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We present an effective flavor model for the radiative generation of fermion masses and mixings
based on a SU�5�V � U�2�H symmetry. We assume that the original source of flavor breaking resides in
the supersymmetry-breaking sector. Flavor violation is transmitted radiatively to the fermion Yukawa
couplings at low energy through finite supersymmetric threshold corrections. This model can fit the
fermion mass ratios and Cabibbo-Kobayashi-Maskawa matrix elements, explain the nonobservation
of proton decay, and overcome the present constraints on flavor changing processes through an
approximate radiative alignment between the Yukawa and the soft trilinear sector. The model predicts
relations between dimensionless fermion mass ratios in the three fermion sectors, and the quark
mixing angles, jVusj � �md=ms�
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1=2, which are confirmed by the experimental measurements.
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I. INTRODUCTION

It is commonly assumed that the flavor mixing in the
supersymmetric limit of the minimal supersymmetric
standard model (MSSM) is the same as in the standard
model. Accordingly most of the supersymmetric (SUSY)
models of flavor proposed to date have tried to explain the
fermion mass hierarchies by breaking flavor symmetries
in the superpotential. This explanation, however, comes
easily into conflict with the present experimental con-
straints on flavor changing processes. To solve this prob-
lem, it has been proposed that there is flavor conservation
in the supersymmetry-breaking sector (universality)
or alternatively that the flavor violation in the
supersymmetry-breaking sector is aligned with the flavor
violation in the Yukawa sector to a high degree (align-
ment). Although some flavor models have been proposed
that predict universality or alignment, such conditions are
usually satisfied at a high energy scale and are spoiled
through renormalization group effects. Flavor, when it
originates in the superpotential, is transmitted to the soft
supersymmetry-breaking sector through the renormal-
ization group running from the unification scale down
to the electroweak scale, easily overcoming the present
constraints on flavor changing processes. There is also a
third possibility, the so-called decoupling scenario, that
assumes that the masses of the first and second generation
sfermions are heavy enough to suppress all flavor-
violating processes below the present limits.

The presence of flavor violation in the superpotential,
in the particular case of supersymmetric grand unified
models, causes another problem: the existence of
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dimension-five operators that accelerate proton decay,
thereby ruling out minimal SUSY SU(5) models.

There is an alternative possibility, which has not re-
ceived much attention until recently [1]. The lighter fer-
mion masses may be a higher order radiative effect as
suggested by the observed fermion mass hierarchies. This
is not a new idea; following the suggestion by Weinberg
[2,3] of a mechanism to generate radiatively the electron
mass from a tree-level muon mass several proposals were
published. The program, however, was considered more
difficult to implement in the context of supersymmetric
models since, as pointed out by Ibañez, if supersymmetry
is spontaneously broken only tiny fermion masses could
be generated radiatively [4]. On the other hand, the pres-
ence of soft supersymmetry-breaking terms allows for
the radiative generation of quark and charged lepton
masses through sfermion-gaugino loops. The gaugino
mass provides the violation of fermionic chirality re-
quired by a fermion mass, while the soft breaking terms
provide the violation of chiral flavor symmetry. This idea
was suggested in 1983 by Buchmuller and Wyler [5] and
was later rediscovered in Refs. [6–9]. Additional impli-
cations of this possibility were subsequently studied in
Refs. [10–13], but no complete flavor model implement-
ing a radiative generation of fermion masses has been
proposed to date.

In this paper we present a supersymmetric model,
based on a U(2) horizontal flavor symmetry, that gener-
ates fermion masses radiatively. In the context of the
MSSM, the possibility that the quark mixing and the
fermion masses for the first two generations can actually
be generated radiatively has been recently pointed out
by one of the authors [1]; in this paper we continue
that investigation. In the U(2)-flavor model presented
here flavor breaking originates in the supersymmetry-
03-1  2004 The American Physical Society
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breaking sector and is transmitted radiatively to the
fermion sector at low energy as mentioned above. It is
the main point of this paper to show that supersymmetry-
breaking models of flavor exist that not only can fit the
fermion mass ratios and the quark mixing angles, but also
offer an alternative solution to the SUSY flavor and proton
decay problems. The basic conditions that we expect from
a unified supersymmetric theory that generates fermion
masses radiatively are
(1) A
 symmetry or symmetries of the superpotential
guarantee flavor conservation and precludes tree-
level masses for the first and second generations of
fermions in the supersymmetric limit.
(2) T
he supersymmetry-breaking terms receive small
corrections, which violate the symmetry of the
superpotential and are responsible for the observed
flavor physics.
TABLE I. Particle content of a two-generation U�1�H flavor
toy model with radiative fermion mass generation. G and F are
supersymmetry-breaking superfields, La and Ra (a � 1; 2) are
matter superfields, H is the Higgs superfield, and ~g is the
gaugino superfield.

Fields G Z L1 R1 L2 R2 H ~g

U�1�H 0 �1 1 1 0 0 0 0
In this case the Yukawa matrices provided as a boundary
condition for the MSSM at some high energy scale are of
the form,

Y D;U;L �

24 0 0 0
0 0 0
0 0 yb;t;


35; (1)

where YD;U;L are the 3� 3 quark and lepton Yukawa
matrices. We will assume that supersymmetry and flavor
breaking are linked in such a way that after supersym-
metry breaking, nontrivial flavor mixing textures are
generated in the supersymmetry-breaking sector. It is
known that in an effective field theory format holomor-
phic trilinear soft supersymmetry-breaking terms can
originate, below the supersymmetry-breaking messenger
scale M, in operators that couple to the supersymmetry-
breaking chiral superfields, Z. These operators are ge-
nerically of the form,Z

d2�
�
Z

M

�
H��L�R 	 c:c:; (2)

where hZi � hZsi 	 hZai�2. In general the vacuum ex-
pectation value (vev) of the auxiliary component hZai
parametrizes the scale of supersymmetry breaking, M2

S.
Flavor violation may arise only in the soft terms, for
instance, if supersymmetry-breaking superfields, Z,
transform nontrivially under flavor symmetries while
the vev of the scalar component of Z vanishes, hZsi �
0, or is much smaller than the messenger scale. In this
case we expect the 3� 3 trilinear soft supersymmetry-
breaking matrices to look like

A D;U;L � AO���; (3)

where O��� represents generically some dimensionless
flavor-violating polynomial matrix that can be expanded
in powers �, and a flavor-breaking perturbation parame-
ter, with � < 1. Flavor violation is transmitted to the
fermion sector, i.e., to the Yukawa couplings, through
055003
sfermion-gaugino loops. We require the magnitude of �,
which must be determined a posteriori by the ratios
between measured fermion masses, to be consistent
with present constraints on supersymmetric contributions
to flavor changing processes. Finally, we note that only
finite corrections can generate off-diagonal entries in the
Yukawa matrices, since the structure of the Yukawa ma-
trices given by Eq. (1) is renormalization scale indepen-
dent; in other words the renormalization group running
from the unification scale down to the SUSY spectra
decoupling scale cannot generate off-diagonal Yukawa
couplings. The opposite, however, is not true, i.e., flavor
violation in the Yukawa matrices would transmit to the
soft supersymmetry-breaking sector through renormal-
ization group running. This constitutes a common prob-
lem of all the theories that locate the origin of flavor
breaking in the superpotential.
II. A U�1�H TOY MODEL

