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Although at asymptotically high temperatures the quark-gluon plasma (QGP) is a gas of weakly
interacting quasiparticles (modulo long-range magnetism), and it has quite different properties at
temperatures of the order of a few times the critical temperature T � �1–3�Tc. As experiments and
lattice simulations are now showing, in this region the QGP displays strong interactions between the
constituents. In this paper we try to develop a theory of one of its consequences, namely, the properties
of a large number of binary bound states, both hadronlike (colorless) and exotic (colored) bound pairs
gq, qq, and gg. We evaluate their binding energies and zero-binding lines on the phase diagram and
estimate their contribution to bulk thermodynamics (pressure). Their role in the transport properties
(viscosity), emphasized in our previous paper, will be addressed elsewhere.
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I. INTRODUCTION

New view of the quark-gluon plasma at not-too-high T

From its inception two decades ago, the high-T phase of
QCD commonly known as the quark-gluon plasma (QGP)
after [1] was described as a weakly interacting gas of
‘‘quasiparticles’’ (quarks and gluons). Indeed, at very
high temperatures asymptotic freedom causes the electric
coupling to be small and the QGP to be weakly interact-
ing or perturbative.1 At intermediate temperatures of few
times the critical temperature Tc of immediate relevance
to current experiments, there is new and growing evi-
dence that the QGP is not weakly coupled. In a recent
Letter [3] (to be referred to below as SZ1) we have
proposed that in this region QCD seems to be close to a
strongly coupled Coulomb regime, with an effective cou-
pling constant � � 0:5–1 and multiple bound states of
quasiparticles. We have argued there (and will show it
below in more detail) that these bound states are very
important for the thermodynamics of the QGP. We will
not address transport properties of the QGP in this paper,
although we expect the bound states to play an even more
important role.

To set the stage we first recall the chief ideas behind a
strongly coupled QGP at intermediate temperatures. In
order they are (i) a low viscosity argument; (ii) recent
lattice findings of �cc, �qq bound states at T > Tc; (iii) the
high pressure puzzle.

Transport properties of QGP were so far studied mostly
perturbatively, in powers of the weak coupling. This
approach predicted a large mean free path, Tlmfp �

1=g4ln�1=g� � 1. Similar pQCD-inspired ideas have
led to the pessimistic expectation that the Relativistic
Heavy Ion Collider (RHIC) project in Brookhaven
National Laboratory would produce a firework of multiple
tion is long range color magnetism which remains
ve [2].
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minijets rather than QGP. However already the very first
RHIC run, in the summer of 2000, has shown spectacular
collective phenomena known as radial and elliptic flows.
The spectra of about 99% of all kinds of secondaries
(except their high-pt tails) are accurately described by
ideal hydrodynamics [4]. Further studies of partonic
cascades [5] and viscosity corrections [6] have confirmed
that one can only understand RHIC data by very low
viscosity or large parton rescattering cross sections ex-
ceeding pQCD predictions by large factors of about �50
or so. In short the QGP probed at RHIC is by far the
perfect liquid known so far, with the smallest viscosity-
to-entropy ratio ever, i.e., �=s � 0:1 [6]. We note that
from the theory standpoint ideal hydrodynamics, com-
plemented by a ‘‘nonideal’’ expansion in powers of the
mean free path (the inverse powers of the rescattering
cross section), is perhaps the oldest example of a strong
coupling expansion.

Naturally, these observations have increased our inter-
est in other strongly interacting systems. Two such ex-
amples, discussed already in SZ1 are (i) trapped ultracold
atoms driven to strong coupling via Feshbach resonances
[7,8]; (ii) N � 4 supersymmetric gauge theory (CFT)
recently studied via anti-de Sitter/ conformal field theory
(AdS/CFT) correspondence [9,10]. In both cases, see the
atomic experiments [11] for the first and the CFT viscos-
ity calculation in [12] for the second, strong coupling was
found to lead to a hydrodynamic behavior, with a very
small viscosity.

The main idea of the SZ1 paper was to provide at least a
qualitative explanation to this small viscosity by relating
it to multiple loosely bound binary states of quasipar-
ticles, which should result in larger scattering lengths
induced by low-lying resonances. At the zero-binding
points (indicated by the dashed lines in Fig. 1) those
effects should be maximal, as it is clear from the Breit-
Wigner cross section (modulo the obvious spin factors
depending on the channel) that
07-1  2004 The American Physical Society
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FIG. 2 (color online). The pressure normalized to that of a
gas of massless and noninteracting quasiparticles, or Stephan-
Boltzmann value, versus the temperature T=Tc, from the lattice
calculations by the Bielefeld group [18]. Different curves are
for different numbers (masses) of the dynamical quarks. The
uncertainties (not shown) are estimated by the authors to be
about 15%.

FIG. 1 (color online). Schematic position of several zero-
binding lines on the QCD phase diagram, from SZ1.
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4�

k2
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i =4

�E� Er�
2 � 2

t =4
: (1)

At E� Er � 0 the in- and total widths approximately
cancel. The ensuing ‘‘unitarity limited’’ scattering cross
sections are large. This conjecture is nicely supported by
the atomic experiments mentioned in [11], in which pre-
cisely this mechanism was shown to ensure a hydrody-
namical ‘‘elliptic flow.’’

We now recall the long history on the issue of bound
states in the QGP phase. The earliest QGP signal (sug-
gested by one of us [1]) was the disappearance of familiar
hadronic states, especially the vector ones—�, !, and �
mesons— directly observable via dilepton experiments.
Even the small-size and deeply bound states of charmo-
nium such as �c, J= were expected to melt at T � Tc
[13,14], so their absence was proposed to be a golden
signature of the QGP. However, recent lattice works [15]
using the maximal entropy method (MEM) have found
that charmonium states actually persist to at least T �
2Tc, and there are similar evidences about mesonic bound
states made of light quarks as well [16]. As we will show
below in detail, these a priori unexpected conclusions are
in good agreement with independent lattice studies of the
effective interaction potential between static sources in
QGP.2 In SZ1 we argued that on top of those states there
2Discrepancies with earlier results are mainly due to a con-
fusion between a free and potential energy, as we detail below.
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should also be literally hundreds of colored binary bound
states, and for the singlet gg pair (the most attractive
channel) the region of binding should persist up to quite
high temperature, i.e., T � 4Tc. All those arguments will
be made much more quantitative in this work.

We now turn to the ‘‘high pressure puzzle.’’ Figure 2
shows a sample of lattice results for the QCD bulk pres-
sure p�T� normalized to Stephan-Boltzmann. At T � 2Tc
the pressure is nearly reaching the saturated fraction of
that of a massless noninteracting system. On the other
hand, lattice QCD predicts rather heavy quasiparticles,
with masses (energies) Mq;g � �3–4�Tc at T � 1:5Tc [17].
How could heavy quasiparticles account for large numeri-
cally measured lattice pressures [18]? Substantial elliptic
flow effects at RHIC [4] point also to a large pressure in
the prompt phase at RHIC or at T � �1–2�Tc.

A similar discrepancy, but now analytic and paramet-
ric, was found for CFT at parametrically large coupling.
In our second paper [19] we argued that in this case the
matter cannot be made of quasiparticles, which are again
too heavy, but rather by much lighter binary composites.
The QGP results are thus just a beginning of the trend,
when the running gauge coupling reaches an ‘‘intermedi-
ate coupling region’’ with �s � 1.
II. COLOR FORCES IN VARIOUS BINARY
CHANNELS

At T > Tc there is no color confinement, and so the
interaction is a Coulomb-like at small distances, with a
Debye-type screening [20] at large distances. Both lattice
data as we will use below and results from the AdS/CFT
correspondence agree that these features of the potential
carry to the strong coupling regime.
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TABLE I. Binary attractive channels discussed in this work,
the subscripts s, c, and f mean spin, color, and flavor; Nf � 3 is
the number of relevant flavors.

