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Moose models with vanishing S parameter
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In the linear moose framework, which naturally emerges in deconstruction models, we show that
there is a unique solution for the vanishing of the S parameter at the lowest order in the weak
interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K � 1 chiral fields,
and electroweak groups SU�2�L and U�1�Y at the ends of the chain of the moose. S vanishes when a link
in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting
the two ends of the moose. Then the model acquires an additional custodial symmetry which protects
this result. We examine also the possibility of a strong suppression of S through an exponential behavior
of the link couplings as suggested by the Randall Sundrum metric.
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I. INTRODUCTION

Even after the very precise measurements made at
LEPI, LEPII, SLC, and TEVATRON, the problem of
the nature of the electroweak symmetry breaking re-
mains to be unveiled. In particular, the Higgs particle
has not been observed.

An approach to the problem of electroweak symmetry
breaking is offered by technicolor (TC) theories where
the Higgs particleis realized as a composite state of
strongly interacting fermions, the techniquarks.
However, the TC solution suffers the drawback arising
from the electroweak precision measurements. These
difficulties, especially the ones coming from the experi-
ments at the Z pole, can be summarized in a single
observable. This quantity is the so-called S parameter
[1,2] or the related �3 � g2S=�16	� [3]. The experimental
value of �3 is of the order of 10�3 [4], whereas the value
expected in TC theories is naturally an order of magni-
tude bigger. There are two other important quantities
which parameterize the electroweak observables at the
Z-pole, �1 and �2 [3] (the parameters T and U in the
notations of Ref. [1,2]). Contrarily to �3 these two pa-
rameters can be made generally small due to the custodial
symmetry SU(2), which is typically present in the TC
models. As far as �3 is concerned an enhanced symmetry
SU�2� � SU�2� is necessary to make it small [5]. It turns
out that producing this symmetry is quite difficult in TC
theories.

A possible solution to the problem of �3 was proposed
in Refs. [6,7] (see also Ref. [8]). This was realized in
terms of an effective TC theory of nonlinear �-model
scalars and massive gauge fields. The model contains
three nonlinear SU(2) fields and two SU(2) gauge groups
(before introducing the electroweak gauge interactions).
The physical spectrum consists of three massless scalar
fields (the Goldstone bosons giving mass to the gauge
vector particles) and two triplets of massive vector fields
degenerate in mass and couplings. This model, named the
degenerate BESS model (D-BESS), has an enhanced
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custodial symmetry such to allow �3 � 0 at the lowest
order in the electroweak interactions.

A more general case with n � 1 gauge groups SU(2)
and n � 2 nonlinear �-model scalar fields was studied in
Ref. [9]. This model has the same content of fields and
symmetries of the open linear moose [10–13] but a more
general Lagrangian. In fact, in the linear moose models
the scalar fields interact only with their nearest neighbor-
hood gauge groups along the chain. Therefore, a linear
moose looks the same as a linear lattice with lattice sites
represented by the gauge groups and links by the scalar
fields. This structure is particularly interesting and it is
the basis of the ‘‘deconstruction’’ models [10–13]. Its
continuum limit leads to a five-dimensional gauge theory.
It is also possible to start with a five-dimensional theory,
discretize (or deconstruct) the fifth dimension, and obtain
a linear moose.

The typical value of �3 obtained in the linear moose
models is of the same order of magnitude as in the TC
theories. However, in this class of models we have an
example, the D-BESS model, giving �3 � 0 (at the lowest
order in weak interactions). Then it seems natural to
investigate the possible solutions to �3 � 0 within the
moose models. We have indeed found a general solution,
which turns out to be a simple generalization of the
mechanism present in D-BESS.

In Section II we introduce the notations and the main
constitutive elements of a linear moose model such to
describe the electroweak symmetry breaking in a mini-
mal way. In particular, this requires that after the gauge
fields have acquired mass only three massless scalar fields
(the ones giving masses to W and Z) should remain in the
spectrum, and also that the fermions couple to the elec-
troweak gauge fields in the standard way. In this case
there is no contribution to �3 from fermions.

In Section III we make use of the analysis of Ref. [2] to
get a general expression for �3. The result can be written
in a very compact form in terms of a particular matrix
element (the one between the ends of the moose) of M�2
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FIG. 1. The linear moose model.
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where M2 is the quadratic mass matrix of the gauge
bosons. We express also this matrix element in terms of
the decay coupling constants (or link couplings) of the
scalar fields. As a by-product we get the result that �3 is a
semipositive definite expression (see also Refs. [14–16]).

In Section IV we investigate the possible models with
�3 � 0. We show that the unique solution corresponds to
have a single vanishing decay coupling constant (or, if
more, they should go to zero in an independent way).
However, letting two or more couplings decrease to
zero in a correlated way leads to a nonvanishing �3.
This solution corresponds to cut a link and to disconnect
the linear moose in two parts. By choosing this option
one needs to introduce an additional scalar field in order
to have the right number of degrees of freedom to give
masses to Z and W. This new dynamical field is provided
by a nonlocal field (in lattice space), connecting the two
ends of the original moose. Therefore, at the lowest order
in the weak interactions, the original moose splits in three
disconnected parts producing an enhancement of the
custodial symmetry from SU(2) to SU�2� � SU�2� and
leading to a vanishing �3. We have also examined the case
of a linear moose with a reflection symmetry with re-
spect to the ends of the moose. It is again possible to have
�3 � 0 but only for an even number of gauge groups. The
original D-BESS model corresponds exactly to this latter
case with two gauge groups. Another relevant aspect of
cutting a link is that the Goldstone bosons related to the
weak symmetry breaking are associated only with the
nonlocal field. As a consequence the unitarity properties
of these models are the same as in the Higgs-less
Standard Model.

In Section V we give a detailed description of the D-
BESS model showing its relation to the linear moose case
with a cut.