We will start with a two-generation toy model that
contains the necessary ingredients to radiatively generate
fermion masses and mixings. The model is based on a
U�1�H horizontal flavor symmetry. The particle content of
the model is summarized in Table I. It is possible to
choose the charge assignments in such a way that only
one generation is allowed to have a tree-level Yukawa
coupling in the superpotential; see Table I. In this case,
the tree-level 2� 2 Yukawa matrix is

Y �

�
0 0
0 y

	
; (4)

where all except the (2,2) entry are disallowed by the
U�1�H symmetry. We will assume that there is one
supersymmetry-breaking chiral superfield, Z, carrying
U�1�H flavor charge. The field Z is a spurion whose sole
role is to communicate flavor as well as supersymmetry
breaking to the matter fields. We will assume a zero vev
for the scalar component of Z but nonzero for its auxil-
iary component. This condition can be achieved through
an O’Raifeartaigh-type model superpotential for the Z
superfield [14]. Trilinear soft supersymmetry-breaking
terms are generated by operators generically of the form,Z

d2�
�
Z

MF

�
fHLaRb 	 c:c:; (5)
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where MF is the flavor-breaking scale, H is the Higgs
superfield, and f is a dimensionless flavor blind coupling
determined by the underlying theory (f is flavor blind
because our basic assumption is that the underlying ex-
actly supersymmetric model that generates these nonre-
normalizable operators is flavor conserving).We also need
a flavor-singlet supersymmetry-breaking superfield, G, to
generate a mass for the gaugino,m~g, from operators of the
form, Z

d2�
�
G

M

�
~g ~g	c:c:; (6)

where M is the messenger scale. We obtain m~g � hGi=M.
We notice that, if no symmetry inhibits it, G could gen-
erate an additional contribution to the trilinear soft
supersymmetry-breaking terms introduced by the opera-
tor GHL2R2. Assuming the charge assignments in
Table I, we obtain from Eq. (5) for the soft trilinear
matrix,

A � A
�
0 �
� 1

	
; (7)

where A � fhGi=M and � � hZi=�MFm~g�. We will as-
sume that � & O�1�. The parameter � determines the
magnitude of flavor violation. Additionally, soft mass
matrices are generated from operators generically of the
form,Z

d4�
�
ZZy

M2
F

	
GGy

M2 	
 

MMF
�GZy 	ZGy�

	
k2�y�;

(8)

where k2 is a dimensionless coefficient determined by the
underlying theory. For the case study in Table I, we obtain
the 2� 2 soft mass matrices,

~M 2
L � ~M2

R � ~m2
�
1  �
 � 1

	
; (9)

where ~m � k
















1	 �2

p
hGi=M. We note that if we did not

allow for mixing between flavor-violating and flavor con-
serving supersymmetry-breaking fields, i.e.,  � 0, there
would be no flavor mixing in the soft mass matrices. In
the presence of flavor violation in the soft sector, the left-
and right-handed components of the sfermions mix. For
instance, in the gauge basis the 4� 4 sfermion mass
matrix is given by

M 2 �

� ~M2
L 	 v2YyY Ayv

Av ~M2
R 	 v2YYy

	
; (10)

where v � hH i, ~M2
L, and ~M2

R are the 2� 2 right-
handed and left-handed soft mass matrices given above
(including D terms), A is the 2� 2 soft trilinear matrix,
and Y is the 2� 2 tree-level Yukawa matrix. M2 is
diagonalized by a 4� 4 unitary matrix, D. In general,
the dominant finite 1-loop contribution to the 2� 2
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Yukawa matrix is given by the gaugino-sfermion loop,

�Y�radab �
�
#
m~g

X
c

DacD
�
�b	2�cB0�m~g; m~fc

�; (11)

where ~fc (c � 1; . . . ; 4) are sfermion mass eigenstates,m~g

is the gaugino mass, and � is the gauge coupling of the
theory. B0 is a known function defined in the Appendix.
We observe that the contributions from left- and right-
handed sfermion mixings involving the soft masses are
much smaller. For simplicity we will assume from now on
that there are no CP-violating phases in the soft parame-
ters. Moreover, as a consequence of the approximate
sfermion mass degeneracy predicted by the model when
�� 1, the dominant contribution to the radiatively gen-
erated Yukawa couplings can be simply expressed as

Y rad �
2�
#
m~gAF� ~mf; ~mf;m~g�; (12)

where the function F is given in the Appendix. We then
obtain a simple expression for the radiatively corrected
mass matrix,

m � v�Y 	 Yrad� � m
�
0 (�
(� 1

	
; (13)

where m and ( are given by

m � yv�1	 )�; ( �
)

1	 )
; (14)

and

) �
2�
#y

m~gAF� ~m; ~m;m~g�: (15)

The loop factor ( encodes the dependence on the SUSY
spectra and parametrizes the breaking of the alignment
between the soft trilinear and the Yukawa sectors caused
by the presence of the tree-level mass m. Although not
diagonal in the gauge basis, the matrix m can be brought
to diagonal form in the mass basis by a unitary diagonal-
ization, V ymV � �m1; m2�. Therefore the 1-loop mass
matrix of our toy model makes the following prediction
for the mass ratio between the radiatively generated mass,
m1, and the tree-level one:

m1
m2

� (2�2: (16)

The flavor mixing is given by a Cabibbo-Kobayashi-
Maskawa (CKM)-like mixing matrix,

V �

�
1� 1

2(
2�2 (�

�(� 1� 1
2(

2�2

	
: (17)

We note that the mass ratio and the flavor mixing are
determined by two basic parameters of the model, the
flavor-breaking parameter � and the loop suppression
factor (. Moreover, the mass ratio is directly correlated
with the flavor mixing angle, V 12,
-3
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m1
m2

� (2�2 � V 2
12: (18)

If we could determine experimentally the mixing angle
we could predict m1 or vice versa. This toy model illus-
trates the mechanism that will be used in a realistic model
in the next section.
III. U�2�H FLAVOR SYMMETRY

In this section we will consider a realistic three gen-
eration model based in a horizontal U�2�H symmetry
[15]. We will assume the usual MSSM particle content
where third generation matter superfields,

Q 3;D3;U3;L3; E3; (19)

and up and down electroweak Higgs superfields, H u and
H d, are singlets under U�2�H. We will denote them
abbreviately by �L;R. Let us assume that first and second
generation left- and right-handed superfields transform as
contravariant vectors under U�2�H,

�Q �

�
Q1

Q2

�
; �U �

�
U1

U2

�
; �D �

�
D1

D2

�
;

(20)

�L �

�
L1

L2

�
; �E �

�
E1
E2

�
: (21)

We will denote them abbreviately by �L;R
a . We will in-

troduce a set of supersymmetry-breaking chiral super-
fields,

S ab;Aab;F a �a; b � 1; 2�; (22)

that transform covariantly as a symmetric tensor, anti-
symmetric tensor, and vector under U�2�H [with a U(1)
charge opposite to that of the matter doublets]. We will
assume that at the minimum only the auxiliary compo-
nents of the flavor-breaking superfields are nonzero, The
most general form for the vevs of the flavor-breaking
fields is

hSi �

�
vS 0
0 VS

�
�2; (23)

hAi �

�
0 VA

�VA 0

�
�2; (24)

hF i �

�
vF

VF

�
�2: (25)