Channel Representation Charge factor No. of states

gg 1 9=4 9s
gg 8 9=8 9s � 16
qg� �qg 3 9=8 3c � 6s � 2 � Nf
qg� �qg 6 3=8 6c � 6s � 2 � Nf
�qq 1 1 8s � N

2
f

qq� �q �q 3 1=2 4s � 3c � 2 � N2
f
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In this section we compare multiple binary colored
channels,3 by using Casimir scaling for their relative
strength. Its precise formulation can be made as follows.
Let A, B be the color representations of either the quark or
gluon constituents. If they are in a colored bound state
with overall color representation D, then their color in-
teraction is proportional to4

c D � � ~�A 	 ~�B�D � 2
C�D� �C�A� �C�B��; (2)

where the C’s are the pertinent expectation values of the
Casimir operator. For SU�3�c they can be given in terms
of the Dynkin index �mn� of the representation D,

C �D� � m� n� 1
3�m

2 � n2 �mn�: (3)

In this section, we detail the color representations and the
strength of the Coulomb interaction (2) in the bound
states gg, qg, and qq.

gg: Two gluons yield the sum of irreducible color
representations D � 8 � 8 � 1  8S  8A  10S  10A 
27. In terms of the Dynkin indices, the same irreducible
decomposition yields D � �00�  �11�  �11�  �03� 
�30�  �22�. Thus (2) reduces to

c D � � ~�8 	 ~�8�D � 2
C�D� � 2C�8��; (4)

with c1 � �12, c8 � �6 (attractive), c10 � 0 (inactive),
and c27 � 4 (repulsive).

qg: A quark and a gluon yield the sum of irreducible
color representations D � 3 � 8 � 3  6S  15. In terms
of the Dynkin indices, the same irreducible decomposi-
tion yields D � �10�  �02�  �21�. Thus (2) reduces to

c D � � ~�3 	 ~�8�D � 2
C�D� � 4=3� 3�; (5)

with c3 � �6, c6 � �2 (attractive), and c15 � 2 (repul-
sive). A similar decomposition applies to the conjugate
representation qg with D � �01�  �20�  �12�.

qq: A quark and an antiquark yield the sum of irre-
ducible color representations D � 3 � 3 � 1  8. In
terms of the Dynkin indices, the same irreducible decom-
position yields D � �00�  �11�. Thus (2) reduces to

c D � � ~�3 	
~�3�D � 2
C�D� � 8=3�; (6)

with c1 � �16=3 (attractive) and c8 � �2=3 (repulsive).
qq: A two-quark state yields the sum of irreducible

color representations D � 3 � 3 � 3  6. In terms of the
Dynkin indices, the same irreducible decomposition
yields D � �01�  �20�. Thus (2) reduces to

c D � � ~�3 	 ~�3�D � 2
C�D� � 8=3�; (7)

with c3 � �8=3 (attractive) and c6 � �4=3 (repulsive).
3Multibody bound states are also allowed, but will not be
discussed here.

4This formula is analogous to the familiar SU(2) calculation
of a relative spin projection in a state with some total spin J.
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Using a singlet �qq as a standard benchmark (the only
one studied extensively on the lattice), one can summa-
rize the list of all attractive channels in Table I, indicating
the relative strength of the Coulomb potential in a given
color channel and the number of states. Even without the
excited states to be discussed below, there is a total of 481
channels for two flavors (41 colorless) and 749 states (81
colorless) for three flavors.
III. BOUND STATES IN STRONG COULOMB
FIELD

Before we analyze the relativistic two-body bound
states for quarks and gluons, we go over the results for
the simpler problems involving either a spin 0, spin 1=2,
or spin 1 particle moving in a strong (color) Coulomb
field, where the effect of color is treated as a Casimir
rescaling of the Coulomb charge. Precession in color
space can be treated but will be ignored through an
‘‘Abelianization’’ of the external field. The results for
spin 0 and 1=2 have been known since 1928 [21]. They
are presented for completeness since they streamline our
analysis for spin 1. A canonical application of the latter is
that of a W boson bound to a heavy Coulomb center.

A. Spin 0

For a scalar particle the Klein-Gordon (KG) equation


�E� V�2 �m2 � ~@2�� � 0 (8)

should be used. This equation was analyzed for a
Coulomb potential V � ��=r in [21] with the energy
spectrum5

E�nr; l�
m

�
1�

�2

�nr �
���������������������������������
�l� 1=2�2 � �2

p
�2

�
1=2

� 1: (9)

Taking the lowest level to be nr � 1, l � 0 as an example,
one finds that � � 1=2 is a critical value for this equation.
Although the binding is at this point finite and not even
large, E�1; 0�=m �

��������
4=5

p
, something new is obviously
5In [19] a WKB analysis was used with apologies to [21].
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happening at this critical coupling because the square root
(in the denominator) goes complex.

What happens is that the particle starts falling towards
the center. Indeed, ignoring at small r all terms except the
V2 term one finds that the radial equation is

R00 �
2

r
R0 �

�2

r2
R � 0 (10)

which at small r has a general solution

R � Ars� � Brs� ; s� � �1=2�
��������������������
1=4� �2

q
(11)

that for �! 1=2 is just 1=r1=2. At the critical coupling
both solutions have the same (singular) behavior at small
r. For �> 1=2 the falling starts, as one sees from the
complex (oscillating) solutions.

In the CFT theory with a fixed (nonrunning) coupling
constant, nothing can prevent the particle from falling to
arbitrary small r as soon as �> 1=2.6 In contrast, in
QCD the coupling runs, ��r� � 1=ln�1=r�QCD�, so that
at small enough distances the coupling gets less than
critical and the falling stops. In [22] a crude model of a
regularized Coulomb field was used, producing the same
effect. Our arguments show that asymptotic freedom
would be in principle enough. However, the wave function
at the origin is changing dramatically at � � 1=2 and in
view of that we performed an additional study of the
Klein-Gordon problem with a Coulomb � quasilocal
potential in the Appendix.

The falling onto the center happens for any spin of the
particle; only the value for the critical coupling is differ-
ent. We now proceed to show that.

B. Spin 1
2

The squared Dirac equation for a massive spinor 
reads �

� �m2 �
g
2
�)*F

)*
�
 � 0; (12)

with�)* � i
,); ,*�=2 and F)* the external background
field. In the chiral basis, (12) simplifies


�� �m2� � 2g~S 	 � ~B� i ~E��� � 0; (13)

where the spin operator is Lie algebra valued,


Sa;Sb� � ifabcSc: (14)

The magnetic contribution in (12) is standard. The elec-
tric contribution is complex7 and is reminiscent of a
Bohm-Aharanov effect.
6In fact, this is why the dual string description has a black
hole. One of us (E. S.) thanks Daniel Kabat for pointing this
out.

