’’ in the 6j coefficients arises from the
isospin of the pion. Although this formula holds for pion
scattering, it has been generalized to mesons with spin
one (e.g., �) and/or isospin zero (e.g., �) [12]. In such
cases, Eq. (1.1) maintains the same basic form except the
6j coefficients are either replaced by 9j coefficients to
account for the extra vector (spin 1) or collapse to
Kronecker deltas (isospin 0).

The preceding derivation exploits the large Nc limit in
multiple ways. As noted above, the use of the classical
hedgehog itself is justified only for large Nc, so that
quantum fluctuations are relatively unimportant.
Moreover, baryon recoil is neglected in the scattering
process since the baryon mass scales as Nc, while the
characteristic scattering energy scale is O�N0

c�. Similarly,
the rotation of the soliton during the scattering event is
neglected since the soliton moment of inertia, and, hence,
the rotational period, also scales as Nc. These approxi-
mations are only valid to LO in 1=Nc, and thus any
predictions based on this formalism can be expected to
hold only at LO in 1=Nc.

The energy-dependent function sKLL0 in Eq. (1.1) is
called a reduced amplitude and contains all the dynami-
cal information from the chiral soliton model. Note that
these reduced amplitudes depend only on three variables,
while the physical amplitudes depend on six: The same
underlying soliton structure contributes to multiple physi-
cal states. It is precisely because there are fewer reduced
amplitudes than physical amplitudes that one can obtain
relations between the physical amplitudes. The physical
interpretation of the label K is clear: It labels the grand
spin of the given excitation.

Equation (1.1) has been used with considerable success
to describe baryon spectroscopy. One approach uses a
particular soliton model to evaluate explicitly the re-
duced matrix elements and then to predict fully the
-2
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physical scattering amplitudes. The detailed behavior of
these amplitudes can then be used to predict values for
baryon resonance observables [13,14]. Recently it was
noted that Eq. (1.1) has model-independent applications
in the study of baryon resonances [11]. There, it was
noted that a resonance in a given channel corresponds
to a pole in the S matrix, meaning that this pole must
appear in one of the associated reduced amplitudes. Since
the same reduced amplitudes occur in multiple scattering
channels, degeneracies must exist in the excited baryon
spectrum at leading order (N0

c) in 1=Nc.
While the prediction of degeneracies in the excited

baryon spectrum at large Nc depends upon there being
more S matrix elements than reduced amplitudes, the
same fact implies the existence of linear relations among
scattering amplitudes [9,10]. This result is made explicit
by algebraically eliminating the reduced amplitudes,
yielding linear relations among the physically measur-
able amplitudes. Such silver-plated relations were derived
by Mattis and Peskin (MP) [9] for �N ! �N and �N !
�� and are a focus of this paper. The �N ! �N relations
were first noted in the context of Skyrme models (but not
large Nc per se) by Ref. [10]. We present them now for
future reference, using the more compact notation (and
noting that real initial target baryons are always nucle-
ons, R � 1=2) SLLRR0IsJs ! S�R

0

L;2Is;2�Js�L�
, or SLL0RR0IsJs !

S�R
0

L;L0;2Is;2�Js�L�
if L � L0:

S�NL;3;�1 �
L� 1

4L� 2
S�NL;1;�1 �

3�L� 1�

4L� 2
S�NL;1;�1 �O�N�1

c �;

(1.2)

S�NL;3;�1 �
3L

4L� 2
S�NL;1;�1 �

L� 2

4L� 2
S�NL;1;�1 �O�N�1

c �;

(1.3)

S��L;3;�1 �
4�L� 1�������
10

p
�2L� 1�

S��L;1;�1 �
3

2L� 1

�

�
�L� 1��2L� 3��2L� 1�

10L

�
1=2
S��L;1;�1

�O�N�1
c �; (1.4)

S��L;3;�1 �
3

2L� 1

�
L�2L� 3��2L� 1�

10�L� 1�

�
1=2
S��L;1;�1

�
4�L� 2�������
10

p
�2L� 1�

S��L;1;�1 �O�N�1
c �; (1.5)

which are MP Eqs. (3.22a), (3.22b), (3.23a), and (3.23b),
respectively,
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�������������
L� 1

p
S��L;L�2;1;�1 � �

�������������
L� 2

p
S��L�2;L;1;�1 �O�N�1

c �;

(1.6a)�������������
L� 1

p
S��L;L�2;3;�1 � �

�������������
L� 2

p
S��L�2;L;3;�1 �O�N�1

c �;

(1.6b)

���������������������
10�L� 1�

p
S��L;L�2;3;�1 � �

�������������
L� 2

p
S��L�2;L;1;�1 �O�N�1

c �;