We will assume the following particular hierarchy in the
flavor-breaking vevs: vS � VS and for practical pur-
poses vS � 0. We also assume that VS � VF and

�vF ;VA;VF � � ��2; �2; ��MF ~m: (26)

Here � is the flavor-breaking perturbation parameter, MF
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is the flavor-breaking scale, and ~m is a new mass scale
linked to the flavor-breaking fields that will be important
to determine the size of the flavor-breaking effects.We do
not have yet a predictive model for the U(2) breaking.
This is a relevant point which is under current investiga-
tion. In the case a global U(2) symmetry is broken spon-
taneously we expect the U(2)-gauge fields to get masses
of the order of the flavor-breaking scale which can be very
heavy in this scenario. Therefore any other phenomeno-
logical effects in the low energy model beyond the flavor
structure it gives rise to would be very suppressed. These
ad hoc assumptions will prove a posteriori to be very
successful in reproducing fermion masses. The only cou-
plings allowed in the superpotential by the U�2�H hori-
zontal symmetry and the SU�3�C � SU�2�L � U�1�Y
vertical symmetry are the third generation ones and the
so-called 
 term,

�tQ3U3H u 	 �bQ3D3H d 	 �
L3E3H d

	
H uH d: (27)

We note that, in principle, two other couplings could be
allowed in the superpotential: L3H u and Q3L3D3.
There are different ways to remove these unwanted cou-
plings. They could be forbidden imposing total fermion
number conservation. Alternatively one could impose
R-parity conservation defined as R � ���3B	L	2S, where
B is the baryonic number, L the leptonic number, and S
the spin. A third possibility would be to extend the U�2�H
symmetry to the maximal U�3�H horizontal symmetry.
The breaking of the U�3�H symmetry in the direction of
the third generations would leave us with our U�2�H
symmetry; in such a case this bilinear interaction would
not be a U�3�H singlet. Therefore, at tree level Yukawa
matrices are generically of the form,

Y �

24 0 0 0
0 0 0
0 0 y

35: (28)

First we need to introduce a flavor-singlet chiral super-
field, G, to give masses to gauginos from operators of the
form, Z

d2�
�
G

M

�
~g ~g	c:c:; (29)

where M is the messenger scale. The gaugino mass gen-
erated is given by m~g � hGi=M. Additionally, trilinear
soft supersymmetry-breaking terms are generated by
operators generically of the form,X

Z�S;A

1

MF

Z
d2�Zab�L

a�
R
bH � 	 c:c:; (30)

1

MF

Z
d2���RF a�L

a 	�LF a�R
a �H � 	 c:c:; (31)
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where MF is the flavor-breaking scale, a � 1; 2 and
H �; � � u; d represents any of the Higgs superfields,
�L;R stands generically for any of the right- or left-
handed flavor-singlet matter superfields, and �L;R stands
generically for any of the right- or left-handed flavor-
vector matter superfields. The flavor-singlet superfield
responsible for generating gaugino masses, G, will couple
to matter fields. Additionally, to add more generality to
our analysis, we will assume that there could be another
flavor singlet, J , which couples to the matter superfields
but does not couple to the gaugino superfields. In the most
055003
general case there could be two additional operators gen-
erating soft trilinears,

1

M

Z
d2��+G 	 ,J ��L�RH � 	 c:c:; (32)

where + and , are dimensionless couplings determined
by the underlying theory. We define the soft breaking
mass generated for the J field as m~J � hJ i=M. Soft
supersymmetry-breaking mass matrices are generated
by operators generically of the form,
1

M2
F

Z
d4��Zy

acZcb��y�a�b 	F y
aF b��y�a�b� 	

1

M2

Z
d4��+02GyG 	 ,02JyJ ����y�a�a 	�y�� 	

1

MMF

�
Z
d4� ��+0Gy 	 ,0Jy�F b�y�b 	 H:c:�; (33)
where Z � S;A. When including the last term in the
previous equation we assume that the underlying theory
allows the flavor-breaking fields to couple with the flavor
singlets G and J , if this were not possible  � 0.
Regarding the possible appearance of D terms in the
scalar potential, they appear when a local symmetry is
spontaneously broken by scalar fields. In our case the
flavor-breaking fields are F terms and these cannot gen-
erate flavor-breaking D terms of the usual kind. After the
U�2�H flavor breaking the following soft trilinear matri-
ces are generated:

A � A

24 0 .�2 .�2

�.�2 .� .�
.�2 .� 1

35; (34)

where

A � �+m~g 	 ,m~J� (35)

and the dimensionless parameter . is defined by

. �
~m
A
; (36)

where ~m was defined in Eq. (26). After U�2�H flavor
breaking the following soft mass matrices are also gen-
erated:

~M 2
L;R � ~m2f

24 1	 2�4.02 �3.02  �2.0

�3.02 1	 2�2.02  �.0

 �2.0  �.0 1

35;
(37)

where

~m 2
f � �+02m2~g 	 ,02m2~J� (38)

and the dimensionless parameter .0 is defined by

.0 �
~m
~mf
: (39)
We note that in this scenario the amount of flavor viola-
tion as well as the nondegeneracy predicted in the soft
mass matrices is determined by the ratio A= ~mf. We note
that the presence of mixing between flavor-breaking and
flavor-singlet SUSY breaking fields generates flavor-
violating soft mass matrices in the entries (13) and (23).
We will see later that �2 � 0:05 is approximately the
Cabbibo angle squared. The sfermion nondegeneracy be-
tween first and second generations appears to order .02�2.

There are three interesting limits. In the first limit we
assume that there is no extra flavor singlet, J , i.e., , �
,0 � 0, and to simplify we assume + � +0 � 1. We then
obtain

A � ~mf � m~g; (40)

. �






.0

p
� ~m=m~g: (41)

~m was defined in Eq. (26). In this case all the super-
symmetric spectra are correlated with the gaugino
mass. In the second limit the flavor-singlet superfield G
does not couple to the matter fields, i.e., + � +0 � 0, and
to simplify we assume , � ,0 � 1. We then obtain

~mg � m~J; (42)

A � ~mf � m~J; (43)

. �






.0

p
� ~m=m~J; (44)

where m~J � hJ i=M is in general different from the gau-
gino mass. The third interesting limit we will consider is
especially relevant from a phenomenological point of
view. If we assume that

A < ~m� m~f; (45)

then .0 � 1 and .> 1. This case would suppress the
contributions from soft masses to flavor-violating pro-
-5
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cesses while increasing the soft trilinear contributions to
the radiatively generated Yukawa couplings.

