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We show that the dynamic universality class of the QCD critical point is that of model H and discuss
the dynamic critical exponents. We show that the baryon diffusion rate vanishes at the critical point.
The dynamic critical index z is close to 3.
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I. INTRODUCTION

The phase diagram of QCD is a focus of many theo-
retical investigations [1]. Heavy-ion collision experiments
can probe a certain part of this phase diagram. The
temperature and the baryon chemical potential at
freeze-out are determined, using statistical model fits to
particle yields and spectra, to span the domain T �
100–180 MeV and �B � 50–600 MeV [2]. This is the
region where the critical point of QCD, as strongly sug-
gested by model calculations [3] and lattice Monte Carlo
results [4], is located. The critical point is an end point of
a first order phase transition line separating, in the chiral
limit, the chirally broken and chirally symmetric phases.
The precise location of the critical point is still unknown.

Experimental signatures, based on the singular behav-
ior of thermodynamic functions near the critical point,
were suggested in Refs. [5,6]. The characteristic feature of
all such signatures is the nonmonotonic dependence on
the value of an experimentally controlled parameter, such
as

���
s

p
, as the critical point is approached and passed. An

attempt to estimate the effects of critical dynamics on
experimental observables was made in Ref. [6], where it
has been shown that the effects can easily exceed the
experimental background by orders of magnitude. The
major limiting factor is the finite size and time effects,
which round up the critical singularity in all observables.

Near criticality, the crucial quantity is the value of the
largest correlation length �. For example, the singular
contributions to event-by-event fluctuation observables
studied in Ref. [6] are proportional to �2. The divergence
of � is limited by two effects: (i) the finite system size,
O�10 fm� for heavy-ion collisions, and (ii) the finite
evolution time. As pointed out in Refs. [6,7], the second
effect is more important. Indeed, the time during which
the correlation length reaches its equilibrium value di-
verges as �� �z, which defines the dynamic scaling ex-
ponent z. The finite evolution time limits the correlation
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length to � < �time�1=z. Since z > 1 and typical evolution
times of the heavy-ion collisions are of the same order as
the spatial size, the time limit is more stringent than
spatial size limitation � < �size�. The value of z depends
on the dynamic universality class [8] of the critical point.

The purpose of this paper is to determine this univer-
sality class. While the static universality class is beyond
doubt that of the 3d Ising model, the question about the
dynamic universality class has not been satisfactorily
answered in the literature. Some arguments were given
in Ref. [6] that the universality class could be that of
model H in Hohenberg and Halperin’s classification
[8],—a model of the liquid-gas phase transition. The
question was revisited in Ref. [7], where it was argued
that the universality class is that of model C. The problem
is not trivial because of an additional mode compared to
the ordinary liquid-gas phase transition—the QCD chiral
condensate �qq.

We shall see that mixing between the chiral condensate
�qq and the baryon density n leaves out only one truly
hydrodynamic mode —a linear combination of the two.
The hydrodynamic mode is conserved and couples to the
energy-momentum density. Consequently, the relevant
hydrodynamic modes near the critical point are the
same as in model H. Thus we predict z � 3.

Our results are in qualitative agreement with the argu-
ments of Fujii based on a recent study [9]. The study [9]
employed model calculations, and did not, in particular,
take into account the coupling to energy-momentum
density. Our approach is model independent and is based
on the straightforward application of the hydrodynamic
theory, reviewed, e.g., in Ref. [10].

The paper is organized as follows. In Sec. II we iden-
tify the set of hydrodynamic modes near the critical
point. In Sec. III we discuss a simplified problem, where
we forcibly neglect the energy-momentum density. The
purpose is to demonstrate that only one linear combina-
tion of the chiral order parameter h �qqi and the baryon
number density n is a true hydrodynamic mode. To keep
the discussion simple, we shall work at the mean-field
level, sufficient to identify the correct universality class.
01-1  2004 The American Physical Society
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We refer to the literature for going beyond mean field.
In Sec. IV we introduce the energy-momentum density,
restoring the full set of hydrodynamic variables near the
QCD critical point. We show that the relevant modes in
the long-length, long-time limit are the same as in the
universality class of the liquid-gas phase transition. We
conclude with Sec. V. In the Appendix we show that the
inclusion of the isospin density does not affect the critical
behavior.
II. HYDRODYNAMIC MODES NEAR THE QCD
CRITICAL POINT