A value of �3 strongly suppressed is equally acceptable
as the case �3 � 0. Therefore, in Section VI, we examine
the possibility of substituting the cut of a link with a
strong suppression of the corresponding coupling. In par-
ticular, we have examined the possibility of an exponen-
tial law for the couplings. In this way, the decay constant
at one of the ends of the moose is exponentially sup-
pressed with respect to all the others. As a result �3 is
strongly suppressed in agreement with our findings in
Section IV. We have also examined a powerlike behavior
of the couplings with similar results. By requiring reflec-
tion symmetry in both the previous cases we have shown
that the suppression is present only for an even number of
gauge groups. At the end of this Section we have studied
the continuum limit of the linear moose with exponential
law, which corresponds to a five-dimensional gauge the-
ory with a Randall Sundrum metric [17]. Again, we find a
suppression, although not as large as in the discrete case.

In Section VII we study the possibility of extending the
linear moose to a planar one. In particular, we show that
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no loops are allowed on the plane and that, by a conve-
nient redefinition of the gauge couplings, the expression
for �3 is the same as in the linear case.

Conclusions are given in Section VIII.
The Appendix Ais devoted to the explicit calculation of

�3 for the linear and the planar moose. In Appendix B we
prove the main result of Section IV.
II. A LINEAR MOOSE MODEL FOR THE
ELECTROWEAK SYMMETRY BREAKING

Following the idea of the dimensional deconstruction
[10–13] and the hidden gauge symmetry approach applied
to the strong interactions [16,18–21] and to the electro-
weak symmetry breaking [9,16,22], we consider K � 1
nonlinear �-model scalar fields �i, i � 1; � � � ; K � 1, K
gauge groups, Gi, i � 1; � � � ; K and a global symmetry
GL � GR. Since the aim of this paper is to investigate a
minimal model of electroweak symmetry breaking, we
will assume Gi � SU�2�, GL � GR � SU�2�L � SU�2�R.
The Standard Model (S-M) gauge group SU�2�L �
U�1�Y is obtained by gauging a subgroup of GL � GR.
The �i fields can be parameterized as �i �
exp	i=�2fi� ~	i � ~�
 where ~� are the Pauli matrices and fi
are K � 1 constants that we will call link couplings.

The transformation properties of the fields are

�1 ! L�1Uy
1 ; �i !Ui�1�iU

y
i ; i � 2; � � � ; K;

�K�1 !UK�K�1Ry; (1)

with Ui 2 Gi, i � 1; � � � ; K, L 2 GL, R 2 GR.
The Lagrangian is given by

L �
XK�1

i�1

f2
i Tr	D��y

i D��i
 �
1

2

XK
i�1

Tr	�Fi
���

2
; (2)

with the covariant derivatives defined as follows:

D��1 � @��1 � i�1g1A1
�;

D��i � @��i � igi�1Ai�1
� �i � i�igiAi

�;

i � 2; � � � ; K;

D��K�1 � @��K�1 � igKAK
��K�1; (3)

where Ai
� and gi are the gauge fields and gauge coupling

constants associated with the groups Gi, i � 1; � � � ; K.
The model described by the Lagrangian (2) is repre-

sented in Fig. 1. Notice that the field defined as

U � �1�2 � � ��K�1 (4)
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is the usual chiral field: in fact, it transforms as U !
LURy and it is invariant under the Gi transformations.

The mass matrix of the gauge fields can be obtained by
choosing �i � I in Eq. (2). We find

L mass �
XK�1

i�1

f2
i Tr	�gi�1Ai

� � giA
i
��

2


�
1

2

XK�1

i;j�1

�M2�ijAi
�A�j; (5)

with

�M2�ij � g2
i �f

2
i � f2

i�1��i;j � gigi�1f2
i�1�i;j�1

� gjgj�1f2
j�1�i;j�1: (6)

The squared mass matrix can be diagonalized through an
orthogonal transformation S. By calling ~An

�, n �

1; � � � ; K the mass eigenstates, and m2
n the squared mass

eigenvalues, we have

Ai
� �

XK
n�1

Si
n
~An

�; (7)

and

Si
m�M2�ijS

j
n � m2

n�m;n: (8)

We will assume mn � 0, otherwise the model describes an
unphysical situation.

The vector meson decay constants are defined in terms
of the matrix elements of the vector and axial vector
currents between the vacuum and the one vector meson
state, i.e.

h0jJa
V�j

~An
b�p; ��i � gnV�ab��;

h0jJa
A�j

~An
b�p; ��i � gnA�ab��;

(9)

where j ~An
b�p; ��i is the b component of the single particle

state of the n-vector boson with polarization ��. Notice
that the vector and axial vector currents are defined as the
conserved currents associated with the global symmetry
GL � GR acting at the ends of the moose. Therefore, the
vector meson decay constants can be very easily obtained
by considering the contribution of the vector mesons to
the canonical currents. Notice that only the scalar fields
�1 and �K�1 transform under the vector and axial trans-
formations according to

vector: �1 ! T�1; �K�1 ! �K�1Ty;

axial: �1 ! V�1; �K�1 ! �K�1V:
(10)

Then, the contributions of the vector mesons to the con-
served vector and axial vector currents are

Ja
V�jvector mesons � f2

1g1A1a
� � f2

K�1gKAKa
� ;

Ja
A�jvector mesons � f2

1g1A1a
� � f2

K�1gKAKa
� :

(11)
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It follows

gnV � f2
1g1S1

n � f2
K�1gKSK

n ;

gnA � f2
1g1S1

n � f2
K�1gKSK

n :
(12)
III. DETERMINATION OF �3

To compute the new physics contribution to the elec-
troweak parameter �3 [3] we will make use of the dis-
persive representation given in Refs. [1,2] for the related
parameter S (�3 � g2S=�16	�, where g is the SU�2�L
gauge coupling)

�3 � �
g2

4	

Z 1

0

ds

s2 Im	�VV�s� � �AA�s�
; (13)

where �VV�AA� is the current-current correlator
Z

d4xe�iq�xhJ�
V�A�J

�
V�A�i � ig���VV�AA��q

2�

� �q�q� terms�: (14)

It should be noted that the �3 parameter is evaluated with
reference to the S-M, and therefore the corresponding
contributions should be subtracted. For instance, the con-
tribution of the pion pole to �AA, that is of the Goldstone
particles giving mass to the W and Z gauge bosons, does
not appear in �3. In the model described by the
Lagrangian (2) all the new physics contribution comes
from the new vector bosons (we are assuming the stan-
dard couplings for the fermions to SU�2�L � U�1�Y).
Therefore, from