7Recall that the squared Dirac operator is Hermitian.
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The relativistic Coulomb problem stemming from (12)
for each of the two stationary spin components reads��
E�

g2

r

�
2
�m2�

d2

dr2
�

2

r
d
dr

�
~L2

r2
�

2ig2

r2
~S 	 r̂

�
 � 0:

(15)

The solutions to (15) are naturally sought in terms of
spinor spherical harmonics [23]

 a
JML �

X
b

�
J L 1

2
�M �M� b� b

�
eabY

M�b
L ; (16)

with the bracket a conventional Clebsch-Gordon coeffi-
cient restricting the values of L and a; b � �1=2. In this
representation the spinors are just eab � 2ab, and (16) is an
eigenstate of J2, J3, and L2 with eigenvalues J�J� 1�,
�M, and L�L� 1�, respectively. In the basis (16) the spin
operator S 	 r̂ is off diagonal

S 	 r̂ �
�

0 � 1
2

� 1
2 0

�
: (17)

Using the spinor spherical harmonics (16) in (15)
through the expansion

 �
X
a

a
JMLR

a (18)

for fixed JM and (17) we obtain the 2� 2 matrix equation
for the radial function R:��
E�

g2

r

�
2
�m2 �

d2

dr2
�

2

r
d
dr

�
J�J� 1� �C

r2

�
R � 0

(19)

with

C �

� 1
4 � �J� 1

2� �ig2

�ig2 1
4 � �J� 1

2�

�
: (20)

The eigenvalues of C are

��1
2
�

1

4
�

�����������������������������
�J�

1

2
�2 � g4

s
: (21)

In terms of (21) the eigenvalue Eq. (19) becomes di-
agonal for the rotated R. Defining 3 �

������������������
m2 � E2

p
, r �

x=23, and R � 23U=
���
x

p
yield (19) in the diagonal basis in

the form

xU00 � U0 �

�
��

x
4
�
52

4x

�
U � 0 (22)

with

� � g2
E
3
;

�
5
2

�
2
�

�
J�

1

2

�
2
� ��1=2 � g4: (23)

The Eq. (22) is a standard hypergeometric equation. The
bound state solutions with jEj<m are Laguerre polyno-
-4
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mials for

� � n�
1

2
�
5
2
; (24)

which is the quantization condition with integer n refer-
ring to the nodal number of the wave function as opposed
to the radial quantum number nr used above. Unwinding
(24) in terms of (23) yields the spectra for the relativistic
spin 1=2 particles/antiparticles

E
m

�
1�

g4

�n� 1
2 �

5
2�

�
1=2

� �1 (25)

with (23) given explicitly by

5
2

�










�����������������������������
�J�

1

2
�2 � g4

s
�

1

2









; (26)

after using (21). This result is in agreement with the
original result established in [21]. Note that for scalars
it agrees with the semiclassical results we used earlier.

C. Spin 1

The same analysis performed above can be carried out
for the gauge-independent part of the wave function.
Indeed, let us first consider a massless gluon in an arbi-
trary covariant background field gauge. The equation of
motion is standard and reads�

�2)* �
�
1�

1

7

�
r)r* � 2igF)*

�
a* � 0 (27)

which simplifies for Feynman gauge 7 � 1 to

��2)* � 2igF)*�a* � 0 (28)

with r)a) � 0. The gluon in (28) has two physical
polarizations, the longitudinal and timelike ones being
gauge artifacts. Generically, we can decompose the gluon
along its polarizations a) � e)a�a, and rewrite (28) in
the form �

� �
g
2
�)*F)*

�
� � 0 (29)

with i�)*=4 � eT)e*. This result is reminiscent of the
massless spin 1=2 Eq. (12) if we were to interpret �)* as
the spin operator of the gluon in the polarization space.8

For massive gluons the pertinent equation is a variant
of the Proca equation extensively used in the literature.
Here instead, we proceed by analogy with the spin 1=2
case. In the polarization space the equation of motion for
spin 1 is just (the g factor is now 1 instead of 2)


�� �m2� � g~S 	 � ~B� i ~E�� � 0; (30)
8The same Eq. (29) follows from a path-integral description
of a quantum mechanical evolution of a massless spin 1 particle
in which �)* is the covariantized spin.
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which is readily checked from the path-integral approach
in the first quantization (see also below). Note that (30) is
a 3� 3 matrix equation for one longitudinal and two
transverse polarizations. For spin 1 gluons, SAab �
i3Aab. In an external electric gluon field, (30) reduces to

�� �m2� ~ � g� ~E� ~� � 0; (31)

which shows that the electric field causes the polarization
to precess in the relativistic equation. To solve (30) in a
Coulomb field E � �gr̂=r2 we use exactly the same
method discussed for spin 1=2 except for the use of vector
instead of spinor spherical harmonics,

 a
JML �

X
b

�
J L 1

�M �M� b� b

�
eabY

M�b
L (32)

with a; b � 0;�1. In this representation the three polar-
izations are chosen real with again eab � 2ab. A rerun of
the precedent arguments shows that (19) holds for spin 1
in a 3� 3 matrix form with the substitution

C �

0BBBB@
1� �2J� 1� �ig2

���������
J�1
2J�1

q
0

�ig2
���������
J�1
2J�1

q
0 �ig2

���������
J

2J�1

q
0 �ig2

���������
J

2J�1

q
1� �2J� 1�

1CCCCA;
(33)

for J � 0. The case J � 0 is special since C �
diag�0; 0; 2�. The eigenvalues of C are solution to a cubic
(Cardano) equation

�3 � 2�2 � �
1� �2J� 1�2 � g4� � 2g4 � 0: (34)

The solutions are all real since the polynomial discrimi-
nant of (34) is negative [24]. This is expected since the
gluon evolution operator is Hermitian. The explicit solu-
tions to (34) are [24]

�a � 2
���������
�Q

p
cos

�
9� 2�a

3

�
�

2

3
(35)

with cos9 � R=
�����������
�Q3

p
and

Q �
1

3

1� �2J� 1�2 � g4� �

4

9
;

R �
1

3

1� �2J� 1�2 � g4� � g4 �

8

27
:

(36)

The corresponding spectrum for spin 1 particle is
again of the type

E
m

�
1�

g4

�n� 1
2 �

5
2�

�
1=2

� �1 (37)

with �
5
2

�
2
�

�
J�

1

2

�
2
� �0;�1 � g4: (38)

The case J � 0 is special and yields � � �0; 0; 2�. Much
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like the quarks and scalars, the gluons fall onto the center
at a critical coupling which is now set by the branch point
of not only (38) but also (35).
A

B a

FIG. 3. Classical description of two mutually attracting
charges. If the field propagation is instantaneous, a partner of
a particle P is at the antipode point A. However if particles
move relativistically and the electromagnetic field travels at
light speeds, the particle P sees a field from the earlier position
B (drawn for counterclockwise rotation).
IV. A TWO-BODY BOUND STATE PROBLEM

A. Generalities

Nonrelativistically, the problem of two bodies (e.g.,
positronium) is readily reduced to a single one-body
problem (hydrogen atom) by a simple adjustment of the
particle mass. Relativistically this is more subtle.

Let us start with two spinless particles, obeying two
separate Klein-Gordon equations. Making use of the fact
that in the c.m. the two momenta are equal and opposite
~p � ~p�1� � � ~p�2� one can eliminate the relative energy
p0�1� � p0�2� for the total energy E � p0�1� � p0�2�.
The resulting momentum is given by

~p 2 � �E=2�2 �
�m2

1 �m2
2�

2

4E2 (39)

and can be used as the KG equation for two particles with
different masses. The KG simplifies for equal masses,
when the last term drops out. Fortunately this is approxi-
mately true for our problem, since for T in the region of
interest the quasiparticle mass difference is relatively
small even for qg states.

The quantization follows from the canonical substitu-
tion E! �i@t � V, ~p! �i ~@� g ~A. The magnetic ef-
fects through ~A are comparable to the electric effects
for v � 1.

The next problem is to understand what exactly is the
4 potential �V; ~A� in this equation. That is of course the
field at one particle (say P in Fig. 3) due to the other one.
Nonrelativistically the particle speed is negligible com-
pared to the speed of light, so one can safely place the
other particle at the opposite point (say A in Fig. 3).