A. The down-type quark sector

In general, 1-loop gluino-squark exchange generates a
dominant finite contribution to the 3� 3 quark Yukawa
mass matrices given by

�Y�radab �
�s
3#

m~g

X
c

DacD
�
�b	3�cB0�m~g; m~dc

�; (46)

where ~dc (c � 1; . . . ; 6) are squark mass eigenstates, �s is
the strong coupling constant, D is a 6� 6 down/up-type
squark diagonalization matrix, and m~g is the gluino mass.
The function B0 is defined in the Appendix. For example,
the radiatively generated 3� 3 down-type quark mass
matrix is generically of the form,

m D � hH di�Y 	 Yrad�

� m̂b

24 0 (b�
2 (b�

2

�(b�2 (b� (b�

(b�2 (b� 1

35; (47)

where m̂b is to first order the running bottom mass,

m̂ b � ybvc0�1	 )d�1� yb
t0=A��; (48)

)d �
2�s
3#yb

m~gAF� ~mf; ~mf;m~g�: (49)

Here t0 � tan0 � vu=vd is the ratio between the vevs of
the two MSSM Higgs (vu � hH ui, vd � hH di), 
 is the
so-called 
 term, introduced in Eq. (27), and v �
sWmW=














2#�e

p
� 174:5 GeV ( sW is the weak mixing

angle, mW is the SM W-boson mass, and �e is the elec-
tromagnetic coupling constant). (b is a loop factor that
has a simple expression in the mass degenerate sfermion
case. For example, in the down-type quark sector is given
by

(b �
)d.

�1	 )d�1� yb
t0=A��
: (50)

Here . is the coefficient introduced in Eq. (34); if there is
no extra flavor singlet, J , and + � 1, . would be defined
as ~m=m~g. (b encodes the dependence on the SUSYspectra
and parametrizes the breaking of the alignment between
soft trilinear and Yukawa sectors caused by the tree-level
component to the bottom mass. We observe that there is a
special limit of the previous formulas, yb ! 0, where the
bottom quark mass could also be generated radiatively.We
will not consider that case; we assume that all third
generation fermions get a tree-level mass.

The phenomenological implications of a mass matrix
of the form given in Eq. (47) have been studied by one of
the authors in Ref. [1]; here we reproduce some of the
results. Although not diagonal in the gauge basis the
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matrix mD can be brought to diagonal form in the mass
basis by a biunitary diagonalization, �V d

L�
ymDV

d
R �

�md;ms;mb�. The down-type quark mass matrix given
by Eq. (47) makes the following predictions for the quark
mass ratios:

md

ms
� �2�1	 (b�� 2�2� 	O��6�; (51)

ms

mb
� (b��1� (b�	 �2� 	O��4�: (52)

We can express � and (b as a function of the renormal-
ization scheme and approximately scale independent di-
mensionless quark mass ratios, to first order,

� �

�
md

ms

�
1=2
; (b �

�
m3s
m2bmd

�
1=2
: (53)

Using the invariant running quark mass ratios deter-
mined from experiment (see Appendix), we can deter-
mine � and (b,

� � 0:209� 0:019; (54)

(b � 0:109� 0:030: (55)

The down-type quark diagonalization matrix can be cal-
culated as a function of � and (b; at leading order in � we
obtain

jV d
Lj �

24 1� 1
2�

2 � (b�2

� 1� 1
2�

2�1	 (2b� (b�
(b�4 (b� 1� 1

2(
2
b�

2

35:
(56)

Using the experimentally determined values for (b and �
in Eqs. (54) and (55), we obtain the following central
theoretical prediction for the jV d

Ljtheo elements:264 0:976� 0:008 0:216� 0:035 0:0039� 0:0006
0:216� 0:035 0:974� 0:007 0:019� 0:007
0:000 15 0:019� 0:007 0:9993� 0:0001

375:
(57)

If we compare jV d
Ljtheo with the 90% C.L. experimental

compilation of CKM matrix elements (see Appendix), we
observe that jV d

Ljtheo accounts quite well for the mea-
sured SM flavor violation. There is good agreement with
the experimental data on CKM matrix elements except in
the entry jVcbj, where we observe a deficit in the theo-
retical prediction, which turns out to be approximately
one-half of the measured value, i.e., (b� � jVcbj=2. We
will see later that to solve this deficit we are forced to
generate half of the contribution to jVcbj from flavor
violation in the up-type quark sector. There is a simpler
alternative solution. We can assume that the flavor mixing
in the up-type quark sector does not affect the CKM
mixing matrix to leading order in � while the vev of
-6
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the F field is instead given by

�vF ;VF � � ��2; 2��MF ~m: (58)

In this case we obtain A12 � A21 � 2.�, �mD�12 �
�mD�21 � 2(b�, and jV d

Lj � 2(b�. We note that the
prediction for the entry j�VdL�31j is very small even tough
compatible with the measured value of jVtdj, which car-
ries a large uncertainty. Before studying the up-type
quark sector we will analyze in the next subsection the
predictions of the model for the lepton sector.

B. The lepton sector and the need for SU(5)

The mass matrix in Eq. (47) is very successful in
reproducing the down-type quark mass ratios, but it
cannot explain correctly the measured mass ratios in
the lepton and up-type quark sectors. To account for the
mass ratios in the lepton sector we will need to promote
the standard model SU�3�c � U�2�L � U�1�Y vertical
symmetry to the SU(5) symmetry of Georgi and
Glashow and assign the U(2) flavor-breaking fields to
particular representations under SU(5) as we will explain
in detail below.

First, we are going to postulate for the lepton soft
trilinear matrix AL a simple modification of the texture
predicted by the minimal model in Eq. (34). Let us
assume that

A L � A


24 0 .l�2 .l�2

�.l�
2 3.l� .l�

.l�
2 .l� 1

35: (59)

Here � was introduced in Eq. (26), and A
 and .l are
coefficients analogous to the ones introduced in Eq. (34).
If there is no extra flavor singlet J , A is given by A
 �
+m~(, where m~( is the photino mass. We will show next
that this texture can perfectly fit the lepton mass ratios.
Later we will explain how one can obtain this texture in a
SUSY SU(5) framework. The radiatively generated lepton
Yukawa couplings are given in this case by

�YL�
rad
ab �

�
2#

m~(

X
c

DacD
�
�b	3�cB0�m~(;m~lc�; (60)

where D is the slepton 6� 6 diagonalization matrix, m~lc
are slepton mass eigenvalues, and � is the running fine
structure constant. We now obtain a simple expression for
the radiatively corrected lepton mass matrix,

m L � m̂


24 0 (
�
2 (
�

2

�(
�
2 3(
� (
�

(
�
2 (
� 1

35; (61)

where m̂
 is to first order the running bottom mass,

m̂ 
 � y
vc0�1	 )l�1� y

t0=A��; (62)
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)l �
2�
#y


m~(AF� ~mf; ~mf;m~(�; (63)

and (
 is a loop factor that has a simple expression in the
mass degenerate sfermion case,

(
 �
.)l

�1	 )l�1� y

t0=A��
� .)l: (64)

As in the down-type quark sector, (t encodes the depen-
dence on the SUSYspectra and parametrizes the breaking
of the alignment between soft trilinear and Yukawa sec-
tors caused by the tree-level component to the tau lepton
mass. Although not diagonal in the gauge basis, the
matrix mL can be brought to diagonal form in the mass
basis by a biunitary diagonalization, �V l

L�
ymLV

l
R �

�me;m
;m
�. The lepton mass matrix given by Eq. (61)
makes the following predictions for the lepton mass
ratios:

me

m

�
1

9
�2
�
1�

2

9
�2 	

5

3
(
�

�
	O��4�; (65)

m


m

� 3(
�

�
1	

1

9
�2 �

1

3
(
�

�
	O��3�: (66)

We can relate � and (
 with dimensionless and approxi-
mately renormalization scale independent fermion mass
ratios; to first order

� � 3
�
me

m


�
1=2
; (
 �

1

9

� m3

m2
me

�
1=2
: (67)

Using the invariant running lepton mass ratios deter-
mined from experiment we obtain

� � 0:206 480� 0:000 002; (68)

(
 � 0:094 95� 0:0001: (69)

Interestingly, these values of � and (
 are consistent with
the values of � and (b determined in the down-type quark
sector. This surprising coincidence unveils two relations,�

md

ms

�
1=2

� 3
�
me

m


�
1=2
; (70)

�
m3s
m2bmd

�
1=2

�
1

9

� m3

m2
me

�
1=2
: (71)

These mass relations may be considered experimental
evidence supporting the consistency of this scenario.