Im�VV�AA� � �	
X

Vn;An

g2
nV;nA��s � m2

n�; (15)

we get

�3 �
g2

4

X
n

�
g2

nV

m4
n
�

g2
nA

m4
n

�
: (16)

Substituting the expressions (12) for the decay vector
couplings, we find

�3 � g2g1gKf2
1f2

K�1

X
n

S1
nSK

n

m4
n

� g2g1gKf2
1f2

K�1�M
�2
2 �1K:

(17)

In Appendix A we have derived the following explicit
expression for �3, valid for a generic linear moose model
(the same result has been obtained in [16]):

�3 � g2
XK
i�1

�1 � yi�yi

g2
i

; (18)

where we have introduced the following notations,

yi �
Xi

j�1

xj; xi �
f2

f2
i

; i � 1; � � � ; K � 1; (19)
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with

1

f2 �
XK�1

i�1

1

f2
i

: (20)

Therefore,
PK�1

i�1 xi � 1.
From Eq. (18), it follows that for an open moose one

always has

�3 � 0; (21)

since 0 � yi � 1, i � 1; � � � ; K � 1. The positivity of �3

is a simple consequence of the positivity of all the matrix
elements of M�1

2 . This can be proved by using the decom-
position of M2 [see Eq. (6)] in triangular matrices. The
positivity of �3 was already noted [14] for the warped
five-dimensional models (whose deconstruction gener-
ates linear moose models) and for the deconstructed
QCD [15].
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Furthermore, if all the fi and the gauge couplings gi
are of the same order of magnitude, the typical size for �3

is

�3 �
g2

g2
i

: (22)

However, since the experimental value of �3 is of the
order 10�3 [4], in order to get a realistic model, one
should have strongly coupled vector bosons Ai

�.
As a simple example, let us consider the case K � 2.

The result for �3 is

�3 �
g2

g2
1g2

2

f2
1f2

2f2
3

�f2
1 � f2

2�g
2
1 � �f2

2 � f2
3�g

2
2

�f2
1f2

2 � f2
1f2

3 � f2
2f2

3�
2 : (23)

Analogously for K � 3 we obtain
�3 �
g2

g2
1g2

2g2
3

f2
1f2

2f2
3f2

4

�f2
1f2

2 � f2
2f2

3 � f2
1f2

3�g
2
1g2

2 � �f2
1 � f2

2��f
2
3 � f2

4�g
2
1g2

3 � �f2
3f2

4 � f2
2f2

3 � f2
2f2

4�g
2
2g2

3

�f2
1f2

2f2
3 � f2

1f2
3f2

4 � f2
2f2

3f2
4 � f2

1f2
2f2

4�
2 : (24)
IV. CUTTING A LINK

Is it possible to get �3 � 0 at the lowest order in the
weak interactions? This can be realized by noticing that
if one of the fi, with i � 2; � � � ; K, vanishes, the mass
matrix M2 is block-diagonal. The case f1 � 0 or fK�1 �
0 implies the vanishing of �3 in a trivial way due to
Eq. (17) and the fact that the matrix M2 is not singular
under these hypotheses. This general result can be explic-
itly verified for K � 2 and K � 3 [see Eqs. (23) and (24)].
We will refer to this situation as ‘‘cutting a link.’’ In such
a case, M�2

2 is also block-diagonal, implying the vanish-
ing of �3. This can also be derived from the explicit
expression (18). Let us choose fm � 0, then xi � �i;m

and yi �
Pi

j�1 �j;m � -i;m, where we have defined the
discrete step function

-i;j �

�
1 for i � j;
0 for i < j:

(25)

Then we obtain

�3 � g2
XK
i�1

�1 � -i;m�-i;m

g2
i

� 0: (26)

However, cutting a link corresponds to lose one scalar
multiplet, which is necessary to give masses to the gauge
bosons of the standard SU�2�L � U�1�Y . We can solve this
problem by adding a term to the Lagrangian of the linear
moose given by

f2
0Tr	@�Uy@�U
; (27)

where U is the chiral field given in Eq. (4) and f0 is a new
parameter related to the Fermi scale.
Correspondingly, there is an enhancement of the
symmetry from GL � GR �

QK
i�1 Gi to GL � GR � ~GL �

~GR �
QK

i�1 Gi, where ~GL�R� is a copy of GL�R� and U
transforms as

U ! ~LU ~Ry; (28)

with ~L� ~R� 2 ~GL�R�. The Lagrangian for the model, with
the m link cut, is given by

L � f2
0Tr	@�Uy@�U
 �

Xm�1

i�1

f2
i Tr	D��y

i D��i


�
XK�1

i�m�1

f2
i Tr	D��y

i D��i
 �
1

2

XK
i�1

Tr	�Fi
���

2
:

(29)

As already mentioned, this Lagrangian has an enhanced
symmetry with respect to the Lagrangian (2) since the
global symmetry ~GL � ~GR under which the kinetic term
for the field U is invariant does not coincide with the
symmetry GL � GR acting upon the scalar fields �1 and
�K�1. These two global symmetries are to be identified
only after the gauging of the electroweak symmetry. The
model corresponding to the Lagrangian (29) is shown in
Fig. 2. Before the weak gauging, we have three discon-
nected chains and this is the reason why the symmetry
gets enhanced. Clearly the main difference with respect
to the linear moose model is the fact that a link is cut and
the invariant term containing the scalar field �m is sub-
stituted by the invariant involving the field U coupling
the two ends of the chain. Cutting a link implies that, in
the unitary gauge, the gauge fields Ai

� become massive by
-4



G1

Σ1 Σ2
GL

.....

Σm-1

Gm-1 G G

Σ Σ
G

R
.....

Σ Σ

G

GL G
R

~ ~

U

m+1 K

K K+1m+1 m+2

m

FIG. 2. Graphic representation of the linear moose model with the m link cut described by the Lagrangian (29). The dashed lines
represent the identification of the global symmetry groups after weak gauging.
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eating the �i fields, while the U field contains the
Goldstone bosons which give masses to the standard
gauge bosons once the gauge group SU�2�L � U�1�Y is
switched on. This additional term does not contribute to
�3 because the U field does not couple to the gauge fields
Ai

�, i � 1; � � � ; K; as a consequence, the gauge boson
mass matrix M2 remains unchanged.