Including retardation, one classically expects the field
to emanate from B instead of A. The retarded position B
is simply determined by the condition that the travel time
from B to A equals the time it takes light from B to P, that
is �AB�=v � �PB�=c. In the ultrarelativistic case v � c
and one gets a simple equation for the maximal retarda-
tion angle a,

a �
����������������������
2� 2 cosa

p
(40)

with a root at a � 1:48. The retardation angle is about 85�

which is rather large.
The classical description is oversimplified, and in fact

quantum theory allows for field propagation with any
speed, not just c. It demands a convolution of the path
(current) with the quantum propagator of a photon
(gluon). At this point, it may appear that all hope to
keep a potential model is lost and a retreat to a full
quantum field theory treatment is inevitable.
054507
This is indeed the case for intermediate coupling � �
1, but when it gets stronger one can again claim some
virtue in a potential-based approach. Our argument pre-
sented in [19] resulted in the conclusion that the effective
photon (gluon) speed is not the usual speed of light but
larger, by a parameter �1=4 (where as usual � � g2Nc).
Thus the field is still dominated by the emission at the
‘‘antipode’’ that is point A instead of B.

The magnetic effects are the usual current-current
interactions, present for spinless particles as well, plus
those induced by (gluo) magnetic moments related with
particle spins, plus their combination (spin orbit). The
spin effects were argued to be small; see [19,22].

For an extensive review of the known results on how
one can reduce a two-body relativistic Dirac problem to
that of a potential problem we refer to [25]. Here we just
note as in [19] that in the QGP the quark mass is a ‘‘chiral
mass,’’so the derivation of the effective single-body Dirac
equation in this case would be a priori different from the
one discussed in [25].

B. Relativistic two-body bound states

In this section we illustrate the derivation of the rela-
tivistic two-body bound states between qq, gg, and qg in
QCD by considering the simpler problem in relativistic
QED in both the first and second quantized form. The
generalization to QCD is straightforward in the canonical
quantization approach i.e., A0 � 0 gauge.
-6
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1. Second quantization

Consider two massive relativistic electrons with Dirac
spinors a and a � 1; 2:

L �
X
a�1;2

a�i 6r �ma�a �
1

4
F)*F)*: (41)

Canonical quantization of (41) yields the Hamiltonian
density

H � H F � 1
2�
~E2 � ~B2� � ~J 	 ~A� �J0 � ~@ 	 ~E�A0

(42)

with H F the free fermion Hamiltonian density and

J) � g
X
a�1;2

a,
)a: (43)

The coefficient of A0 (constraint) is Gauss law. The latter
is resolved in terms of the Coulomb potential

~E L � �1
2J

0@�2J0: (44)

Ampere’s law follows from the equation of motion for the
transverse part of the electric field

_~E T � �i
H; ~ET� � @2 ~AT � ~J: (45)

For stationary (bound) states ~AT � �1=@2� ~J and the
Hamiltonian density (42) simplifies

H � H F � 1
2
~E2
L �

1
2
~B2; (46)

which is the same as

H � y�i ~� 	 ~@� 5m� �
g2

2
y

�1

@2
y

�
g2

2
yi�i

�1

@2

�
2ij �

@i@j

@2

�
yi�j: (47)

This form is standard, with the Coulomb (Gauss law) and
the current-current (Ampere’s law) interaction. For two
particles the spin effects are encoded in the spinors 
along with the particle-antiparticle content. They may be
unraveled nonrelativistically using a Foldy-Woutuhysen
transformation.

2. First quantization

Perhaps a more transparent way to address the spin
effects in the presence of gauge fields when the particle-
antiparticle content is not dominant is to use the first
quantized form of the same problem. For that it is best
to choose the einbein formulation [26] in the rest frame.
For two gauge coupled particles it reads9
9The particle content of the Lagrangian lives only on the
time axis.
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L � �
Va
2
�1� _~x2a� �

m2
a

2Va
� gA0

a � g _~xa 	 ~Aa

�
1

2
� ~E2 � ~B2� �

g
Va

~Sa 	 � ~Ba � i ~Ea�; (48)

where a � 1; 2 is summed over throughout unless indi-
cated otherwise, and Aa � A�xa� and similarly for the
fields. The einbeins are denoted by Va. They will be
considered as Lagrange multipliers at the end and fixed
by minimizing the energy. The � refers to particle-
antiparticle.

We note that while the potentials couple canonically to
the currents, the spin couples canonically to the magnetic
field but has an imaginary coupling to the electric field in
Minkowski space, a situation reminiscent of Berry
phases. Indeed, canonical quantization of (48) yields the
momenta (only the upper sign is retained from now on)

~p a � Va _~xa � g ~Aa; ~$�x� � ~E�x� �
ig
Va

~Sa2� ~x� ~xa�:

(49)

The canonical momentum ~$ has a complex shift due to
the spin of the particle in contrast to the second quantized
analysis. By insisting that (49) are canonical, we con-
clude that the energy spectrum is shifted by the Berry
phase.

The canonical Hamiltonian following from (48) after
resolving Gauss law reads

H �
1

2Va
� ~p2

a � g ~Aa�2 �
m2
a

2Va
�
Va
2

� g
~Sa
Va

	 � ~Ba

� i ~$La � i ~$Ta� �
1

2
~$2
L �

1

2
�$2

T �
~B2�2

�
1

2V2
a

~Sa 	 ~Sa2�~0� (50)

with

~$ L�x� � �g
1

@2
~@
X
a

2� ~x� ~xa�; (51)

with the summation over a shown explicitly.
For stationary states the equation of motions can be

used to solve for ~AT and therefore for ~$T and ~B through
Ampere’s and Lenz’s law. In particular,

~AT�x� � �
1

Va@2
� ~pa � g ~ATa�2� ~x� ~xa�

�
1

Va@
2 g�

~Sa � ~@�2� ~x� ~xa�: (52)

Noting that the momenta scales with the einbeins as
$L � V0 and that $T � B � 1=V, it follows that for
stationary states the Hamiltonian simplifies to order
O�1=V2�, i.e.,
-7
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H �
1

2Va
� ~p2

a �m2
a � V2

a � 2ig ~Sa 	 ~$La� �
1

2
~$2
L:

(53)

The expansion in 1=V2 is justified in the nonrelativistic
limit since V � m and the ultrarelativistic limit since
V � ,m (here , is the Lorentz contraction factor).
Indeed, the extrema in V of the total Hamiltonian H
associated to (53) are complex and read

Va �
���������������������������������������������������
p2
a �m2

a � 2ig ~Sa 	 ~$La

q
; (54)

in particular V � ,m as asserted. For a pair of identical
particles m1 � m2 in their center of mass frame ~p1 �
� ~p2 � ~p, (53) and (54) yield

1

4

�
H�

g2

x12

�
2
� ~p2 �m2 � 2ig2� ~S1 � ~S2� 	 ~@

1

x12
(55)

after absorbing the Coulomb self-energy corrections in
the masses m. Equation (55) gives a spectrum analogous
to the one described in the background field section except
for the fact that now each of the two particles carries its
own spin in the center of mass frame. Spin-orbit and spin-
spin effects are obtained by carrying the expansion a step
further in 1=V in H .
V. BOUND STATES IN STATIC EFFECTIVE
POTENTIALS

Studies of effective potentials in lattice QCD have a
long history. Their T � 0 version was first obtained in the
classic paper by Creutz who first found confinement on the
lattice in 1979. The first finite-T results have shown Debye
screening, in agreement with theoretical expectations [1].
These static potentials lead to early conclusions [13,14]
that all states, even the lowest �cc states and �c, J= , melt
at T � Tc. As we already mentioned in the introduction,
these conclusions contradict the recent MEM analysis of
the correlators which indicate that charmonium states
stubbornly persist till about 2Tc.