To explain the origin of the factor ‘‘3’’ in the entry (22)
of the lepton mass matrix, let us assume that matter
superfields of different families group as usual in the
representations 5a and 10a of SU(5) (a � 1; 2; 3), while
the Higgs superfields, H u and H d, belong to the repre-
sentations 5 and 5, respectively. If the flavor symmetric
tensor superfield S transforms as the representation 75 of
-7
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SU(5), then the operator,

1

M
Sab�75�H d10a5b � 0 (72)

will generate the entries (11) and (22) in the lepton and
down-type quark mass matrices. Since the SU(5) tensor
product SH d includes the representation 45 of SU(5),
it will generate the additional factor ‘‘3’’ of Georgi and
Jarlskog [15,16] in the lepton mass matrix. Furthermore,
the flavor antisymmetric tensor A must transform as a
SU(5) singlet; then the operator

1

M
Aab�1�H d10a5b � 0 (73)

will generate correctly the entries (12) and (21) in the
down-type quark and lepton mass matrices. Finally, the
U�2�H flavor-vector superfield F could transform as a
singlet or under the representation 24 of SU(5); then the
operator

F �1; 24� !
1

M
F aH d10a53 � 0 (74)

would generate the entries (a3) (a � 1; 2), and analo-
gously the entries (3a) from the operator F aH d1035a.

C. The charm-quark mass problem

Assigning the U�2�H-flavor fields S, A, and F to the
representations 75, 1, and 1 of SU(5), respectively, im-
plies that two of the associated operators in the up-type
quark sector are exactly zero,

1

M
Sab�75�H u10a10b � 0; (75)

1

M
Aab�1�H u10a10b � 0; (76)

where a; b � 1; 2. If this were the case the up-type quark
soft trilinear matrix would be of the form,

A U � A

24 0 0 .�2

0 0 .�
.�2 .� 1

35; (77)

implying that the up-quark mass is massless and the
charm mass is, to first order, mc � (2t �2mt. This is in-
consistent with the values for (b and (
 required by
phenomenology in the down-type quark and lepton sec-
tors, respectively.

We propose two possible solutions to fix the charm-
quark mass problem. One is to extend the U�2�H flavor-
breaking sector. Let us assume that there are two sets of
U�2�H flavor-breaking fields, one set transforming as a
SU(5) singlet and the other transforming as a 75 under
SU(5),

�S�75�;A�75�;F �75��; (78)
055003
�S�1�;A�1�;F �1��: (79)

Let us assume that S�75�, A�1�, and F �1� get vacuum
expectation values as described in Eqs. (23)–(25) cor-
rectly generating the down-type quark and lepton matri-
ces and also the entries (3a) and (a3) in the up-type quark
mass matrix. Additionally we assume that S�1� gets a vev

hS�1�i �
�
0 0
0 VA

�
�2; (80)

where VA � �2MF ~m. This vev will generate an entry
(22) in the up-type quark mass matrix of the correct size
to explain the charm-quark mass, through the operator

1

M
Sab�1�H u10a10b � 0: (81)

A second possibility is to use nonrenormalizable opera-
tors with higher order powers of 1=MF [15]. In this case
we need to introduce at least one newU�2�H-flavor-singlet
scalar field, �. If � transforms as a representation 24
under SU(5), we could generate the entries (22), (12), and
(21) in the up-quark mass matrix from the operators

1

M2
��24�Sab�75�H u10a10b � 0; (82)

1

M2
��24�Aab�1�H u10a10b � 0: (83)

If h�i � �MF, we would generate an entry (22) of order
(t�

2 and entries (12) and (21) of order (t�3 in the up-type
quark mass matrix. Unfortunately, a (12)-(21) entry of
order (t�3 would require a (t inconsistent with the value
of (b calculated in the down-type sector and with (t
being a loop factor. One way to save the higher order
mechanism would be to keep the up-quark massless,
removing the ��24�A�1�H u10 10 term by imposing an
additional discrete symmetry. For instance, a Z2 symme-
try under which A and the lepton and down-type quark
right-handed fields have parity ��� and the rest of the
superfields have parity �	� would do the job.

In these two cases, an up-type quark soft trilinear
matrix would be generated of the form,

A U � A

24 0 0 .�2

0 .�2 .�
.�2 .� 1

35: (84)

This matrix would account correctly for the charm/top
quark mass ratio, consistently with the values of (b and
(
 calculated in previous subsections. Unfortunately it
would predict an up-quark mass, mu � (2�4, 1 order of
magnitude heavier than the measured value. Therefore we
are forced to prevent the flavor-breaking field F �1� from
mixing with the up-type Yukawa operators. This could be
enforced by imposing an additional discrete or U(1) sym-
metry. As a consequence we will obtain
-8
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A U � A

24 0 0 0
0 .�2 0
0 0 1

35: (85)

Additionally we could assume that the flavor field F �75�
gets a vev of the form,

hF �75�i �
�

0
�VF

�
�2; (86)

where VF � �MF ~m. This would generate entries (23)
and (32) in AU of the form,

A U � A

24 0 0 0
0 .�2 �.�
0 �.� 1

35: (87)

These two solutions are both phenomenologically viable
as we will see in more detail below.

D. The up-quark mass problem

The extension of the U�2�H flavor-breaking sector al-
lows us to correctly generate the charm-quark mass. On
the other hand, the up quark still remains massless.
Although the possibility of a massless up quark has
been considered in the past as a solution to the strong
CP problem, more recent studies of pseudoscalar masses
and decay constants, along with other arguments,
strongly suggest that the up-quark mass is nonzero
[17,18]. We can easily generate the up-quark mass in the
scenario with two sets of flavor-breaking superfields
through a small perturbation of the vev of the S�1� field.
Let us assume that

hS�1�i �
�
u 0
0 VA

�
�2; (88)

where �u;VA� � ��6; �2�M ~m. Alternatively, we could
generate an up-quark mass in the scenario with higher
order operators in 1=M if we perturb the vev of the S�75�
field in the form,

hS�75�i �
�
w 0
0 VF

�
�2; (89)

where �w;VF � � ��5; ��M ~m. We observe that this per-
turbation of the S�1� or S�75� vevs does not affect the
predictions in the down-type quark and lepton sectors.