It is also worth noting that the enhanced symmetry acts
as a custodial symmetry and this explains why the pa-
rameter �3 is vanishing [5].

Of course the enhanced symmetry is broken by the
weak gauging and corrections to �3 of order /�MZ=M�2,
where M is the mass scale of the new vector bosons (see
Refs. [6,7]), are expected.

In the linear moose model described by the Lagrangian
(2), one has the possibility of making �3 small by choos-
ing one fi much smaller than the other ones: an explicit
calculation will be presented in Section VI. However, in
this case there is no additional symmetry which protects
the result.

In both cases, the parameters �1 and �2 are zero, at the
lowest order in the weak interactions, because of the
presence of the usual SU�2�L�R custodial symmetry.

In the Appendix B of [9] it was already shown that in
the case of Gi � SU�2� for i � 1; � � � ; K and GL�R� �

SU�2�L�R� one exactly gets �1 � 0 and, requiring the
decoupling of the gauge fields Ai

�, the parameter f0 in
Eq. (29) satisfies f2

0 � �
���
2

p
GF�

�1.
Concerning the fermions, if we assume the usual rep-

resentation assignments with respect to SU�2�L � U�1�Y ,
mass terms can be generated by Yukawa couplings to the
U field. In this case, fermion couplings to W and Z are the
standard ones if we neglect the effect of the mixing with
the additional vector bosons. Of course it would be pos-
sible to add new couplings of the fermions to the gauge
bosons [23]. These new couplings would modify �3 but, in
order to get the necessary cancellation to fulfill the elec-
troweak constraints, one would need a fine tuning of the
parameters (as an example, see the BESS model corre-
sponding to K � 1, Ref. [22]).
FIG. 3. For K odd, putting one of the fi to zero in a reflection
invariant model, one is left with a string containing more
vector fields than scalars.
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Up to now we have not required the reflection invari-
ance with respect to the ends of the moose. If we do
require invariance, we get the following relations among
the couplings

fi � fK�2�i; gi � gK�1�i: (30)

If K is odd, we have an even number of scalar fields and,
putting one link coupling fi to zero, implies that two
links are cut (the two connected by the reflection sym-
metry). This leads to an unphysical situation, since a
multiplet of vector fields remains massless. This is illus-
trated in Fig. 3. The original string is broken in three
pieces with the central one containing more vector fields
than scalar ones. As a consequence, there are massless
vector fields in the spectrum of the theory. In this case,
the matrix M2 is singular and Eq. (17) is not applicable as
it stands. However, as we shall see, �3 can be defined
through a limiting procedure.

The situation is different if K is even, since in this case
we can cut the central link, and K remains as depicted in
Fig. 4. That is, we are left with two strings disconnected,
each of them with a gauge field at one end point.
Therefore, for K � 2N the Lagrangian is given by the
formula (29) with m � N � 1 with the field U expressed
as

U � �1 � � ��N�1 � � ��2N�1: (31)

Another interesting point is that, due to the reflection
invariance, the mass matrices of the two disconnected
strings containing the � fields are equal. Therefore, there
is complete degeneracy between vector and axial vector
resonances. The models so obtained can be considered as
a generalization of the D-BESS model, corresponding to
N � 1, as shown in Section V.

As a general result, it is possible to build a model with
�3 � 0 and an extra custodial symmetry even without
requiring the reflection invariance.

Finally, let us mention the unitarity bounds. In general,
for a cut linear moose model the longitudinal components
of the electroweak gauge bosons are only coupled to the U
field. As a consequence, the corresponding scattering
FIG. 4. For K even, cutting the central link we are left with
two strings, each of them ending with a gauge field.

-5



R. CASALBUONI, S. DE CURTIS, AND D. DOMINICI PHYSICAL REVIEW D 70 055010
amplitudes violate partial wave unitarity at the same
energy scale as in the Higgs-less S-M. Therefore, the
violation of unitarity is not postponed to higher scales
as in the five-dimensional Higgs-less model, which, how-
ever, seem to be difficult to be reconciled with the preci-
sion electroweak measurements unless one includes brane
kinetic terms [14,24,25].

It follows that the moose models with a cut link will be
valid up to energies of the order of 2 TeV (roughly the
unitarity bound on the Higgs-less S-M). On the other
hand, the unitarity limit can be overcome by extending
the effective theory through an UV completion. Then the
relevant question is rather if the result �3 � 0 holds true
also at the level of the extended theory. Though we have
no general answer to this problem, it is possible that, at
least in some UV completion, the answer could be posi-
tive. In fact, the question was investigated in the context
of the D-BESS model in [26]. In this paper a particular
UV completion was considered and it was shown that
�3 � 0 (still at the lowest order in the weak interactions)
persists at one-loop level.
V. THE D-BESS MODEL

From the general formalism developed in the previous
Sections, assuming K � 2 and reflection invariance, one
can easily derive the Lagrangian of Ref. [9], describing
new vector and axial vector gauge bosons in the Higgs-
less S-M, in two particular cases. Let us recall that,
requiring gauge invariance and symmetry under reflec-
tion, the most general invariant Lagrangian is

L � �
1

4
v2	a1I1 � a2I2 � a3I3 � a4I4
 �

1

2

�
X2
i�1

Tr	�Fi
���

2
 (32)

with

I1 � Tr	�V1 � V2 � V3�
2
; I2 � Tr	�V1 � V3�

2
;

I3 � Tr	�V1 � V3�
2
; I4 � Tr	V2

2 
;

(33)

where
G1 G2

Σ1 Σ3Σ2
GL G

R

FIG. 5. The left panel gives a graphic representation of the Lagra
representation of the D-BESS model Lagrangian (41). The dashed
after the electroweak gauging.

055010
V�
1 � �y

1 D��1; V�
2 � �2D��y

2 ;

V�
3 � �2��3D��y

3 ��
y
2 ;

(34)

and

D��1 � @��1 � i�1g1A1
�;

D��2 � @��2 � ig1A1
��2 � i�2g2A2

�;

D��3 � @��3 � ig2A2
��3:

(35)

The invariance under reflections implies

�3 $ �y
1 ; �2 $ �y

2 ; A1
� $ A2

�; g1 � g2;

(36)

where A1
� and A2

� are the gauge fields related to the gauge
groups G1 and G2, respectively.