Our analysis is based on the premise that at sufficiently
large distance and time scales, the dynamics of a finite-
temperature system is described by a hydrodynamic the-
ory. It is a theory which contains only the degrees of
freedom varying slowly with time. Although the validity
of hydrodynamics is amply supported by experiments, a
generic theoretical derivation, or proof, of the validity of
such a description is a challenging problem. Nevertheless,
the validity of a hydrodynamic description has been
verified in certain theories: scalar field theories [11] and
strongly coupled gauge theories with gravity duals [12].
We shall therefore assume that the dynamics of the finite-
temperature QCD plasma can be described by a set of
hydrodynamic equations.

Generally, the full set of hydrodynamic modes in-
cludes (i) densities of conserved charges, which relax
via diffusion; (ii) phases of symmetry-breaking conden-
sates; (iii) Abelian gauge fields of unbroken U(1) gauge
symmetries. Near second-order phase transitions, (iv) the
full order parameter (not only its phases, but also the
magnitude) relax slowly, and therefore should be included
in hydrodynamics. Thus, near the critical point of QCD
on the �T;�� plane, the modes potentially important for
hydrodynamics are given by the fluctuations of:

The conserved energy and momentum densities: " 	
T00 
 hT00i, and �i 	 T0i;

The conserved baryon number density, n 	
�q�0q
 h �q�0qi;

The chiral condensate � 	 �qq
 h �qqi.
The finiteness of the pion mass prevents pions from

being a low-frequency hydrodynamic mode. This
should be contrasted with the chiral limit, where the
massless pions do become hydrodynamic modes,
leading to a different universality class (both static and
dynamic) [13].

In QCD, the complete set of conserved charge densities
also includes isospin density (neglecting small isospin-
breaking effects). However, the coupling of the isospin to
other modes turns out to be irrelevant in the renormal-
ization group sense (see the Appendix). Therefore we do
not need to include the isospin density in our treatment.
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III. WITHOUT ENERGY-MOMENTUM TENSOR

A. Statics

We start by discussing the statics. The static correlation
functions can be found from a Ginzburg-Landau func-
tional

F��; n� �
Z
dx

�
a
2
�@i��2  b@i�@in

c
2
�@in�2

 V��; n�
�
; (3.1)

where

V��; n� �
A
2
�2  B�n

C
2
n2  terms of higher orders:

(3.2)

The equilibrium distribution of the system is governed by
e
�F. The mixing between � and n is not forbidden at
nonzero baryon chemical potential and quark masses and
has been taken into account.

As we approach the phase transition, all the parameters
of the Ginzburg-Landau functional (a, b, c, A, B, C)
remain finite, but the quadratic form in V becomes de-
generate, AC � B2. At the phase transition, the potential
has zero curvature along one direction in the ��; n� plane:

flat direction:
�
n
� 


B
A
� 


C
B
: (3.3)

The response of the system to static external perturba-
tion can be found by including source terms into the
Ginzburg-Landau free energy. For example, changing
the chemical potential from � to � �� and/or the
quark mass from mq to mq  �mq induces the following
change in the average variables:

� ��
1�
B��
 C�mq�; (3.4a)

n ��
1�A�� B�mq�: (3.4b)

where

� � AC
 B2: (3.5)

At the critical point � � 0 and the responses are singular.
In particular, the baryon susceptibility !B 	 dn=d� di-
verges at the phase transition. Near the phase transition,
both changes induced by �� and �mq occur along the flat
direction (3.3) of the potential.