(1.7a)

S��L�2;L;1;�1 � �
������
10

p
S��L�2;L;3;�1 �O�N�1

c �;

(1.7b)

which are MP Eq. (3.24) (and only three of the four
preceding relations are independent), and

S�NL;1;�1 � S�NL;1;�1 �

���������������
2L� 1

L� 1

s
S��L;1;�1 �

���������������
2L� 3

L

s
S��L;1;�1

�O�N�1
c �; (1.8)

which is MP Eq. (3.25).
Since these relations were derived from an underlying

expression that is only justified at LO in 1=Nc, the rela-
tions are a priori only known to be justified at LO in 1=Nc.
Our purpose in this work is to include the effects of NLO
corrections in the 1=Nc expansion in order to obtain
relations that hold at this higher order. As noted above,
treatments based on the soliton model do not easily lend
themselves to systematic higher-order corrections.
Accordingly, we work with the formalism based on large
Nc consistency rules. As a first step, in Sec. II, we rederive
Eq. (1.1) [the LO expression from which Eqs. (1.2), (1.3),
(1.4), (1.5), (1.6), (1.7), and (1.8) are obtained] directly
from the model-independent formalism based on largeNc
consistency conditions. Next, we use the large Nc frame-
work to compute the NLO corrections. We present three
new relations in Sec. III and compare them with the
experimental data in Sec. IV.
II. DERIVATION

The relations among S matrix elements for different
partial waves presented in Sec. I were derived in the
context of a chiral soliton model in the large Nc limit.
However, it is possible to show that these relations follow
directly from large Nc QCD in a fully model-independent
manner [11]. Of course, this model independence is not
surprising since the relations in Eqs. (1.2), (1.3), (1.4),
(1.5), (1.6), (1.7), and (1.8), although derived in the con-
text of a soliton model, are completely insensitive to the
dynamical details of the model.We explicitly demonstrate
model independence using the methods of Ref. [8], which
-3
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is useful since the procedure illuminates the method by
which we extend the linear relations to higher order in
1=Nc.

The key point is the connection between the s-channel
amplitudes of physical interest and the same reactions
056004
expressed in terms of t-channel amplitudes. As discussed
below, large Nc QCD severely limits the form of these
t-channel amplitudes [15]. Thus, we rewrite Eq. (1.1) in
terms of t-channel amplitudes rather than s-channel ex-
changes using the following 6j symbol identity [16]:
�
K Is Js
R L 1

��
K Is Js
R0 L0 1

�
�
X
J

��1�Is�Js�L�L
0�R�R0�K�J �J 	

�
1 R0 Is
R 1 J

��
L0 R0 Js
R L J

��
1 L0 K
L 1 J

�
: (2.1)
Inserting this into Eq. (1.1) yields

SLL0RR0IsJs �
X
J

1 R0 Is
R 1 J

� �
L0 R0 Js
R L J

� �
stJLL0

�O�N�1
c �; (2.2)

where

stJLL0 

��1�2J �J 	

3��L	�L0	�1=2

X
K

�K	
1 L0 K
L 1 J

� �
sKLL0 ; (2.3)

and for simplicity of presentation we have replaced the
standard 6j symbol with a new symbol denoted by square
brackets that folds in useful phase factors and overall
constants, but retains all the usual triangle rules:�

a b e
c d f

�



��1���b�d�e�f�

��a	�b	�c	�d	�1=4
a b e
c d f

� �
: (2.4)

Use of the modified 6j symbols, henceforth called �6j	
symbols, leaves Eqs. (2.2) and (2.3) much more compact
than the corresponding expressions using ordinary 6j
symbols.

The energy-dependent function stJLL0 is the t-channel
reduced amplitude; it depends only on the pion orbital
momentum and the SU(2) index J . Applying triangle
rules to each of the �6j	 symbols in Eq. (2.2) reveals the
physical significance of J . The first �6j	 symbol implies
that J is the total isospin (It) exchanged between the
meson and baryon in the t channel, while the second
implies that J is the total angular momentum (Jt) ex-
changed in the t channel. Together, they demand the
equality of isospin and angular momentum in the
t-channel exchange, in accordance with the It � Jt rule
of Mattis and Mukerjee [12,17].