We can now select two particular cases:

(1) T
GL

GL
~

ngian (
lines re

-6
he linear moose model. By choosing

a1 � 0; a2 � a3; (37)

we have

L �
X3
i�1

f2
i Tr	D��y

i D��i
 �
1

2

X2
i�1

Tr	�Fi
���

2
;

(38)

with

f2
1 � f2

3 �
1

2
a2v2; f2

2 �
1

4
a4v2: (39)

This is indeed the Lagrangian for a linear moose
with three links and two gauge fields with reflec-
tion invariance (see Refs. [21,27]). The corre-
sponding diagram is shown in the left panel of
Fig. 5.
(2) T
he D-BESS model [6,7]. This corresponds to the
choice

a4 � 0; a2 � a3; (40)

giving

L D�BESS � f2Tr	@�Uy@�U


� f2
1�Tr	D��y

1 D��1


� Tr	D��y
3 D��3
�; (41)
G1 G2

Σ1 Σ3
G

R

U
G

R
~

32) for a1 � 0, a2 � a3. The right panel gives a graphic
present the identification of the global symmetry groups
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with

f2 �
1

4
a1v2; f2

1 �
1

2
a2v2; (42)

and

U � �1�2�3: (43)

The diagram corresponding to the previous
Lagrangian is shown in the right panel of Fig. 5.
Before the electroweak gauging, we have three
disconnected chains and this is the reason why
the symmetry SU�2�L �

Q2
i�1 SU�2�i � SU�2�R

gets enhanced to 	SU�2� � SU�2�
3.

We have shown in [6] that in order to have a vanishing

parameter �3, or S, at the lowest order in the weak
interactions, a4 � 0 is necessary. This is equivalent to
eliminating from the Lagrangian the term corresponding
to the central link. The requirement a2 � a3 implies
degeneracy between vector and axial vector gauge bosons.
Since the contribution of the vector and of the axial
vector particles are of opposite sign, one gets exactly
�3 � S � 0 at the leading order. However, as we have
already noted in Section III, it is possible to build a model
with �3 � 0 and an extra custodial symmetry even with-
out requiring the reflection invariance. In other words, the
degeneracy of vector and axial vector resonances is not
necessary to ensure �3 � 0.

VI. SEWING THE CUT

We have shown in Appendix B that, in order to get a
vanishing �3, the necessary and sufficient condition is
that one and only one of the link couplings fi is zero. As a
consequence, by requiring reflection invariance, �3 � 0
can be achieved only if K is even. On this basis, it is easy
to see how a suppression of �3 (a smoother situation with
respect to the vanishing) can be realized. In fact, it will be
enough to require that a link is suppressed with respect to
all the others. In this case, however, it is not necessary to
consider the additional dynamical degree of freedom
given by the chiral field U, and therefore there is no
additional custodial symmetry for �3.
2 4 6 8 10

0.2

0.4

0.6

0.8

1

K = 10
0

0

0

0

0 i

x i

.

The behavior of xi � f2=f2
i vs i for c � 2, K � 10 (left

ond to the choice of link couplings fi without reflection sy
)].
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A simple model grasping the main features is obtained
by assuming an exponential law for the link couplings fi,
and equal gauge couplings

fi �  fec�i�1�; gi � ~g; i � 1; � � � ; K � 1: (44)

Here  f is an overall scale not playing any role in the
dimensionless quantity �3. By contrast, the relevant pa-
rameter is c since it controls the amount of suppression.
By using Eqs. (18)–(20), we easily obtain

f2 �  f2ecK sinhc
sinhc�K � 1�

; (45)

xi � e�2ciec�K�2� sinhc
sinhc�K � 1�

; (46)

and

�3 �
1

4

�
g
~g

�
2 sinh	2c�K � 1�
 � �K � 1� sinh2c

sinh2csinh2	c�K � 1�

: (47)

For increasing c, the first link f1 is more and more sup-
pressed with respect to the other links. In fact, for large c
we get

�3 �

�
g
~g

�
2
e�2c: (48)

Therefore, the suppression factor is about 2 � 10�2 for
c � 2. It is interesting to look at the behavior of the
variables xi vs i for fixed c. This is plotted in Fig. 6.

From Fig. 6 we see that for c � 2 we are practically in
the ideal situation x1 � 1 and xi � 0 for i � 1. In Fig. 7
we show the suppression factor in �3 as a function of c.
We see that, in agreement with the analytical result, �3

does not depend on K as soon as c � 2.
We have also considered the case of reflection symme-

try by assuming the link couplings fi of the form

fi � f̂ cosh
	

c
�
1 �

K
2
� i

�

; (49)

with f̂ �  f [f̂ �  f= cosh�c=2�] for K even (odd).With this
choice, the central link couplings are equal to  f. From
Fig. 6 the difference appears clearly between K even and
2 4 6 8 10 12

.2

.4

.6

.8

1

0

K = 11

i

x i

panel) and K � 11 (right panel). The dotted (continuous) lines
mmetry, given in Eq. (44) [with reflection symmetry, given in
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0.6

0.8

1

1 2 3 40
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ε3

FIG. 7. The behavior of  �3 � �3=�g=~g�2 vs c for different values of K, on the left (right) panel for the choice of link couplings fi
without reflection symmetry, given in Eq. (44) [with reflection symmetry, given in Eq. (49)]. The continuous lines correspond to
K � 1, the dashed lines to K � 2, the dotted lines to K � 3 and the dash-dotted lines to K � 4.
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K odd. In particular, for K odd there are two central xi
much bigger than the others. Therefore, in agreement with
the discussion in Appendix B, we expect no suppression
factor. In fact, for large c the limiting value of the two
central xi is 0.5 and

�3 !
1

4

�
g
~g

�
2
: (50)

The numerical results for �3 vs c are given in Fig. 7. We
see that the suppression factor is operating only for K
even.

We have also analyzed the case of a powerlike behavior
of the link couplings

fi �  fic; (51)

with the related reflection invariant case.
The results are similar to the exponential case. In order

to have a suppression factor of the order 2 � 10�2 we need
c � 3 for the nonsymmetric case. On the other hand,
when reflection invariance is required, we have a similar
suppression only for K even and c � 7:5. The last result
follows from the xi distribution, which is broader around
the central links. Also in this case there is no suppression
for K odd and �3 goes to the limiting value given in
Eq. (50).