From the distribution e
�F one can compute the fluc-
tuations of � and n. In the limit q ! 0 the quadratic
fluctuations are

h�2
q!0i �

TC
�
; hn2q!0i � T!B �

TA
�
: (3.6)
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Finally, by considering the response to nonuniform
perturbations, q � 0, one can determine the correlation
length �. Near the critical point it diverges as

���
1=2: (3.7)
B. Hydrodynamic equations

At the linear order, the hydrodynamic equations can be
written by using the standard rules reviewed in, e.g.,
Ref. [10] (see also Ref. [14]). We define the variables
conjugate to � and n:

X� �
�F
��

� �A
 ar2�� �B
 br2�n; (3.8a)

Xn �
�F
�n

� �B
 br2�� �C
 cr2�n: (3.8b)

The linearized equations for � and n are then

_��q� � 
����q�X��q� 
 ��n�q�Xn�q�  ���q�; (3.9a)

_n�q� � 
�n��q�X��q� 
 �nn�q�Xn�q�  �n�q�: (3.9b)

We have written the equations for each spatial momentum
q. Onsager’s principle forces ��n � �n�. The noise cor-
relators are

h�i�t; q��j�t0; q0�i � 2T�ij�q��2��3��q
 q0���t
 t0�;

i; j � �; n; (3.10)

and are such so that the equilibrium distribution is given
by e
�F.

In the limit of small momenta q ! 0 relevant to hydro-
dynamics, one can expand �ij�q� in powers of q2 and keep
only the leading terms. Because of the conservation of
baryon charge, �n� and �nn vanish in the limit q � 0 and
their expansions start at the order q2. There is no such
constraint on ���, so the expansion for this coefficient
starts at the q0 order. Introducing the notations

����q� � �O�q2�; (3.11a)

��n�q� � ~&q2 O�q4�; (3.11b)

�nn�q� � &q2 O�q4�; (3.11c)

the hydrodynamic equations become

_� � 
�
�F
��

 ~&r2 �F
�n

 ��; (3.12a)

_n � ~&r2 �F
��

 &r2 �F
�n

 �n: (3.12b)

with the noise correlators
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h���x����y�i � 2T��4�x
 y�; (3.13a)

h���x��n�y�i � 
2T ~&��t
 t0�r2�3�x
 y�; (3.13b)

h�n�x��n�y�i � 
2T&��t
 t0�r2�3�x
 y�: (3.13c)
C. Modes

Now let us insert the expression (3.1) for F into the
hydrodynamic equations and find the dispersion relations
for the normal modes. To leading order in the limit q ! 0
we find

_� � 
�A�
 �Bn; (3.14a)

_n � �~&A &B�r2� �~&B &C�r2n: (3.14b)

The eigenfrequencies of the hydrodynamic equations are
found by solving the equation

det

�������� �A
 i! �B
�~&A &B�q2 �~&B &C�q2 
 i!

��������� 0: (3.15)

Near the critical point the two eigenfrequencies are

!1 � 
i&
�

A
q2; (3.16a)

!2 � 
i�A: (3.16b)

Therefore, for small q there are two frequency scales: a
small scale / q2 and a larger scale / q0. In the limit q!
0 only !1 is truly hydrodynamic. It is a diffusive mode
with the diffusion constant

D � &
�

A
� &C
 &

B2

A
: (3.17)

The diffusion constantD tends to 0 as the critical point
is approached, � ! 0. To understand this fact consider
�< 0. In this case the potential V has an unstable direc-
tion. Negative D means that, instead of relaxing, pertur-
bations grow, leading to spinodal decomposition. The
term &B2=A in Eq. (3.17) can be interpreted as ‘‘antidif-
fusion’’—at the critical point it exactly cancels out the
normal diffusion term &C.

To interpret the modes corresponding to!1 and!2, we
find the eigenmodes of the hydrodynamic equations. Near
q � 0 the two eigenmodes are�


B
A

�
and

�
1
0

�
: (3.18)

At the critical point, the first mode is the flat direction
(3.3) of the potential energy V. Both � and n vary along
this direction. On the other hand, the mode with fre-
quency !2 corresponds to fluctuations of � alone, unac-
companied by any change of n.
-3



1The physically intuitive argument presented here is corro-
borated by the analysis of linear mixing of four variables: �, n,
,, and the longitudinal component of �i. As in Sec. III, there is
only one diffusive mode, in which � and , trace the local value
of n to minimize the local value of the thermodynamic po-
tential (i.e., maximize the pressure).
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The meaning of the two modes is simple. A generic
smooth perturbation involving both � and n will relax
over two distinct time scales. First, at a much shorter
time scale, ��A�
1, the field ��x� alone adjusts to the
values which at each point x in space minimize the
potential V��; n� at a given local value of n�x�: � �

�B=A�n. After that, at longer time scales, the chiral
order parameter � can be forgotten. It simply ‘‘traces’’
the profile of n, which relaxes to n � 0 much slower, over
the diffusive time scale �Dq2�
1. From the point of view
of slow dynamics at long distances, the addition of the
chiral order parameter � does not change the physics,
which is exactly that of the liquid-gas phase transition,
with a conserved density as the only hydrodynamic mode
(besides the energy momentum).