On theoretical grounds, it has been repeatedly argued
(see, e.g., [27]) that close to Tc the Debye mass is low
enough to allow the color charge to run to rather large
values. If so, the binding of many states must occur, as
was shown in our Letter [3].

Recently in a number of publications, the Bielefeld
group had obtained new data for the effective static
potentials, which we will use below. But before we get
into details, let us discuss first one important question:
which potentials one should use in the Schrödinger/KG/
Dirac equations, the potential E or the free energy F?

(They are of course related by the standard thermody-
namical relation

E � F� TS; (56)
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where S in the case considered is the additional entropy
associated with two static quarks.)

It is not a simple question, and the answer should
depend on the relation between the time scales involved
(admittedly, far from being really understood). One of
these scales is the typical time =bound associated with the
bound state in question, e.g., h _r=ri�1. The other is the time
=heat needed to transfer heat to matter, by changing the
associated entropy S.

We will assume in this work that the relation between
them is

=bound � =heat: (57)

If so, one should ignore the heat transfer and use the
potential energy only. In the opposite case, the free en-
ergy should be used.

Let us elucidate the argument by analogy. Consider the
usual quarkonia �cc, �bb in the vacuum of QCD with light
dynamical quarks. We use for their description a linear
potential, up to large r, ignoring the fact that adiabati-
cally slow motion would lead to string breaking and show
potentials approaching constant at large r. (If one does
otherwise, the spectrum comes out wrong.) The reasoning
is it is unlikely that string breaking and �DD formation
may happen in one rotation time: instead one treats it as a
two-channel problem, those with charmonium states and
separate �DD ones.

In such language, what we will do below is to concen-
trate on a single channel only, ignoring any associated
entropy change. Later, when we better understand what
this entropy is, one should study what the contribution of
these other channels is and whether indeed it can be
neglected. One motivation of that can be that the overlap
between different channels is often small. Another (prag-
matic) one is that by doing so we correctly reproduce the
region of charmonium stability observed on the lattice.

In summary, we use the potential energy and remove
the entropy term. This subtraction results in much deeper
potentials, which (as we will show below) readily bind
heavy (and light) quarks.

A set of potentials obtained by the Bielefeld group is
shown in Fig. 4. The strength of the effective interaction
can be characterize by a combination, called a screening
function,

S1�r; T� � �3
4r
F1�r; T� � F1�1; T��; (58)

where the subscript 1 refers to the color singlet channel
and the 3=4 removes the Casimir for �qq representation, so
that S1 is in a way just an effective gauge coupling �s. A
sample of these effective gauge couplings is plotted in
Fig. 5. The plot shows exponential decrease at large r,
complemented by a decrease at small r due to asymptotic
freedom. The maximum at rT � 1=2 indicates that the
effective Coulomb coupling at Tc is �eff � 4=3S1 � 1=2,
right in the ballpark used in [22]. One should also note
-8
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FIG. 4 (color online). Heavy quark free energies in the singlet
channel for two flavors of dynamical quarks at a quark mass of
m=T � 0:40 on 163 � 4 lattices renormalized to the zero-T
potential obtained from [34].
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that the strength is even larger below Tc, where it is
related with confinement at the string breaking point.
Finally, we note the surprisingly monotonous behavior
through the phase transition point, due to the fact that at
T > Tc the static charge continues to be screened by a
single light quark, like in a heavy-light (B-like) meson
below Tc.

The effective quark mass, or a constant value of the
potential, was subtracted out: it plays an important role in
what follows.

We have parametrized these Bielefeld data by the fol-
lowing expression (here and below all dimensions are set
up by Tc, e.g., T means T=Tc and r is rTc):
1

0

F1�T; r� � 1:5� 1:1�T � 1�1=2 �

4

3r
e��2Tr�

ln�1=r� 3T�
;

(59)
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FIG. 5 (color online). The color singlet screening function
from [34].
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and then extracted from it the potential energy using
E1 � F1 � TdF1=dT.

Furthermore, an appropriate normalization of the po-
tential to be used for the bound state analysis is its decay
at infinity. We use V�T; r� � E1�T; r� � E1�T; r � 1�.
(Nonrelativistically, the constant part can be added to a
mass.) The resulting potentials are plotted in Fig. 6.

Our next step after extracting the lattice potentials in
Fig. 6 is to use them in a Schrödinger (or appropriate
relativistic) equation and solve for the bound states. A
sample of the results obtained using the Klein-Gordon
equation with this potential is plotted in Fig. 7. We used a
charm quark mass of 1.5 GeVand an effective gluon mass
of 0.6 GeV: the results are not very sensitive to it.

One can see that charmonium remains bound to about
T � 2:7Tc. It is in fact completely consistent with lattice
observations [15] using MEM. The fact that the state is
traced only to T < 2Tc is completely understandable, as
for 2< T=Tc < 2:7 it is so weakly bound that the size of
the state may exceed the size of the lattice and could not
possibly be seen. Note that at all T the charmonium
binding remains rather small, and so the nonrelativistic
treatment of charmonium would be completely justified.
A similar conclusion would be reached for light �qq pairs.

This is not the case for the gluonic singlet gg state,
which has a color charge larger by the ratio 9=4.We found
that the same potential in this case leads to much larger
binding, reaching up to 40% of the total mass at T � Tc.
There is no question that the relativistic treatment is in-
deed needed here.

We have also looked for l � 1 states in this potential,
which we found only for the most attractive singlet gg
-1

-2

-3

-4
10.80.60.40.2

FIG. 6. The static potentials V�T; r� as a function of the
distance rTc. The values of temperature used are T � 1, 1.2,
1.4, 2, 4, 6, and 10Tc, from right to left.
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FIG. 7. (a) The energy of the bound state E (in units of the
total mass 2M) versus the temperature T=Tc using the lattice
effective potential V�T; r�, for charmonium (crosses and dashed
line), singlet light quarks �qq (solid line), and gg (solid line
with circles). A set of squares shows the relativistic correction
to light quark, a single square at T � 1:05Tc is for �qq with
twice the coupling, which is the maximal possible relativistic
correction. (b) The density at the origin j �0�j2=T3

c of the
bound states versus the temperature T=Tc in the lattice effective
potential V�T; r�, for singlet light quarks �qq and gg (upper and
lower lines with circles). A single square at T � 1:05Tc is for
�qq with twice the coupling.
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state. Those reach their zero binding at T � 1:0805Tc.
Another next-shell state is an l � 0, n � 2 state, which
exists till T < 1:205Tc. (Those states are not included in
the calculation of the thermodynamical quantities at the
end of the paper.)
10As we argued above, Ampere’s current-current interaction
is v2 times the Coulomb charge-charge interaction, but in order
for the whole screened static potential to scale the same way,
other parameters (such as the electric and magnetic screening
lengths) should coincide, which strictly speaking is not the
case.
VI. RELATIVISTIC CORRECTIONS AND
INSTANTON MOLECULES

A. Relativistic corrections

The lattice potentials used above were evaluated for
static charges without spin, therefore it does not include
effects proportional to particle velocities and/or spins.
Although we used a relativistic KG equation, we see
that �qq (and even the most attractive color singlet gg
state) are not bound nearly enough as to become massless.
On the other hand, we know that the lowest �qq states, the
pion-sigma multiplet, must do so at T � Tc. It means that
something is missing in the interaction. We will discuss
those missing effects in the next section.

The first relativistic effect, already discussed in
Ref. [22], is the velocity-velocity force due to magnetic
interaction (Ampere’s law in the classical treatment). This
corresponds to a substitution of the effective Coulomb
coupling by

�! ��1� ~51
~52�; (60)

where 5i are velocities (in units of c) of both charges. In
the center of mass the velocities are always opposite, so
the effective coupling always increases.