It is interesting to observe that for any of the previous
choices of fi we have

lim
c!0

fi �  f: (52)

Therefore, from our general expression for �3 [see
Eq. (18)], as well as from Eq. (47) for c ! 0,

�3 �
1

6

�
g
~g

�
2 K�K � 2�

K � 1
; (53)

which coincides with the result of Refs. [16,28].
Another interesting aspect is the continuum limit. It

is known that the discretization of a gauge theory
Lagrangian in a 4 � 1 dimensional space-time along
the fifth dimension (the segment of length 	R) gives
055010
rise to a linear moose chiral Lagrangian after a suitable
identification of the gauge and link couplings [10–13].

For the case of equal couplings fi we take

K ! 1; a ! 0; Ka ! 	R; (54)

where a is the lattice size. We find

�3 !
1

6

�
g
~g

�
2
K: (55)

By introducing the gauge coupling in five dimensions by
the relation

g2
5 � a~g2; (56)

we get

�3 !
1

6

�
g
g5

�
2
	R; (57)

in agreement with Ref. [28].
The discretization of a five-dimensional gauge theory

has also been considered for the warped metric case
[29–31]. This corresponds to a linear moose with link
couplings given by Eq. (44) with

c �
	kR

K
: (58)

This exponential behavior of fi corresponds to the
Randall Sundrum metric [17]. Then c ! 0 for K ! 1
and a�i � 1� ! y where y 2 	0; 	R
 is the coordinate
along the fifth dimension. That is,

fi �  feka�i�1� ! f�y� �  feky: (59)

Therefore, in the warped case we find, from Eq. (47),

�3 �
1

4k
e4k	R � 4k	Re2k	R � 1

�1 � e2k	R�2

�
g
g5

�
2
: (60)

For large values of k	R we get

�3 !
1

4k

�
g
g5

�
2
: (61)

Assuming k � MPl=10, R � 102M�1
Pl and g2

5 � 	Rg2
4,
-8
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where g4 is the gauge coupling obtained after dimen-
sional reduction of the fifth dimension, it follows �3 �
0:008g2=g2

4. In the reflection invariant case, we obtain
�3 � 0:016g2=g2

4. Therefore, also in the continuum limit
we get a suppression factor, although not as large as in the
discrete case.
...
..

...
..

...
..

...
..

G1 G2

Σ1 Σ3Σ2
GL G

R
.....

ΣK-1 KΣ K+1Σ
GK-1 KG

(1,2)G (2,2)G (K-1,2)G (K,2)G

(1,1) (2,1) (K-1,1) (K,1)Ω Ω Ω Ω

FIG. 8. The planar moose.
VII. FURTHER EXTENSIONS: THE PLANAR
MOOSE

Possible generalizations of the linear moose are ob-
tained by extending the moose graph in the plane. A
realistic model for the electroweak symmetry breaking
must contain only three independent scalar fields (the
Goldstone bosons necessary to provide the masses to
the electroweak gauge bosons) and will have additional
massive vector gauge bosons. Then we can immediately
show that the only possible diagrams are the ones with
zero loops. In fact, a moose diagram is like a Feynman
diagram with lines corresponding to links and vertices
corresponding to gauge groups. Therefore, by introducing
the following notation:

E � number of external links;

I � number of internal links;

V‘ � number of gauge groups with ‘ links;

L � number of loops;

S � number of remaining Goldstone multiplets;

(62)

we have

L � I �
�X

‘

V‘ � 1
�

; (63)

S � I � E �
X

‘

V‘: (64)

By using Eqs. (63) and (64) we get

L � S � �E � 1�: (65)

In the models considered in this paper, we have asso-
ciated a global symmetry with the external links.
Therefore, we need at least two external links (E � 2)
in order to get the right weak phenomenology. This,
together with the requirement of one scalar multiplet
(S � 1), implies that the number of loops must be equal
to zero.

Avoiding loops, the way to generalize the linear moose
to a planar one is to attach a string to each of the groups
Gi as illustrated in Fig. 8.

For simplicity we take all the strings of equal length,
with N � 1 links, but as we shall see, the result can be
immediately extended to strings of different length. As
shown in Fig. 8, we introduce gauge groups G�i;j� with i �
1; � � � ; K and j � 1; � � � ; N, and associated fields A�i;j�

with corresponding gauge couplings g�i;j�. However, it is
055010
convenient to identify explicitly the gauge fields and
couplings on the original string

A�i;1� � Ai; g�i;1� � gi; i � 1; � � � ; K: (66)

In addition to the scalar fields �i, i � 1; � � � ; K � 1 link-
ing the gauge fields Ai, we also have new scalar fields
-�i;j�, i � 1; � � � ; K, j � 1 � � � ; N � 1 linking the gauge
fields along the vertical direction. We introduce the fol-
lowing notation

Bi � giAi � gi�1Ai�1; i � 0; � � � ; K; (67)

with the boundary condition

g0 � gK�1 � 0: (68)

Notice that the K � 1 fields Bi are not independent, since

XK
i�0

Bi � 0: (69)

We also define

V�i;j� � g�i;j�A�i;j�� g�i;j�1�A�i;j�1�; i � 1; � � � ; K;

j � 1; � � � ; N � 1: (70)

Then the vector boson mass term will be given by

L mass �
1

2

XK�1

i�1

f2
i B2

i�1 �
1

2

XK
i�1

XN�1

j�1

h2
�i;j�V

2
�i;j�; (71)

where h�i;j� are new K � �N � 1� link couplings. As
shown in Appendix A, the result for �3 is

�3 � g2
XK
i�1

yi�1 � yi�

~g2
i

; (72)

where

1

~g2
i
�

XN
j�1

1

g2
�i;j�

: (73)
-9
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We see that the only effect of attaching a string at any of
the initial groups Gi is simply to define a new gauge
coupling according to Eq. (73).