D. Real-time correlators

From the stochastic equations one can compute the
real-time correlators of � and n. Assuming we are in
the regime Dq2 � �A, the correlators can be written as

h�2
!qi �

2T�

!2  �2A2 
2TB2&q2

A2�!2 D2q4�
; (3.19a)

hn2!qi �
2T&q2

!2 D2q4
: (3.19b)

Integrating over ! we recover the equal-time correlators
(3.6). Notice that while h�2i obtains contribution from
two characteristic scales !� �A and !�Dq2, the fluc-
tuations of n are peaked only at the latter scale.

E. Baryon diffusion, susceptibility and critical indices
in d � 3

We have seen that, from the point of view of real-time
dynamics, the criticality is manifested by vanishing of
the baryon diffusion rate D given by Eq. (3.17).
Comparing to (3.6), we find that

D � &!
1
B : (3.20)

This relation has a simple physical explanation. Consider
a configuration where n varies with space, n � n�x�. This
corresponds to a spatially varying chemical potential
��x� � !
1

B n�x�. Recall that � acts as the time compo-
nent A0 of an external gauge field coupled to the baryon
current. Thus such a chemical potential ��x� corresponds
to an external electric field E � 
r� acting on the
baryon charge. The baryon current induced by this field
is jn � &E � 
&!
1

B rn, where & is the baryon conduc-
tivity. Using the definition of diffusion rate jn � 
Drn
we obtain (3.20).

At d � 3 one has to take into account fluctuations
which will modify the numerical values of the critical
exponents. With the energy-momentum density fluctua-
tions frozen, as in this section, the universality class is
that of model B in the Hohenberg-Halperin classification
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[8]. It is a model of the uniaxial ferromagnet, with a
single conserved mode. In model B the diffusion constant
is still inversely proportional to the susceptibility, as in
Eq. (3.20):

D� !
1
B � �
2+; (3.21)

but the divergence of !B is modified by + � 0:04—a
critical index of the 3d Ising model, relative to the
mean-field result.

The dispersion relation ! � 
iDq2 applies only in the
regime q� �
1. When q� �
1, we are in the critical
regime, and higher powers of q are non-negligible. In this
regime the scaling dictates dispersion !� qz. The two
behaviors should match smoothly at q� �
1. From
Eq. (3.21) one then finds z � 4
 + (in mean-field theory
z � 4).
IV. COUPLING TO ENERGY MOMENTUM

So far we have completely neglected the motion of the
plasma, regarding the latter as a static medium. Now we
will allow the plasma to move —this will modify the
hydrodynamic equations and change the value of the
dynamic critical exponent.

As we have learned in the previous Section, only one
combination of� and n is truly hydrodynamic. This mode
can be thought of as the baryon charge density n, with �
simply tracing n and not independent. At sufficiently long
time scales, the hydrodynamic theory contains this mode,
the energy density ", and the momentum density �i. The
linearized theory has four eigenmodes: the baryon diffu-
sion mode, two diffusive transverse shear modes, and a
propagating longitudinal sound wave.

At very low momenta, and long time scales, the sound
wave mode can be effectively integrated out, since it has
linear dispersion !� q and its frequency is much higher
than the frequencies of the remaining diffusive modes
!� q2. In other words, the fluctuations of the energy
density and pressure caused by sound excitations are
fast and average out —there are no sound waves on these
long diffusive time scales. The number of remaining
hydrodynamic modes is three: two transverse compo-
nents of �i and the baryon density n.1

The same set of modes describes hydrodynamics of the
liquid-gas phase transition [15]. Here we only review the
results of previous studies, referring the reader to the
original literature [8,15] for further details.