We have estimated the mean velocity squared by using
the equation itself
054507
hv2i �
Z
dr?2�r�

�
1�

�
2M

E� V�r�

�
2
�
; (61)

where the wave function is appropriately normalized.
This yields hv2i � 0:12 for light quarks at T=Tc � 1:05.
If we plug this correction back into the potential, assum-
ing it scales as �1� hv2i� as a whole,10 we get larger
binding (squares in Fig. 7). With this relativistic correc-
tion included, at T � Tc the light quarks become relativ-
istic and about as bound as the charmed quarks, with
mean velocity of about 1=3.

Although we do not yet see how very relativistic mo-
tion may come about, we will do so in the next section. In
anticipation of that, let us show here what can be a
maximal effect of the relativistic correction under con-
sideration. If the particle velocity becomes the speed of
light, a correction under consideration effectively doubles
the coupling, putting it at T � Tc to be �eff � 1. If we
simply double the effective potential as a whole, the
binding increases significantly. The result is shown by a
single square in Fig. 7(a), and at T � Tc the binding
reaches about 1=4 of the total mass. An even larger effect
is seen in the particle density at the origin. As shown in
Fig. 7(b) it increases by about an order of magnitude.

B. Interaction induced by the instanton molecules

We have seen in the preceding section that relativistic
effects proportional to velocities make all states signifi-
cantly more bound and dense at T ! Tc: but still these
effects are too weak to bring the total energy of the
lowest �qq to zero, as is required for sigma mesons to
trigger a phase transition at T � Tc coming from above
on the temperature axis.

As discussed in the Brown-Lee-Rho-Shuryak paper
[22], the missing element is a quasilocal interaction in-
duced by the instanton–anti-instanton molecules, the
lowest clusters of zero total topological charge allowed
in the chirally restored phase (see [28] for a review).

In this paper we will not try to estimate the coupling
from first principle but instead adopt a purely phenome-
nological approach. For the local 4-fermion interaction
with the coupling constant G the energy shift is given
simply by

2E � �Gj �0�j2: (62)

Here we will tune the magnitude of the effective 4-
fermion coupling G4q so that the pion-sigma multiplet
gets massless (and then tachyonic) exactly at T � Tc.
-10
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With j2Ej � 0:92Mq � 1:3 GeV and j �0�j2 � 350T3
c ,

after the relativistic correction is included, one needs
G � 1:5 GeV2, which is in the expected ballpark.11 If
the relativistic correction would not be there, the value
of j �0�j2 would be an order of magnitude smaller; see
Fig. 7(b).

The remaining problem is what happens in the glueball
(gg singlet) channel, where we expect the interaction with
instantons to be even stronger than with quarks. Indeed,
the instantons are classical objects made of gluon field,
thus their interaction with gluons would be proportional
to the action O�S � 8�2=g2� which is expected to be
about 10 times stronger than ’t Hooft’s interaction with
quarks. If this is the case, the s-wave glueball state gets
tachyonic already at some finite T above Tc.

VII. CONTRIBUTION OF THE BOUND STATES
TO THERMODYNAMICAL QUANTITIES

In the previous sections we were interested in the
quasiparticle binding, evaluating the energy-to-mass ra-
tio, E=M. The exact value of M, its variation with T etc.
were not important. However now we evaluate the parti-
tion function, and the contributions of quasiparticles and
new bound states contain the Boltzmann factor
exp��E=T� which makes them sensitive to E�T� and
M�T�. Unfortunately, lattice studies of quasiparticle
masses available so far used only two points, T � 1:5,
3Tc, and so in this (and few other places) we have to ‘‘fill
in the blanks’’ by some continuous parametrization.
Admittedly it leads to uncertainties, which the reader
should be aware of, which no doubt will to be improved
with better later data. Emphasizing the semiquantitative
character of this chapter, we thus use further crude ap-
proximations, e.g., assuming that all colored qg and gg
states are the same, ignore weakly bound second and
p-wave bound states close to Tc, etc.We are however quite
confident that it cannot affect our main qualitative con-
clusion of this chapter, which is that colored bound states
are very important at T � 1:4� 3Tc. More specifically,
within the mentioned uncertainties they generate the right
amount of pressure to complement the quasiparticle con-
tribution in this region.

A. The contribution of the quasiparticles

The notion of quasiparticles in our problem comes from
the 1970’s when, soon after the discovery of QCD it was
shown in [1] that finite-T matter screens the charge,
unlike the QCD vacuum, and quasiparticles of quark-
gluon plasma are similar to that of QED. During these
decades a lot of work has been done; for a recent account
11The estimated value is a factor of 2 smaller than what was
used in [22], which was derived by continuity from Nambu-
Jona-Lasinio–like fits from T < Tc, and somewhat
overestimated.
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of resummation methods see [29]. Those works aim at the
description of the high-T region, T > �2� 3�Tc, and are
in this sense complementary to our current work. Note
that a solution of a bound state problem done in this work
is obviously a quite different set of diagrams resummed.

Proceeding to (much simpler) approaches, which sim-
ply parametrize the lattice thermodynamics by a non-
interacting gas of quasiparticles, we mention papers by
Peshier et al. [30] and Levai and Heinz [31], which we
will use as a kind of benchmark. They used a simple
quasiparticle gas model, deducing what properties the q
and g quasiparticles should have in order to reproduce the
lattice data of the pressure p�T�.12 Assuming the usual
dispersion relation !2 � p2 �M�T�2, one has to deal
with the T dependent of the masses. For example, for
pure glue it is possible to reproduce p�T� by assuming
Mg�T�. The qualitative behavior found in [31] at high T is
about linear and rising, as expected perturbatively [20].
For T � �1:3� 3�Tc it is about constant, with a rise
toward Tc, an indication of the onset of confinement.

Although these features are qualitatively consistent
with the direct measurements [17], they do not agree
quantitatively. For Nf � 2 the expected masses at T �

1:5Tc (close to their minimum) from [31] are

Mg � 420 MeV; Mq � 300 MeV: (63)

However direct studies by Karsch and Laerman found
heavier ones:

Mg � 540 MeV; Mq � 620 MeV: (64)

If the reader is not impressed by this difference, let us
mention that the corresponding Boltzmann factors for
quarks are exp��Mq=T� � 0:28 for Levai-Heinz and
only 0.075 for Karsch-Laerman values. This means that
the QGP quasiparticles at such T are too heavy to repro-
duce the global thermodynamical observables.

If this numerical example is not convincing, let us go to
the N � 4 supersymmetric Yang-Mills theory at finite
temperature, for which a parametric statement can be
made. At strong coupling � � g2Nc � 1 the quasipar-
ticle masses are [32] m �

����
�

p
T � T, and thus the corre-

sponding Boltzmann suppression is about exp��#
����
�

p
�. In

our work [19] we suggested that in this limit the matter is
made entirely of binary bound states with massesm � T.
We have shown that such light and highly relativistic
bound states exist at any coupling, balanced by high
angular momentum l �

����
�

p
. Furthermore, we have found

that the density of such states remains constant at arbi-
trarily large coupling, although the energy of each indi-
vidual state and even its existence depend on �. So, in this
theory a transition from weak to strong coupling basi-
cally implies a smooth transition from a gas of quasipar-
12As all other thermal observables follow from this function,
we will not discuss them.
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14In brief, the coefficients for the longitudinal and transverse
components of the vectors are different, and they depend on the
‘‘orientation angle’’ between the line between the instanton and
anti-instanton centers and time direction. The coefficient for
spin-zero channels such as pions and sigmas does not depend
on it.