As in the linear moose, we can consider the continuum
limit. Let us introduce a lattice size b along the vertical
direction and take the limit

b ! 0; N ! 1; bN ! 	R0: (74)

By defining a six-dimensional gauge coupling as

ab

g2
6

�
1

~g2 ; (75)

we get

�3 �
1

6

�
g
g6

�
2
	2RR0; (76)

for the constant case fi � f, while for exponential fi [see
Eq. (44)]

�3 �
1

4

�
g
g6

�
2 	R0

k
: (77)

Notice that we do not get a suppression factor from the
vertical links, since the result for �3 does not depend on
these variables.
VIII. CONCLUSIONS

Models with replicas of gauge groups have been re-
cently considered because they appear in the deconstruc-
tion of five-dimensional gauge models, which have been
used to describe the electroweak breaking without the
Higgs [14,28,32–34]. The four-dimensional description is
based on the linear moose Lagrangians that were already
proposed in technicolor and composite Higgs models
[35]. In general, these models satisfy the constraints
arising from the parameters T and U (or �1 and �2) due
to the presence of a custodial SU(2) symmetry. However,
such models generally give a correction of order O�1�
(O�10�2�) to the parameter S (�3). In this paper we have
considered a linear moose based on replicas of SU(2)
gauge groups and with the electroweak gauge groups
SU�2�L and U�1�Y at the two ends of the moose string.
After having obtained a general expression for the pa-
rameter �3, we have shown that a unique solution exists
which guarantees �3 � 0. The corresponding model has
an additional custodial symmetry which protects this
result. It is obtained from the linear moose when a link
is cut and a nonlocal field connecting the two ends of the
moose is included. This solution is a generalization of the
simplest case, corresponding to the degenerate BESS
model. It contains additional vector resonances; however,
their contribution to the S parameter is zero at the leading
order in the electroweak couplings. At the same order, the
new resonances do not couple to the longitudinal W and
Z. As a consequence, the breaking of partial wave uni-
055010
tarity is expected to happen at the same scale as in the
Higgless S-M and it is not postponed to higher scales.

We have also shown that it is possible to control the size
of �3 by taking one of the link couplings that is much
smaller than the other ones.

A generalization to the planar case has also been in-
vestigated: we have shown that no loops are allowed in
the moose graph and that with a convenient redefinition of
the gauge couplings the result for S is the same as for the
linear moose case.
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APPENDIX A: EVALUATION OF �3

In this Appendix we will obtain explicit expressions for
�3, both for the linear moose and for its planar general-
ization considered in Section VII. We start evaluating the
inverse of the vector boson mass matrix M2. Actually, for
�3 we need only the elements �M�1

2 �1i and �M�1
2 �Ki, where

the index i runs over all the gauge fields. A technique to
determine M�1

2 is to add to the mass term a source,

L mass�source �
1

2
ATM2A � JA: (A1)

Evaluating from this Lagrangian the equations of motion
and solving for the A’s in terms of the sources J’s we find

A � M�1
2 J; (A2)

from which we can read the relevant matrix elements.

1. The linear moose

The mass term in Eq. (5) can be written as

L mass �
1

2

XK�1

i�1

f2
i B2

i�1: (A3)

The variables Bi are the analogue of canonical momenta
in the discrete case and are given by

Bi � giAi � gi�1Ai�1; i � 0; � � � ; K; (A4)

with the boundary condition g0 � gK�1 � 0. Notice that
the K � 1 fields Bi are not independent, since

XK
i�0

Bi � 0: (A5)

Therefore, we solve the equations of motion (A2),
which involve three nearest neighborhoods by solving
first in the Bi and then inverting the relation between
the Bi and the fields Ai. These equations involve only first
-10
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neighborhoods. This is the analogue of converting a sec-
ond order differential equation in a pair of first order
equations.

The equations of motion can be written in the follow-
ing form

�f2
i Bi�1 � f2

i�1Bi � Li; i � 1; � � � ; K; (A6)

where we have redefined the sources as

Li �
Ji

gi
: (A7)

We can solve for all the Bi, i � 1; � � � ; K in terms of B0

finding

Bi �
1

f2
i�1

�Xi

j�1

Lj � f2
1B0

�
; i � 1; � � � ; K: (A8)

It is convenient to introduce the following variables:

1

f2 �
XK�1

i�1

1

f2
i

; xi �
f2

f2
i

; i � 1; � � � ; K � 1;

(A9)

yi �
Xi

j�1

xj; zi �
XK�1

j�i�1

xj; (A10)

with the properties

yi � zi � 1; y1 � x1; zK � xK�1: (A11)

By summing the Eq. (A8) over i from one to K and
using Eq. (A5), we get a relation for B0 which can be
easily solved obtaining

B0 � �
x1

f2

XK
i�1

ziLi; (A12)

and

Bi �
xi�1

f2

�Xi

j�1

yjLj �
XK

j�i�1

zjLj

�
: (A13)

By using the discrete step function given in Eq. (25), we
can write

Bi �
xi�1

f2

XK
j�1

�-i;jyj � -j;i�1zj�Lj; i � 0; � � � ; K:

(A14)

Notice that this equation also holds for i � 0, due to the
properties of the discrete --function. Further, we need to
reexpress the fields Ai in terms of the Bi. We find

Ai �
1

gi

XK
j�1

-j;iBj: (A15)

Using Eq. (A14) we obtain
055010
�M�1
2 �1i �

x1zi

g1gif2 ; �M�1
2 �iK �

xK�1yi

gKgif2 : (A16)

Therefore, from the expression (17) we get

�3 � g2
XK
i�1

ziyi

g2
i

� g2
XK
i�1

�1 � yi�yi

g2
i

: (A17)
2. The planar moose

Starting from the mass term of the planar case,
Eq. (71), we get the following set of equations of motion
by differentiating with respect to A�i;j�

�f2
i Bi�1 � f2

i�1Bi � h2
�i;1�V�i;1� �

Ji

gi
� Li;

i � 1; � � � ; K;
(A18)

�h2
�i;j�1�V�i;j�1� � h2

�i;j�V�i;j� �
J�i;j�
g�i;j�

� L�i;j�;

i � 1; � � � ; K; j � 2; � � � ; N:
(A19)

It is also convenient to introduce

L�i;1� � Li: (A20)

The solution of Eq. (A19) is

V�i;j� � �
1

h2
�i;j�

XN
m�j�1

L�i;m�: (A21)