The liquid-gas phase transition belongs to the dynamic
universality class of model H. This model describes a
-4
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system with a conserved order parameter, conserved and
transverse momentum density, and nonzero Poisson
bracket between the two. The same model describes the
critical point of binary fluids. The hydrodynamic theory
contains two kinetic coefficients: the shear viscosity �+
and the diffusion constant (in our case, that of the baryon
charge D).2

Both kinetic coefficients are singular (nonanalytic) at
the phase transition:

D � &!
1
B � �x&!
1

B ; (4.1a)

�+� �x+: (4.1b)

The two new dynamical critical exponents satisfy the
following relation:

x&  x+ � 4
 d
 +: (4.2)

The enhancement of D by a power of � is due to the
contribution of convection to the baryon conductivity &.
Although the calculation of x& and x+ individually is not
simple, the relation (4.2) has a simple physical explana-
tion [8]. Let us apply the field E � 
r� introduced
already in Sec. III. In model B, without convection, this
field would induce baryon current via diffusion: jn �
&E, where & is finite. However, in this field E, the baryon
charge carrying fluid will experience mechanical force
equal to nE per unit volume. The fluid will accelerate to
velocity v at which viscous drag balances the external
force: fvisc  f appl � 0. For a chunk of fluid of typical
linear dimension L the drag and the applied forces are of
order:

f visc �
 �+.vLd
2; and f appl � nELd; (4.3)

where . is the mass density. The corresponding velocity v
diverges with L and so does the induced baryon current:

j n � nv�
n2

�+.
L2E: (4.4)

The divergence is cut off at the scale L� � because the
baryon number fluctuation, given by hn2i � T!B=Ld for
L� �, is correlated on at most that scale. Therefore at
the critical point we find a singular contribution to the
product of the kinetic coefficients

& �+� hn2i�2 � !B�
2
d � �4
d
+; (4.5)

which leads to Eq. (4.2).
2We choose the notation �+ for the shear viscosity to avoid
confusion with the static critical exponent +. The constant of
heat conductance / is not an independent constant, but is rel-
ated to D by D / /!
1

B .
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In the d � 3 Ising model + is very small. It has been
found [8,15,16] that the divergence of the shear viscosity
is very weak, or x+ is numerically small. According to
Eq. (4.2), therefore, x& � 1. Calculations using the renor-
malization group in 4
 , dimensions yield the values
[8,15]

x+ �
1

19
,�1 0:238, � � �� � 0:065; (4.6a)

x& �
18

19
,�1
 0:033, � � �� � 0:916; (4.6b)

while mode-coupling calculations done directly in d � 3
and assuming + � 0 yield [16]

x+ � 0:054; x& � 0:946: (4.7)

One sees that in model H the diffusion constant still
vanishes at the critical point:

D� �
2+x& ; (4.8)

but the power is closer to one rather than to 2 as in
model B. That is due, as we have mentioned, to fluctua-
tions of the fluid motion. Using the same argument as the
one presented at the end of Sec. III, we find

z � 4
 +
 x& � 3: (4.9)
V. CONCLUSION

We have seen that the dynamic universality class of the
QCD critical point is that of model H, i.e., the liquid-gas
phase transition. The chiral order parameter, being non-
conserved and mixing with the conserved baryon charge,
does not affect the dynamic universality class.

Here we would also like to compare our results to the
universality class argument of Ref. [7]. The argument is
based on three assumptions, spelled out in Ref. [7]: (i) the
chiral order parameter � is not conserved; (ii) there are
other conserved quantities, such as the baryon density n;
(iii) the Poisson brackets between � and the conserved
quantities vanish. While the first two assumptions are
correct, the last assumption is not. There is a nonzero
Poisson bracket between � (or n) and the momentum
density ��i�x�; ��y�� � ��x�ri�3�x
 y�. As we have
seen, the coupling to momentum density plays an essen-
tial role in determining the dynamic universality class.
Another, more subtle implicit assumption of Ref. [7] is
that the order parameter � and baryon density n cannot
mix. This assumption leads to model C, where the mixing
is forbidden by a symmetry of the order parameter (it
would be �! 
� in this case). As we have seen in
Sec. III, the �n mixing eliminates a nonconserved
mode from hydrodynamic theory, leading instead to
model B.
-5
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The model H value of z � 3 is larger than the model C
value z � 2:17 used in Ref. [7]. As discussed in the
introduction, this means that the effect of the time con-
straint on the correlation length � is stronger. Thus the
numerical estimate of maximal � in Ref. [7] should be
revised downward. However, we do not expect the main
conclusions of Ref. [7] to change qualitatively.3

An interesting step beyond the relaxation equation for
the diverging correlation length in Ref. [7], which one can
contemplate, having the correct hydrodynamic theory in
hand, is to consider real-time evolution of the hydrody-
namic modes near criticality, similar to the study of
Ref. [18].