While this rule was originally derived in the Skyrme
model, it was shown to be a result of large Nc QCD by
Kaplan and Manohar [15] through the model-
independent spin-flavor approach based on large Nc con-
sistency conditions (which in turn follows from the pio-
neering work of Refs. [6–8]). They demonstrate that the
matrix element of a general n-quark operator Ô�n�

I0;J0
with

baryon number equal to zero, isospin I0, and spin J0
scales as

hB0jÔ�n�
I0;J0

=Nn
c jBi & 1=NjI0�J0j

c : (2.5)

The significance of this result becomes manifest when
one realizes that the ‘‘quarks’’ in this derivation need not
be associated with dynamical quarks in any particular
quark model. Rather, they merely reflect fields transform-
ing according to the fundamental representation of the
contracted SU�2Nf� symmetry [8]. Thus, the rule applies
to all baryon matrix elements. The operator that connects
the pions and baryons in a t-channel exchange, from the
point of view of the baryon, is simply a single current
insertion that couples to external pions; its matrix ele-
ment between baryon states then qualifies as the type
described above. One sees from Eq. (2.5) that the largest
contribution to the scattering comes from matrix ele-
ments with It � Jt; thus, the famed It � Jt rule is a direct
result of large Nc QCD without model input. Since
Eq. (2.2) is the most general form for a scattering ampli-
tude consistent with the It � Jt rule, we have established
that Eq. (1.1) is a model-independent, large Nc QCD
result. This general argument was originally presented
in Ref. [11].

The rederivation of Eq. (1.1) by nonsolitonic means is
of only modest interest. However, the crucial point is that
the general large Nc derivation can be extended to higher
order in 1=Nc. The method by which one extends the
earlier LO results to NLO is clear: Since the LO
t-channel constraint on the amplitudes, jIt � Jtj � 0, im-
plies Eq. (1.1), the first linearly independent 1=Nc correc-
tion arises from t-channel amplitudes with jIt � Jtj � 1,
since Eq. (2.5) implies that such amplitudes are the ones
suppressed by a single factor 1=Nc. All t-channel ampli-
tudes with jIt � Jtj> 1 can be excluded at NLO since the
suppression is 1=N2

c or more. As we now show, an expan-
sion to this order remains predictive since only two
t-channel amplitudes with jIt � Jtj � 1 appear.

Writing the pion-baryon partial-wave amplitude in
terms of reduced t-channel amplitudes and including
the first subleading contributions from amplitudes with
jIt � Jtj � 1 generalizes Eq. (2.2):
-4
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SLL0RR0IsJs �
X
J

1 R0 Is
R 1 J

" #
L0 R0 Js
R L J

" #
stJLL0 �

1

Nc

X
x

1 R0 Is
R 1 x

" #
L0 R0 Js
R L x� 1

" #
st���
xLL0

�
1

Nc

X
y

1 R0 Is
R 1 y

" #
L0 R0 Js
R L y� 1

" #
st���
yLL0 �O�N�2

c �; (2.6)
where the st���
xLL0 functions are the reduced t-channel am-

plitudes corresponding to stJLL0 for the two possible ways
of combining It and Jt such that jIt � Jtj � 1. In Sec. III
this formula is used to derive linear relations among
partial-wave amplitudes for �N ! �N and �N ! ��
at NLO. As noted previously, any relations that depend
explicitly on the higher-order amplitudes st���

xLL0 have es-
sentially the same predictive power as the LO relations.
However, if gold-plated relations can be found in which
the effects of the st���

xLL0 cancel, then we have predictions
that hold at NLO and thus are expected to describe nature
far better than the generic LO relations of Eqs. (1.2),
(1.3), (1.4), (1.5), (1.6), (1.7), and (1.8).

III. LINEAR RELATIONS

Before deriving gold-plated NLO linear relations, it is
helpful to discuss restrictions on the reduced amplitudes
and the pion angular momentum due to symmetry. Time-
reversal invariance of the scattering process dictates that
the S matrix is symmetric under the exchange of initial
and final states (characterized by LR and L0R0, respec-
tively). We see that the symmetry properties of the �6j	
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symbols (inherited from the usual 6j symbols) imply that
they are invariant under this exchange. Thus, all types of
reduced amplitudes must also be symmetric (e.g., stJLL0 �

stJL0L) in order to maintain the symmetries of QCD. The
�6j	 symbols also encode important restrictions on �L 

jL0 � Lj. For �N ! �N, the allowed change is �L �
0; 1; while for �N ! ��, the allowed change is �L �
0; 1; 2. The �L � 1 possibility is eliminated by parity
conservation since P � ��1�L�1 � ��1�L

0�1. To summa-
rize, the permitted cases are �L � 0 for �N ! �N and
�L � 0; 2 for �N ! ��.