In these two cases an up-type quark soft trilinear
matrix would be generated of the form,

A U � A

24.�6 0 0
0 .�2 0
0 0 1

35; (90)

or alternatively if we assume that the field F �75� gets a
vev as in Eq. (86),
055003
A U � A

24.�6 0 0
0 .�2 �.�
0 �.� 1

35: (91)

These textures can both correctly account for the up and
charm to top quark mass ratios as we will see in the next
subsection.

E. Up-type quark masses and CKM predictions

In the first case considered in Eq. (90) we obtain a
simple expression for the radiatively corrected up-type
quark mass matrix,

m U � m̂t

"(t�6 0 0
0 (t�2 0
0 0 1

35; (92)

where m̂t is the running top quark mass defined by,

m̂ t � ytvs0�1	 )u�1� yt
=�At0���; (93)

)u �
2�s
3#yt

m~gAF� ~mf; ~mf;m~g�; (94)

and (t is the loop factor given by

(t �
)u.

�1	 )u�1� yt
=�t0A���
� )u. (95)

analogous to the ones defined in the down-type quark and
lepton sectors. In the second case considered in Eq. (91)
the radiatively corrected up-type quark mass matrix is
given by

m U � m̂t

24(t�6 0 0
0 (t�2 �(t�
0 �(t� 1

35: (96)

The phenomenological implications of a mass matrix of a
form similar to Eq. (96) have been studied by one of the
authors in Ref. [1]. Although not diagonal in the gauge
basis, the matrix mU can be brought to diagonal form
in the mass basis by a unitary diagonalization,
�V u

L�
ymUV

u
R � �mu;mc;mt�. It makes the following

predictions for the up-type quark mass ratios:

mu

mc
� �4�1	 (t�1	 (t�� 	O�(2�6�; (97)

mc

mt
� (t�

2�1� (t��1� 2(2t �
2� 	O��6�: (98)

In both cases we can express � and (t as a function of up-
type quark mass ratios, to first order, as

� �

�
mu

mc

�
1=4
; (t �

�
m3c
m2t mu

�
1=2
: (99)

Using the invariant running quark mass ratios deter-
mined from experiment (see Appendix) and Eqs. (97)
-9
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and (98) we can determine � and (t numerically to be

� � 0:225� 0:015; (100)

(t � 0:071� 0:019: (101)

These values for � and (t coincide with the values for �,
(b, and (
 determined from measured fermion masses in
the down-type quark and lepton sectors. This surprising
coincidence unveils two more relations between dimen-
sionless fermion mass ratios,�

md

ms

�
1=2

�

�
mu

mc

�
1=4

� 3
�
me

m


�
1=2
; (102)

�
m3s
m2bmd

�
1=2

�

�
m3c
m2t mu

�
1=2

�
1

9

� m3

m2
me

�
1=2
: (103)

The up-type quark diagonalization matrix can be calcu-
lated as a function of � and (t. The up-quark diagonal-
ization matrix can be used in combination with the down-
quark diagonalization matrix to obtain an expression for
the CKM mixing matrix, V CKM � �V u

L�
yV d

L. We are
considering two cases: in the first one AD is given by
Eq. (34) and AU is given by Eq. (91), in the second case
�AD�12 gets an additional factor 2 from the F �1� vev in
Eq. (58) while AU is given by Eq. (90). In both cases using
that ( � (b � (t we obtain the same prediction for
jV CKMj

theo to leading order in �,24 1� 1
2�

2 � (�2

� 1� 1
2�

2�1	 2(2� 2(�
(�2 2(� 1� 2(2�2

35: (104)

Using the experimentally determined values for �, (b,
and (t in Eqs. (54), (55), and (101) we obtain the follow-
ing numerical theoretical prediction for the jV CKMjtheo
elements:24 0:976� 0:008 0:216� 0:035 0:0039� 0:0006
0:216� 0:035 0:974� 0:007 0:035� 0:006
0:0039� 0:0006 0:035� 0:006 0:9993� 0:0001

35:
(105)

If we now compare jV CKMjtheo with the 90% C.L. experi-
mental compilation of CKM matrix elements from the
Particle Data Group (PDG) compilation (see Appendix),
we observe that jV CKMjtheo accounts perfectly for the
measured flavor violation in the standard model. There
is now in very good agreement with the experimental data
on the entry jVcbj. We also obtain the same prediction for
jVtdj, jVtdj � jVubj. The flavor violation in the upper left
sector of the up-type quark mass matrix is not con-
strained by the CKM matrix, since the flavor violation
in the up-type quark sector does not affect the entries (12)
and (13) to leading order in �.
055003
F. Higher order Yukawa couplings

Yukawa couplings which are not generated at one loop
could be generated at higher orders. For instance, the
Yukawa coupling �YU�13 could be generated at two loops
through a diagram with gluino and Higgs exchange and
three soft trilinear vertices: �AD�12, �AD�22, and �AU�23
[19]. We are interested in an overestimation of this 2-loop
Yukawa coupling. Assuming that all the sparticles in the
loop have masses of the same order, to maximize the loop
factor, we obtain

�YU�
2-loop
13 ’

�
2�s
3#

��
1

4#

�
2
�
v
meq

�
2
c20�

4; (106)

where v � 175 GeV. The ratio v=m~q, the c0 factors
(c0 � cos0), and the � factors come from the three soft
trilinear vertices. To facilitate the comparison with the 1-
loop generated Yukawa couplings we will express this in
powers of �. Using that � ’ 0:2 and ( ’ 0:1, we obtain

�YU�
2-loop
13 ’

(�10

tan20

�
1 TeV

m~q

�
2
: (107)

We note that this 2-loop generated Yukawa coupling is
very suppressed when compared with the 1-loop gener-
ated couplings and for all practical purposes it can be
considered zero.
IV. SUPPRESSION OF FLAVOR CHANGING
PROCESSES BY RADIATIVE ALIGNMENT

It has been pointed out recently [1] that the radiative
generation of fermion masses through flavor violation in
the soft breaking terms may allow us to overcome the
present experimental constraints on some of the super-
symmetric contributions to flavor changing processes
more easily than other flavor models. This is a necessary
requirement for the consistency of any supersymmetric
model [20]. Correlations between radiative mass genera-
tion and dipole operator phenomenology were first
pointed out in Ref. [21]. In this scenario, as a consequence
of the approximate radiative alignment between Yukawa
and soft trilinear matrices there is an extra suppression of
the supersymmetric contributions to flavor changing pro-
cesses coming from the soft trilinear sector. For calcula-
tional purposes it is convenient to rotate the squarks to the
so-called SKM (SuperKamiokande) basis, the basis
where gaugino vertices are flavor diagonal [22]. In this
basis, the entries in the soft trilinear matrices are directly
proportional to their respective contributions to flavor-
violating processes. For instance, the soft trilinear matrix
AD in the SKM basis is given by

A SKM
D � �V d

L�
yADV

d
R: (108)

Assuming the soft trilinear matrix AD is given by
Eq. (34), which corresponds to the proposed solution
-10
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where one-half of jVcbj is generated in the up-sector, and
the diagonalization matrices V d