15Although they are the most bound ones, their statistical
weight is thus small.

16As we make no attempt to develop any model of deconfine-
ment and do not include the end points of many ‘‘primed’’
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ticles to a gas of ‘‘dimers.’’ In QCD going from high T
toward Tc the coupling changes from weak to medium
strong values �s � 0:5–1 with � � 15–30, and so one
naturally can see only one-half of such a phenomenon,
with the contribution of the bound states becoming com-
parable to that of the quasiparticles.

B. Parametrizations for masses of the bound states

As indicated above, the pressure problem can be solved
when one accounts for the additional contribution of the
binary bound states. As already mentioned, we will do so
in a slightly schematic way, combining them into large
blocks of states, rather than going over all attractive
channels of Table I one at a time.

Before we do so, let us mention the parametrization of
the quasiparticle masses we use,

Mq;g �
AT2

c

T � Tc
� B � Tc � C � T; (65)

where the first term ensures infinite mass at deconfine-
ment. The three parameters are selected so that they go
through two lattice data points available, at T � 1:5 and
3Tc, and approximately go to the pQCD value at high T.
The curves plotted below correspond to Aq � 1:27, Bq �
2:75, Cq � 0:37, Ag � 1:18, Bg � 1:54, and Cg � 0:78.
The uncertainties of the quasiparticle mass at T � 1�
1:1Tc are about 100%, but at T � 1:5� 3Tc they are
dominated by lattice errors which are of the order of 15%.

The ‘‘pion multiplets’’ [plus other chiral and UA�1�

partners, e.g., �, �, and ~2 for Nf � 2] carry 2N2
f states,

which are to turn massless at Tc. Using (62) for the pion
binding and simple parametrization of the T dependence
of the wave function at the origin as shown in Fig. 7(b),
we arrive at the following parametrization of their effec-
tive mass at temperature T:

M� � 10Tcf1� exp
�3�T � Tc�=Tc�g: (66)

The exponential form here is the fit of the density at the
origin,  �0�2, shown by squares in Fig. 7(b), in the lower
left side. ‘‘1� exp. . .’’ is because the pion mass has to
vanish at T � Tc. Finally 10 in front is an approximate
value fitted so that the curve crosses 2Mq�T� and gets the
zero binding at the point, determined from the lattice
potentials.13 Given that two end points of the pion line are
fixed, by zero at Tc and 2Mq at the zero binding, we think
that the main uncertainty comes from a simplistic account
for the instanton-based effect, instead of solving the
Bethe-Salpeter equation. The uncertainty involved is
thus the largest in between, at T � 1:2Tc and can be as
large as say 30% or so.
13No instantons, as large size states are insensitive to them;
see again the density in Fig. 7(b) which tends to zero near the
end point.
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For the ‘‘rho multiplet’’ (vectors and axial mesons)
with 6N2

f �qq states we use the same expression, but
with a suppression factor of 0.7 in front of the exponent.
(See [22] for a detailed discussion of why the instanton
molecules generate somewhat less attraction14 in vector
channels than for the pions.) Gluomagnetic spin-spin
splitting may contribute together with the instanton effect
and contribute to this splitting: it however has so far been
ignored. Only at one end, at T � �1:5� 1:7�Tc near the
zero binding, do we get the mass under control via poten-
tials, as the instanton/spin-spin effects are small due to
the large size of the state, and the vector should follow the
same s-wave bound states as scalar ones, determined
from the lattice potentials. At the other end, T � �1�
1:5�Tc, the theoretical uncertainties are larger than for
pions and can be of the order of 50% or so. Furthermore,
the transverse and longitudinal components of vector
states in matter have different masses, which is ignored
in this paper but studied in detail in [33] in connection
with dilepton invariant mass spectrum. [So far, the only
way to fix the lower-T end phenomenologically is to
identify � with an experimentally observed (by CERES
at CERN) dilepton enhancement, so that M��T � Tc� �
0:5 GeV, but we would not assume it.]

We have further ignored gg color singlets15 and con-
centrated on more numerous gg8 and qg colored attractive
channels. Ignoring the differences between them for sim-
plicity, we lump them altogether with a mass parame-
trized as

Mcolored � 11:5Tc
�T=3Tc�0:5 � 0:1Tc=�T � Tc��: (67)

The first term is a parametrization of the binding from the
potentials, while the last one (admittedly arbitrary in
shape) enforces the disappearance to infinity of colored
states at the deconfinement critical point.16 So we think
the uncertainty of the masses of colored states is about
factor 2 at T � 1:1Tc, but should not be worse than 20% at
T � �1:5� 1:7�Tc, provided the lattice-based potential
does scale with color Casimirs.

The corresponding curves for the masses of bound
states are shown in Fig. 8(a). Although the error bars
s-wave and p; d-wave states, the reader should not trust the
results in the interval T � �1� 1:1�Tc. As the lattice results
correspond to rather heavy-light quarks, we would not trust it
in this region either: note that we have not drawn any crosses
below 1:1Tc.
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FIG. 8 (color online). (a) The lines show twice the effective
masses for quarks and gluons versus temperature T=Tc. Note
that for T < 3Tc, Mq >Mg. Circles and squares indicate esti-
mated masses of the pionlike and rholike �qq bound states,
while the crosses stand for all colored states. (b) Pressure (in
units of that for a gas of massless and noninteracting quasi-
particles) versus the temperature T=Tc. The crosses correspond
to the Nf � 2 lattice results, from Fig. 2; their uncertainty (not
shown) is about 15%. The lower solid curve is the contribution
of unbound quasiparticles; the upper curve includes also that of
all bound states. Squares are for the pionlike and rholike �qq
bound states combined, and circles for all the colored bound
states.

18Note that the contribution of the virtual level is quite
different from a contribution of a real resonance. The latter

TOWARD A THEORY OF BINARY BOUND STATES IN . . . PHYSICAL REVIEW D 70 054507
are not shown, the reader should keep in mind what was
said above about the uncertainties of each curve.

C. The QGP pressure

In analogy with the so-called ‘‘resonance gas’’ at T <
Tc, the contributions of all bound states for T > Tc can be
simply added to the statistical sum, as independent par-
ticles. However, this is true only for sufficiently well-
bound states. The region near the zero-binding point
needs special attention. Indeed, in this region the bound
state becomes virtual and leaves the physical part of the
complex energy plane: one may naturally expect that its
contribution to the partition function is also going away.

Let us see how this happens, restricting ourselves to the
s-wave (l � 0) scattering.17 As is well known a general
amplitude for a system with a shallow level can be written
at small scattering momentum k as

f�k� �
1

�D0 � r0k2=2� ik
; (68)

where D0 is related to the level position and r0 is the so-
called interaction range. The subscript refers to the l � 0
partial wave. The cross section is

�0 �
4�

�D0 � r0k2=2�2 � k2
; (69)

and if the range term is further ignored one gets the
17The case of l > 0 is different, as the centrifugal barrier
allows for quasistationary states and resonances to exist.

054507
familiar � � 4�=m�E� j3j� form which does not care
for the sign of the binding energy 3 � D2

0=m.
As D0 goes through zero and changes sign, the scatter-

ing length f�k � 0� � �1=D0 jumps from �1 to 1. As
one can see from these expressions, a bound level close to
zero generates a significant repulsive interaction of the
quasiparticles (with positive energies). As we will see
shortly, an account for such repulsion reduces the contri-
bution of the bound state to the partition function.