Let us first consider the reactions �N ! �N and
�N ! �� when the pion orbital angular momentum is
unchanged: L � L0. There are eight physical amplitudes
corresponding to the different ways to add the spin and
isospin of the pion and the nucleon in the two reactions:
Is �

1
2 ;

3
2 and Js � L� 1

2 . We can expand these in terms of
seven reduced amplitudes: three LO and four first order in
1=Nc. Therefore, there is only one relation among the
physical amplitudes with all references to the NLO re-
duced amplitudes eliminated. This gold-plated relation is
S�NL;1;�1 � S�NL;1;�1 �

���������������
2L� 1

L� 1

s
S��L;1;�1 �

���������������
2L� 3

L

s
S��L;1;�1 �

"
2

3
�S�NL;3;�1 � S�NL;3;�1� �

1

3
�S�NL;1;�1 � S�NL;1;�1�

�

������
5

18

s  ���������������
2L� 1

L� 1

s
S��L;3;�1 �

���������������
2L� 3

L

s
S��L;3;�1

!
�

5

6

 ���������������
2L� 1

L� 1

s
S��L;1;�1 �

���������������
2L� 3

L

s
S��L;1;�1

!#
�O�N�2

c �:

(3.1)
The first four terms resemble one of the original MP
relations, Eq. (1.8), but there is a correction term in the
square brackets. Note that this correction term itself
vanishes as Nc ! 1 after substituting in Eqs. (1.2),
(1.3), (1.4), and (1.5). However, the 1=Nc corrections to
the terms in the square bracket from Eqs. (1.2), (1.3),
(1.4), and (1.5) precisely cancel the corrections to
Eq. (1.8), yielding a result that holds to O�1=N2

c�.
Equation (1.8) empirically works rather well, and we
defer a discussion of the possible effects of the correction
term to Sec. IV.

Now we consider the reactions for which the pion
orbital angular momentum is changed by two units, L �
L0 � 2; the symmetry arguments given above restrict this
case to the �N ! �� reaction. There are four physical
amplitudes for this case. They can be expressed in terms
of two reduced amplitudes: one leading order and one first
order in 1=Nc. This implies the existence of two gold-
plated linear relations:�������������

L� 1
p

S��L;L�2;1;�1 � �
�������������
L� 2

p
S��L�2;L;1;�1 �O�N�2

c �;

(3.2)

�������������
L� 1

p
S��L;L�2;3;�1 � �

�������������
L� 2

p
S��L�2;L;3;�1 �O�N�2

c �:

(3.3)

These resemble two of the MP relations [cf. Eqs. (1.6a)
and (1.6b)]. However, we have now shown that they hold
at NLO, and thus are gold- rather than silver-plated. Thus,
to the extent that the 1=Nc expansion applies to these
observables, one expects that these relations hold far
better than the generic silver-plated LO predictions. As
-5
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discussed in the following section, we show that this is, in
fact, true.
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

Im T

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

W (GeV)

Re T

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.4

−0.3

−0.2

−0.1

0

0.1
Im T

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

W (GeV)

Re T

(a) 

(b) 

(c) 

(d) 

FIG. 1. Experimentally determined �N ! �� amplitudes
SD11 and SD31 compared to the predictions of Eqs. (4.1) and
(4.2). In plots (a) and (b), the closed circle (�) is SD11 and the
box (�) is �

���
2

p
DS13. In plots (c) and (d), the open circle (�) is

SD31 and the diamond (�) is �
���
2

p
DS33. The data is provided

by SAID [19].
IV. EXPERIMENTAL TESTS

In principle, all three linear relations derived in Sec. III
(for each allowed value of L) can be tested by comparison
with available experimental data. The numbers used result
from partial-wave analysis applied to raw data from ex-
periments in which pions are scattered off nucleon tar-
gets. An important feature complicates our task: All of
the gold-plated relations involve the reaction �N ! ��.
While the extraction of partial-wave amplitudes for the
�N ! �N reaction from the large amount of reliable data
is essentially straightforward, the extraction of partial-
wave amplitudes for�N ! �� is complicated by the fact
that the � decays strongly to �N. The �N ! �� partial
waves must be extracted in the context of a model that
distinguishes events in the observed reaction�N ! ��N
that pass through an intermediate � resonance and which
do not. Therefore, the �N ! �� partial-wave amplitude
data necessarily contains some model dependence, mak-
ing it somewhat less reliable. Because of this uncertainty,
much less attention has been paid to these reactions, and
the set of analyzed data is far more sparse. Fortunately,
the � is an extremely prominent resonance (understand-
able in the context of large Nc), and hence the model
dependence should be rather modest.