L;R are calculated from
Eq. (47), we obtain, to leading order in � and (b,

A SKM
D � Ab

24 �.�3 .��5 .�4

2.(b�3 .� �(b � .��
2.�2 �(b � .�� 1	 2.(b�2

35:
(109)

Here we will assume that., as defined in Eq. (36), is 1.We
observe that the entry (21) is suppressed by an additional
factor (b� as a consequence of the radiative alignment
between Yukawa and soft trilinear matrices. Moreover in
the SKM basis the left-handed down-type squark soft
mass matrix is given by

� ~M2
D�
SKM
LL � �V d

L�
y� ~M2

D�LLV
d
L; (110)

and analogously for the right-handed soft mass matrix.
Assuming the soft trilinear texture from Eq. (37) we
obtain for �M2

D�
SKM
LL , to leading order in � and (b,

m2~bL

24 1	 2.02�4 �.02�3 .02�4

�.02�3 1	 2.02�2 �.02�
�.02�4 �.02� �1	 2.02(b�2�

35:
(111)

Here .0 was defined in Eq. (39).We note in the limit .0 �
1 the contributions from soft mass matrices to flavor
changing processes would be suppressed. The following
results would not change much assuming instead the
second solution we proposed in the previous section.
Using the values given by Eqs. (54) and (55) for � and
(b the amount of soft flavor violation required to fit quark
masses and mixing angles is determined.

The entry most constrained experimentally in the soft
mass matrices is the entry (12), which in our scenario
gives the dominant contribution to the KL-KS mass dif-
ference. If we assume that .0 � 1, i.e., Ab � m~q, then we
obtain that the squark spectra must be m~q > 2 TeV to
avoid the saturation of the experimental measurement,
&mK � �3:490� 0:006� � 10�12 MeV [17]. This con-
straint is considerably milder if the gluino-squark mass
ratio is much larger or smaller than 1. On the other hand if
Ab � m~q=2 the flavor-violating soft mass matrices receive
an additional 1=4 factor through the .0 coefficient de-
fined in Eq. (39). In this case we would saturate the
experimental measurement for m~q > 400 GeV and we
would predict &mK < 7� 10�13 for m~q > 1 TeV.
Furthermore, in the limit .0 � 1 this contribution goes
to zero and the soft trilinear contribution dominates. The
soft trilinear contribution because of the extra suppres-
sion factor (b� is very suppressed. Assuming a large
value of tan0, m~q > 700 GeV and any gluino-squark
mass ratio it generates a contribution to &mK below the
experimental uncertainty.
055003
The entry (13) in the soft mass matrix � ~M2
D�
SKM
LL gives

also the dominant contribution to &mB. We note that the
entry (13) appears as a consequence of the possible mix-
ing between flavor-breaking and flavor-singlet SUSY
breaking fields through operators of the form,

1

MMF

Z
d4� ��+0Gy 	 ,0Jy�F b�y�b 	 H:c:�: (112)

The texture under consideration predicts a contribution to
&mB for m~q > 600 GeV and any gluino mass ratio which
is below uncertainty of the experimental measurement
&mB � �3:22� 0:05� � 10�10 MeV. We note that this
constraint can be avoided if operators of the form in
Eq. (112) are not allowed by the underlying supersym-
metric theory, i.e., if we assume that  � 0.

Finally, from the measured b! s( decay rate, one can
obtain limits on the entry (23) [23]. In general the flavor-
violating soft trilinear gives the dominant contribution to
this process. Assuming a large value of tan0, tan0> 30,
Ab ’ m~q, and m~q > 500 GeV we obtain a contribution to
B�b! s(�< 3:4� 10�5, which is still below the uncer-
tainty of the experimental measurement, B�b! s(� �
�3:3� 0:4� � 10�4. Using known expressions [22,23] we
can also calculate the soft mass, i.e., LL, contribution to
B�b! s(�. This is in general suppressed when compared
with the LR, i.e., soft trilinear contribution, by a factor,

1

6

�
mb

meg
�
�7d12�LL
�7d12�LR

� 3� 10�3t0

�
m~b

m~g

�
; (113)

where we used that

�7d12�LR � �(b � 1��
�
Ab
m~b

��
v
m~b

�
1

t0
; (114)

�7d12�LL � �; (115)

and v and (
 are given by v � 175 GeV and (b � 0:1.
Even considering very large tan0 values the LL contri-
bution in this model is 1 order of magnitude smaller than
the LR contribution to this process. Therefore the ap-
proximate constraints on the supersymmetric spectra
calculated above from the LR contribution to B�b!
s(�, while ignoring the LL contributions, are still valid.

We can perform a similar analysis of flavor changing
processes in the lepton sector. As in the squark sector it is
convenient for calculational purposes, to rotate the slep-
tons to a basis where gaugino vertices are flavor diagonal.
The soft trilinear matrix AL in the SKM basis is given by

A SKM
L � �V l

L�
yALV

l
R: (116)

Assuming the soft trilinear texture from Eq. (59) with
. � 1 we obtain, to leading order in � and (
,
-11
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A SKM
L � A


264 1
3�

3 2
3(
�

3 2
3�

2

4
3(
�

3 3� �(l � 1��
4
3�

2 �(l � 1�� �1	 2(
�
2�

375:
(117)

Using the values given by Eqs. (68) and (69) for � and (
,
the amount of soft lepton flavor violation is determined.
The entry (12) contributes to B�
! e(�, which is the
most experimentally constrained lepton flavor-violating
process. For the texture under consideration, assuming a
large value of tan0, tan0 � 50, Ab ’ m~l, a photino lighter
than the sleptons and m~l > 1 TeV we obtain a branching
fraction '
!e( < 8� 10�12, which is still below the cur-
rent experimental limit, 'exp
!e( < 1:2� 10�11. The pre-
dictions for '
!e( and '
!
( are proportional to the
entries (13) and (23), respectively, in the soft trilinear
matrix. For the texture under consideration, using the
same parameter space limits, we obtain '
!e( < 10�10

and '
!
( < 2� 10�9; these two predictions are far
below the experimental limits, 'exp
!e( < 2:7� 10�6 and
'exp
!
( < 1:1� 10�6.

There are also contributions to B�
 ! e(� coming
from flavor-violating soft masses. In the SKM basis the
left-handed charged slepton soft mass matrix is given by

� ~M2
L�
SKM
LL � �V l

L�
y� ~M2

L�LLV
l
L: (118)

Assuming the soft trilinear texture from Eq. (59) and
.0 � 1 we obtain, to leading order in � and (
,

�M2
L�
SKM
LL � m2~
L

24 1 1
3�

3 2
3�

2

� 1
3�

3 1	 2�2 ��
2
3�

2 �� �1	 2(
�
2�

35:
(119)

The contribution of the flavor-violating soft masses to
B�
! e(� is suppressed compared with the contribution
from the soft trilinear terms by a factor

1

6

�m


me(
�
�7l12�LL
�7l12�LR

� 5� 10�4t0

�
m~l
m~(

�
; (120)

where we used that

�7l12�LR �
2

3
(
�3

�
A

m~l

��
v
m~l

�
1

t0
; (121)

�7l12�LL � 1
3�
3; (122)

and v and (
 are given by v � 175 GeV and (
 � 0:95.
We note that even for a large value of tan0 the LL
contribution is much smaller than the LR contribution
in this model.