Let us follow the well-known Beth-Uhlenbeck expres-
sion for nonideal gases

Zint �
X
n

e�j3nj=T �
1

�

X
l

�2l� 1�
Z 1

0

d2l�k�
dk

e�k
2=mTdk;

(70)

where the first sum runs over all bound states with bind-
ing energies 3n and the second over the scattering states.
As the simplest example, let us consider the zero-binding
point D0 � 0, for which the expression for the scattering
phase can be simplified to

exp
2i20�k�� �
r0k=2� i
r0k=2� i

; (71)

and assuming that the temperature T is high enough to
ignore the Boltzmann factor in the integral one gets

Zint � 1�
1

�

20�1� � 20�0�� � 1=2: (72)

Thus, at the zero-binding point the repulsion reduces the
contribution of the bound states to one-half its value. As
the virtual level moves away from zero, the contribution
decreases further.18

We will use a simple Fermi-like function to enforce
this disappearance of the level from the statistical sum,
multiplying the level contribution by an additional ‘‘re-
duction factor’’

R�T� �
1

1� exp
C�T � Tz:b:��
: (73)

Its Fermi-like functional form is a (rather arbitrary)
parametrization. One condition is that it should be 1=2
at the end point, as shown above. The parameter C deter-
mining the width of the T interval where the level dis-
appears was shown above to be determined by the
interaction range r0; see (71). In principle, the scattering
generates a Breit-Wigner cross section with a maximum, and
for a narrow resonance the same contribution as for the bound
state persists, while the former contribution disappears as the
level moves away from the zero-binding point.
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amplitude at low momenta for the potentials in question
can be calculated and the range parameter determined.19

The factor C � 2=Tc in the exponent approximately re-
produces the width of that region. Since it affects only the
width of the transition region, not the magnitude of the
bound state contributions itself, we think the uncertainty
involved is smaller than the other uncertainty of the
model involved.

Putting it all together, one finally gets the pressure
shown in Fig. 8(b). One can see that the pions and rhos
peak at Tc,

20 but become relatively unimportant for
higher T. The colored state masses are uncertain near
Tc, but there they are too heavy and unimportant anyway.
At T � �1:5� 2�Tc their contribution to the pressure is
clearly comparable to that of the quasiparticle gas. There
are hundreds of bound states, bringing in large statistical
weight, which is however tamed by a large mass and
consequently small Boltzmann factors. Inside the uncer-
tainties involved (mentioned above for each mass sepa-
rately) we think this qualitative conclusion can indeed be
made.

Furthermore, the total contribution follows quite well
the lattice data points. Perhaps the agreement is even
better than the uncertainties involved ( � 30–50% of
the colored states) would suggest. Whether this is acci-
dental or not will be tested later, when masses of all the
states involved and their binding range are studied indi-
vidually in lattice correlation functions.
VIII. CONCLUSIONS AND DISCUSSION

In this paper we have addressed a number of issues
related to the bound states in the QGP phase at not too
high temperature. We have cataloged all attractive binary
channels, with proper color factors and multiplicities; see
Table I. We have also presented a unified framework for
analyzing two-body relativistic bound states of arbitrary
spin and mass using first quantization arguments.

We have further parametrized recent lattice data on
free energies for static quarks, calculated the correspond-
ing effective potentials, and solved the Klein-Gordon
equation for charmonium, light quarks, and singlet gg
cases. We have found that the bound states exist in all of
them, at T below some (channel-dependent and calcu-
lated) zero-binding points. In particular, our reported
range of temperatures for charmonium and light mesons
19In an ongoing work by Casalderrey-Solana and Shuryak
[33] these potentials are used for determination of the Green
functions and spectral shape of the dilepton production rates.
Detailed pictures of how the resonances and the effect of
attraction disappear were obtained there, at T above the zero-
binding points.

20Recall that the pions gets massless in the chiral limit. From
the current description it looks like there is a disagreement with
the lattice data at T � Tc, but one should recall that the letters
are for medium heavy quarks.
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above Tc agrees rather well with what was seen from
lattice correlators using the MEM method [15].

Our studies of relativistic effects have found that the
systems in question are not yet very relativistic, except
very close to Tc: the relativistic corrections to the poten-
tials do not exceed 10%. They have a minor effect on
binding, with some effect on the wave function at the
origin. Like the authors in [22] we concluded that some
nonperturbative interactions for light quark, completely
absent for static ones, should exist in order to bring the
pion and sigma mass to zero at T � Tc. It is believed to be
due to instanton–anti-instanton molecules and is quasi-
local: thus one can treat this interaction like a delta-
function potential, with the contribution proportional to
the wave function at the origin (calculated without it).

Finally, we have assessed the contribution of all these
bound states to the bulk pressure of the system. We have
shown that as the bound states approach their end points,
their contribution to the pressure becomes partially com-
pensated by a repulsive effective interaction between the
unbound quasiparticles. The contribution of the virtual
level above zero quickly disappears.

Our main finding is that the summed contributions
from the large number of colored bound states above Tc
are comparable to that of quasiparticles. In sum those can
reproduce the bulk pressure (measured independently on
the lattice) rather well. The accuracy of our ‘‘new reso-
nance gas’’ model will be tested in the future, as each
state can be studied independently on the lattice.
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APPENDIX: THE KLEIN-GORDON EQUATION
FOR A COULOMB PLUS QUASILOCAL

POTENTIAL

In this Appendix we will use notations for a single-
body KG equation, in schematic notations �E� V�2 �
~p2 � M2, for a particle of massM in a potential V, chosen
to be a superposition of a screened Coulomb and an
additional local term

V � �
�

�r� 0:001=M�
exp��MDr� � ~U ~2�r�; (A1)

where the ~2�r� is the ‘‘nonlocal delta function.’’ For
reasons related to instantons we will use it in the form

~U ~2�r� � U
1

�r2 � �2�3
(A2)

with the size parameter � to be chosen below to be
-14
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FIG. 9 (color online). A schematic plot explaining the ge-
ometry of the surfaces of fixed binding in the three-
dimensional parameter space. Its projections on the �, U=M2

plane and on the �, MD=M plane are shown in two subsequent
plots. In the former case the values of the energy (in units of the
mass) are E=M � 0, 0.5, 0.75, 0.9, 0.96, and 0.99 from top to
bottom. In the latter case only the lines corresponding to
E=M � 0:5, 0.9, and 0.99 are shown (right to left).
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� � 1=�0:6M�. Note that we have chosen to ignore the
coupling constant running and regulate the Coulomb
singularity.

Together with the quasiparticle mass(es) M we thus
already have four parameters �, MD, U, and M. The
relevant ones are the three dimensionless combinations
�, MD=M, and U=M2. To become familiar with this
problem, we first studied the geometry of the fixed energy
surfaces, E � const, in the parameter space. A section of
those surfaces with two coordinate planes is shown in
Fig. 7.

In Fig. 9 one can see that the (regularized)21 Coulomb
and the instanton-induced potential are kind of comple-
mentary to each other, except near the origin: the
Coulomb always has levels when the quasilocal potential
does not for ~U < ~Umin � 20. On another plane, as MD
grows and screens the Coulomb field, one needs stronger
coupling to keep the same binding. The very left line,
corresponding to E=M � 0:99 or only 1% binding, is
close to the ‘‘zero-binding line’’ (except that it reaches
the origin � � 0, MD � 0), to the left of which the
potential in question has no bound states at all.

We have not plotted the third projection, as for � � 0
the value ofMD is irrelevant and all lines depend on theU
21As it is known from the exact solution of the unregularized
KG equation, the solution gets singular at � � 1=2. Therefore
all our results for �> 1=2 are actually sensitive to the regu-
larization used.
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value only. The zero-binding line, separating the unbound
states from the bound ones, starts at the value of ~Umin �
20 already mentioned. Combining three projections for
the same binding, one can now well imagine the location
and the shape of all constant energy surfaces.
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