For the comparison presented below, we use results
from the analysis of Manley, Arndt, Goradia, and
Teplitz [18], which is readily available through the SAID

program at George Washington University [19]. The
analysis is presented in terms of the T matrix [T 
 �S�
1�=2i] rather than the S matrix. This causes no complica-
tions, since any extra factors and terms cancel in our
formulas. The results of Ref. [18] are presented in terms
of the center-of-mass energy W of the �N system.

We first consider Eq. (3.1) and restrict attention to 1 �
L � 3. The lower bound is an elementary consequence of
angular momentum conservation, while the upper bound
reflects limitations of the available data. Even with this
restriction we see that, for each L, Eq. (3.1) requires
partial-wave amplitudes that are, unfortunately, not
available in the data set. For example, the amplitudes
PP31, PP13, DD33, and FF17 (the notation is LL0

2I2J) are
not given. MP in their LO comparisons were able to
circumvent this problem by rewriting the unknown am-
plitudes in terms of known ones using Eqs. (1.4) and (1.5).
We have no such luxury; inserting Eqs. (1.4) and (1.5) into
our gold-plated relations simply converts them to silver-
plated relations. We make no assumptions about these
unknown amplitudes and thus cannot test the validity of
Eq. (3.1) at the present time.

We now consider Eqs. (3.2) and (3.3). Fortunately, there
is sufficient analyzed data to study these relations, pro-
vided one restricts attention to the L � 0 case. It is
056004
instructive to contrast the quality of the agreement of
these gold-plated NLO relations with the L � 0 silver-
plated LO Eqs. (1.7a) and (1.7b), since both sets involve
only the �N ! �� amplitudes. We view the loss of
predictive power due to the need to identify the � in the
final state as a comparable systematic uncertainty for the
two classes of relations. Our predictions are as follows:

SD11 � �
���
2

p
DS13 �O�1=N2

c�; (4.1)

SD31 � �
���
2

p
DS33 �O�1=N2

c�; (4.2)

SD11 � �
������
20

p
DS33 �O�1=Nc�; (4.3)

SD31 � �
1���
5

p DS13 �O�1=Nc�; (4.4)

where the first two relations are the gold-plated NLO
relations (Fig. 1) and the second two are the silver-plated
LO relations (Fig. 2).

It is immediately apparent that the gold-plated rela-
tions agree with experiment considerably better than their
silver-plated analogs. For the gold-plated relations the
gross structure of the amplitudes is clearly discerned on
both the left- and right-hand sides of the relation. In
contrast, the silver-plated relations are much less robust
in describing the data.
V. CONCLUSION

We have demonstrated the utility and power of the
large Nc expansion for describing pion-nucleon scatter-
ing. It has made a number of nontrivial predictions that
can be tested with experimental data. The expansion in
powers of 1=Nc allows one to compare predictions hold-
ing at different orders, and the quality of the agreement
for the O�1=N2

c� relations is markedly better than the
O�1=Nc� relations. It is unfortunate that sufficient ana-
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FIG. 2. Experimentally determined �N ! �� amplitudes
SD11 and SD31 compared to the predictions of Eqs. (4.3) and
(4.4). In plots (a) and (b), the closed circle (�) is SD11 and the
diamond (�) is �

������
20

p
DS33. In plots (c) and (d), the open circle

(�) is SD31 and the box (�) is �1=
���
5

p
DS13. The data is

provided by SAID [19].
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lyzed data do not exist for our gold-plated relation
Eq. (3.1). In principle, the relevant �N ! �� partial
waves might be extracted from the raw data. However,
this requires a formidable (and model-dependent) analy-
sis. Previously there was, perhaps, little motivation to
carry out this analysis, but in light of these large Nc
predictions the incentive is now more compelling.

It is exciting to see that some rather complicated fea-
tures of QCD, such as the �N ! �� reaction, can be
understood semiquantitatively in terms of rather simple
microscopic considerations based on large Nc.
056004
In principle, our method can be applied again to derive
the 1=N2

c terms in the S matrix expansion. However, we
note that such a procedure is of minimal utility for
describing pion-nucleon scattering in the physical Nc �
3 world. The resulting triangle rules appearing in the
1=N2

c corrections, applied to terms with a nucleon (R �
1
2 ), cannot be satisfied for any baryon in the R0 � I � J
multiplet of the large Nc world; this forces the 6j symbols
to vanish, thus terminating the expansion. Therefore, it
appears that we have exhausted the number of experimen-
tally accessible gold-plated relations in pion-nucleon
scattering, and we see that there are no ‘‘super’’-gold-
plated relations that hold at next-to-next-to-leading order.

This approach can clearly be extended to other pro-
cesses. For example, one may relate partial waves in
Compton scattering, electron scattering, and pion-
electron production, or photoproduction. We defer such
considerations to later work.
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