To summarize, the flavor violation present in the soft
supersymmetry-breaking sector, which is necessary in
this scenario to generate fermion masses and quark mix-
ings radiatively, is not excluded by the present experi-
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mental constraints. These constraints are not especially
stronger than in other supersymmetric flavor models. The
approximate radiative alignment between radiatively
generated Yukawa matrices and soft trilinear terms helps
to suppress some of the supersymmetric contributions
to these processes, especially the contribution to
B�
! e(�.

V. PROTON DECAY SUPPRESSION

It is generally believed that strong experimental limits
on proton decay place stringent constraints on supersym-
metric grand unified models. Nevertheless, we will see
this assertion is very dependent on the mechanism that
generates the Yukawa couplings. For instance, in the case
of a generic minimal supersymmetric SU(5) model [24],
the superpotential, omitting SU(5) and flavor indices, is
given by

W SU�5� �
1

4
YU10 10H u 	





2

p
YD10 5H d 	 � � �;

(123)

where 10 and 5 are matter chiral superfields belonging to
representations 10 and 5 of SU(5), respectively. As in the
supersymmetric generalization of the SM, to generate
fermion masses we need two sets of Higgs superfields,
H u and H d, belonging to representations 5 and 5 of
SU(5). After integrating out the colored Higgs triplet, the
presence of Yukawa couplings in the superpotential leads
to effective dimension-five interactions which, omitting
flavor indices, are of the form,

W dim5 /
1

MH c

�
1

2
YUYD�QQ��QL� 	 YUYD�UE��UD�

	
;

(124)

where MH c
is the colored Higgs mass, and operators

�QQ��QL� and �UE��UD� are totally antisymmetric in
color indices. Therefore, flavor conservation in the super-
potential would imply their cancellation in the exactly
supersymmetric theory,

�QQ��QL� � 0; (125)

�UE��UD� � 0: (126)

In our scenario, we started by assuming that there is a
U�2�H horizontal symmetry that guarantees the flavor
conservation in superpotential of the supersymmetric
unified theory. Flavor-violating couplings are generated
only at low energy after supersymmetry breaking. The
operators that generate flavor violation are of the form,

1

M
�S;A�H d10 5;

1

M
SH u10 10: (127)

Integrating out the colored Higgs we could generate in
principle baryon number violating operators of the form,
-12
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/ SA�10 5��10 10�; (128)

but one of our basic assumptions is that at the U(2)
minimum the U(2) flavor-breaking fields, S and A, are
F terms, therefore these operators exactly cancel and one
cannot generate directly dimension-five operators.
Dimension-five operators could be generated at higher
orders. Since tree-level interactions with colored
Higgsinos are possible only for the third family, the
generation of a dimension-five proton decay operator
would require two flavor mixing couplings between the
first and the third generation. On the other hand, the
Yukawa coupling of the form �YU�13 is first generated at
two loops and very suppressed, as pointed out in
Eq. (107). As a consequence radiatively generated
dimension-five operators leading to proton decay are
very suppressed in this scenario, when compared with
ordinary SUSY grand unified theory (GUT) predictions,
which generate flavor in the superpotential. Regarding
the next dominant decay mode arising from dimension-
six operators via GUT gauge bosons, it has been shown
that using the SuperKamiokande limit, 
�p! #0e	�>
5:3� 1033 years, a lower bound on the heavy gauge boson
mass, MV , can be extracted, MV > 6:8� 1015 GeV.
Furthermore, the proton decay rate for MV � MGUT is
far below the detection limit that can be reached within
the next years [25].

VI. SUMMARY

Many recipes have been attempted to cook the ob-
served fermion mass hierarchies. We have shown in this
paper that a tastier dish may require the right mix of
horizontal symmetries, grand unified symmetries, and
radiative mass generation. We have proposed an effective
flavor-breaking model based on a U(2) horizontal sym-
metry which is implemented by supersymmetry-breaking
fields. As a consequence, flavor breaking originates in the
soft supersymmetry-breaking terms and is transmitted to
the Yukawa sector at low energy. The approximate radia-
tive alignment between soft trilinear matrices and the
radiatively generated Yukawa matrices at low energy
helps to suppress the supersymmetric contributions to
flavor changing processes. The model allows us to suc-
cessfully fit the six fermion mass ratios and the quark
mixing angles with just two parameters. It also predicts
new quantitative relations between dimensionless fer-
mion mass ratios in the three fermion sectors, and the
quark mixing angles,

jVusj �
�
md

ms

	
1=2

�

�
mu

mc

	
1=4

� 3
�
me

m


	
1=2
; (129)

1

2

��������VcbVus

���������
�
m3s
m2bmd

	
1=2

�

�
m3c
m2t mu

	
1=2

�
1

9

� m3

m2
me

	
1=2
;

(130)

SUPERSYMMETRY BREAKING AS THE ORIGIN OF FLAV
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which are confirmed by the experimental measurements.
Moreover, the requirement of flavor conservation in the
superpotential of the grand unified theory implies the
suppression of the problematic dimension-five operators
which otherwise would accelerate proton decay.
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APPENDIX

For the calculation of the dimensionless fermion mass
ratios used in the main text, running fermion masses were
used. These were calculated through scaling factors in-
cluding known QCD and QED renormalization effects,
which can be determined using known solutions to the
SM renormalization group equations. For the charged
leptons our starting point is the well-known physical
masses. For the top quark the starting point is the pole
mass from the PDG collaboration [17],

mt � 174:3� 5:1 GeV: (A1)

For the bottom and charm quarks the running masses,
mb�mb�MS and mc�mc�MS, from Refs. [26,27] are used,

mb�mb�MS � 4:25� 0:25 GeV; (A2)

mc�mc�MS � 1:26� 0:05 GeV; (A3)

for the light quarks u, d, and s, the starting point is the
normalized MS values at 
 � 2 GeV. Original extrac-
tions [28,29] quoted in the literature have been rescaled
as in [17]

ms�2 GeV�MS � 117� 17 MeV; (A4)

md�2 GeV�MS � 5:2� 0:9 MeV; (A5)

mu�2 GeV�MS � 2:9� 0:6 MeV: (A6)

For completeness we include here some functions used in
the main text. The B0 and F�x; y; z� functions, which are
used in the calculation of the 1-loop finite corrections, are
given by

B0�m1; m2� � 1	 ln
�
Q2

m22

�
	

m21
m22 �m21

ln
�
m22
m21

�
; (A7)

where Q is the renormalization scale,
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F�x; y; z� �
�x2y2 lny

2

x2
	 y2z2 lnz

2

y2
	 z2x2 lnx

2

z2
�

�x2 � y2��y2 � z2��z2 � x2�
> 0: (A8)
For completeness we also include the 90% C.L. experimental compilation of CKM matrix elements from the PDG
compilation [17],
jV exp
CKMj �

24Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

35 �

24 0:974 85� 0:000 75 0:2225� 0:0035 0:003 65� 0:001 15
0:2225� 0:0035 0:9740� 0:0008 0:041� 0:003
0:0009� 0:005 0:0405� 0:0035 0:999 15� 0:000 15

35: (A9)
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