The pions do not enter the hydrodynamic theory as
long as the correlation length � is sufficiently large com-
pared to the inverse of the pion mass 1=m� (see Sec. II).
Although this condition is always fulfilled sufficiently
close to the critical point, in the realistic case of a
heavy-ion collision, the maximal achievable � (2

3 fm, according to [6,7]) is not significantly larger than
1=m�. Therefore it might be interesting to study the
effects due to the crossover between the two regimes
�� 1=m� (model H) and �� 1=m� [O(4) antiferro-
magnet [13]].

It would be interesting to explore the phenomenologi-
cal consequences of the vanishing baryon diffusion rate
for heavy-ion collisions. Most likely it will manifest itself
in the fluctuations of the baryon number [19].

ACKNOWLEDGMENTS

We thank H. Fujii and K. Rajagopal for discussions and
for their comments on the manuscript. M. A. S. thanks the
RIKEN-BNL Center and the U.S. Department of Energy
(DE-AC02-98CH10886) for providing facilities essential
for the completion of this work. D.T. S. is supported, in
part, by DOE Grant No. DE-FG02-00ER41132 and the
Alfred P. Sloan Foundation. M. A. S. is supported, in part,
by DOE Grant No. DE-FG0201ER41195 and by the
Alfred P. Sloan Foundation.
3Rerunning the codes of Ref. [7] with the new value of z s-
hows [17] that the required revision is numerically small (less
than 10%) and is within the many uncertainties of the method
detailed in Ref. [7]. We thank Krishna Rajagopal for sharing
this result with us.

056001
APPENDIX: ISOSPIN DENSITY AND SCALING
DIMENSION COUNTING

In this appendix we show that the inclusion of the
isospin density nI does not affect the critical behavior.
For simplicity, let us neglect the energy-momentum ten-
sor and discuss only the coupled system of the isospin
density and the baryon density. The coupled dynamics at
the critical point is given by a pair of stochastic equa-
tions:

_nB � &Br2�
cr2nB  gBn
3
B 

gBII
2
n2I �  �B; (A1a)

_nI � &Ir
2�!
1

I nI  gIn
3
I  gBIInBnI�  �I: (A1b)

Note that the term &B!

1
B r2nB in Eq. (A1a) vanishes at

the critical point, because !B ! 1. The isospin suscep-
tibility !I is finite [19]. We kept only the coupling terms
of lowest order (most relevant in the infrared) consistent
with the symmetry nI ! 
nI. The noises �B and �I are
autocorrelated as

h�B�t; x��B�t0; y�i � 
2T&B��t
 t0�r2�d�x
 y�; (A2a)

h�I�t; x��I�t0; y�i � 
2T&I��t
 t
0�r2�d�x
 y�: (A2b)

Here d is the number of spatial dimensions.
The canonical scaling dimensions involved in renor-

malization group transformations are determined as fol-
lows. Comparing linear terms in Eq. (A1a) we establish
that if space has dimension 
1, �x� � 
1, then the di-
mension of time is �t� � 
4. The dimensions of noises
are then found from Eqs. (A2) to be ��B� � ��I� � d=2
3. From Eq. (A1a) one then finds �nB� � d=2
 1. In
Eq. (A1b) we see that the term _nI can be neglected in
the infrared, so �nI� � d=2 1.

Using these scaling dimensions for the fields, we can
now determine the scaling dimensions of the coupling
terms. One finds that �&BgBII� � 
1
 d=2, and
�&IgBII� � 1
 d=2, so the coupling between baryon and
isospin densities is irrelevant for d > 2. (In contrast,
�&BgB� � 4
 d, so the n3B term is relevant for d < 4.)

Similarly one can show that isospin density remains
decoupled from the critical dynamics when the energy-
momentum tensor is included. This simple power count-
ing scheme can be formalized by rewriting the stochastic
equations as a path integral.
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