Inserting this result inside Eq. (A18) we obtain

�f2
i Bi�1 � f2

i�1Bi � ~Li; (A22)

with

~L i �
XN
j�1

L�i;j� �
XN
j�1

J�i;j�
g�i;j�

: (A23)

These equations are the same as for the linear moose with
the substitution Li ! ~Li. Therefore, we immediately get

�M�1
2 �1;�i;j� �

x1zi

f2g1g�i;j�
; �M�1

2 �K;�i;j� �
xK�1yi

f2gKg�i;j�
;

(A24)

where the variables xi, yi, zi and f2 are the same as for the
linear moose. Therefore, the result is

�3 � g2
XK
i�1

yi�1 � yi�

~g2
i

; (A25)

where

1

~g2
i
�

XN
j�1

1

g2
�i;j�

: (A26)
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APPENDIX B: SOLUTIONS TO �3 � 0

We want to prove the following statement: �3 � 0 if
and only if one or more fiare sent to zero in an indepen-
dent way.

We start noticing that, due to the condition
PK�1

i�1 xi �
1, all the yi, defined in Eq. (19) are such that 0 � yi � 1.
Since �3 is made from positive terms, each of them
proportional to 0 � yi�1 � yi� � 1=4, in order to get a
vanishing �3 we need yi�1 � yi� � 0 for all values of i.
This implies yi � 0 or yi � 1 for all i. However, since
xi � yi � yi�1, the same properties must hold true for the
quantities xi, that is xi � 0 and xi � 1 for all values of i.
Also, we have already shown that �3 � 0 if one of the fi is
chosen to vanish [see Eq. (26)]. Therefore, if we send to
zero several link couplings fi, we get �3 � 0 a fortiori.

Let us now show that if we send more than one fi to
zero in a correlated way, then �3 � 0. Assume that p of
the constants fi go to zero with the variable ; in a
simultaneous way
055010
f2
i � ci;; ci > 0; i 2 P : (B1)

Here i takes p values in the subset P of the set
�1; � � � ; K � 1�. Notice that the assumption of correlation
implies that the coefficients ci are strictly positive. In the
limit ; ! 0 we immediately get

1

f2 �
1

;

X
i2P

1

ci
: (B2)

It follows

xi �

8><
>:

1
ci

1P
j2P

1
cj

i 2 P ;

0 i =2 P :
(B3)

Unless the set P contains a single element, we have

xi < 1; i 2 P : (B4)

As a consequence, some of the yi are neither zero nor one
and �3 is not vanishing.
[1] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964
(1990).

[2] M. E. Peskin and T. Takeuchi, Phys. Rev. D 46, 381
(1992).

[3] G. Altarelli and R. Barbieri, Phys. Lett. B 253, 161 (1991).
[4] G. Altarelli, R. Barbieri, and F. Caravaglios, Int. J. Mod.

Phys. A 13, 1031 (1998).
[5] T. Inami, C. S. Lim, and A. Yamada, Mod. Phys. Lett. A

7, 2789 (1992).
[6] R. Casalbuoni et al., Phys. Lett. B 349, 533 (1995).
[7] R. Casalbuoni et al., Phys. Rev. D 53, 5201 (1996).
[8] T. Appelquist, P. S. Rodrigues da Silva, and F. Sannino,

Phys. Rev. D 60, 116007 (1999).
[9] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio,

and R. Gatto, Int. J. Mod. Phys. A 4, 1065 (1989).
[10] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys.

Rev. Lett. 86, 4757 (2001).
[11] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys.

Lett. B 513, 232 (2001).
[12] C.T. Hill, S. Pokorski, and J. Wang, Phys. Rev. D 64,

105005 (2001).
[13] H.-C. Cheng, C.T. Hill, S. Pokorski, and J. Wang, Phys.

Rev. D 64, 065007 (2001).
[14] R. Barbieri, A. Pomarol, and R. Rattazzi, Phys. Lett. B

591, 141 (2004).
[15] R. S. Chivukula, M. Kurachi, and M. Tanabashi, J. High

Energy Phys. 06 (2004) 004.
[16] J. Hirn and J. Stern, Eur. Phys. J. C 34, 447 (2004).
[17] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690

(1999).
[18] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T.

Yanagida, Phys. Rev. Lett. 54, 1215 (1985).
[19] M. Bando, T. Fujiwara, and K. Yamawaki, Prog. Theor.
Phys. 79, 1140 (1988).

[20] M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164,
217 (1988).

[21] D.T. Son and M. A. Stephanov, Phys. Rev. D 69, 065020
(2004).

[22] R. Casalbuoni, S. De Curtis, D. Dominici, and R. Gatto,
Phys. Lett. B 155, 95 (1985).

[23] R. S. Chivukula, H.-J. He, J. Howard, and E. H. Simmons,
Phys. Rev. D 69, 015009 (2004).

[24] G. Cacciapaglia, C. Csaki, C. Grojean, and J. Terning,
hep-ph/0401160.

[25] H. Davoudiasl, J. L. Hewett, B. Lillie, and T. G. Rizzo, J.
High Energy Phys. 03 (2004) 015.

[26] R. Casalbuoni, S. De Curtis, D. Dominici, and M.
Grazzini, Phys. Rev. D 56, 5731 (1997).

[27] H. Georgi, Nucl. Phys. B 331, 311 (1990).
[28] R. Foadi, S. Gopalakrishna, and C. Schmidt, J. High

Energy Phys. 03 (2004) 042.
[29] H. Abe, T. Kobayashi, N. Maru, and K. Yoshioka, Phys.

Rev. D 67, 045019 (2003).
[30] L. Randall, Y. Shadmi, and N. Weiner, J. High Energy

Phys. 01 (2003)055.
[31] A. Falkowski and H. D. Kim, J. High Energy Phys. 08

(2002) 052.
[32] C. Csaki, C. Grojean, H. Murayama, L. Pilo, and J.

Terning, Phys. Rev. D 69, 055006 (2004).
[33] C. Csaki, C. Grojean, L. Pilo, and J. Terning, Phys. Rev.

Lett. 92, 101802 (2004).
[34] Y. Nomura, J. High Energy Phys. 11 (2003) 050.
[35] H. Georgi, Nucl. Phys. B 266, 274 (1986).
-12


