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Baryonic flux in quenched and two-flavor dynamical QCD after Abelian projection
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We study the distribution of color electric flux of the three-quark system in quenched and full QCD
(with Nf � 2 flavors of dynamical quarks) at zero and finite temperature. To reduce ultraviolet
fluctuations, the calculations are done in the Abelian projected theory fixed to the maximally
Abelian gauge. In the confined phase we find clear evidence for a Y-shape flux tube surrounded and
formed by the solenoidal monopole current, in accordance with the dual superconductor picture of
confinement. In the deconfined, high temperature phase monopoles cease to condense, and the
distribution of the color electric field becomes Coulomb-like.
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I. INTRODUCTION

So far most investigations of the static potential, and
the dynamics that drives it, have concentrated on the
quark-antiquark (Q �Q) system, while little is known about
the forces of the three-quark (3Q) ensemble. For under-
standing the structure of baryons and, in particular, for
modeling the nucleon [1], it is important to learn about
the forces and the distribution of color electric flux in the
3Q system as well. A particularly interesting question is
whether a genuine three-body force exists and the con-
fining flux tube is of Y-shape, or whether the long-range
potential is simply the sum of two-body potentials, in
agreement with a �-Ansatz, resulting in a flux tube of
�-shape. By a flux tube of Y- and �-shape we understand
a flux tube between the three quarks having shortest
possible length and a junction, and a flux tube constructed
out of three-quark-antiquark flux tubes taken with a
factor 1

2 .
Several lattice quenched QCD studies report evidence

for a �-type long-range potential [2,3], while others claim
a genuine three-body force [4,5]. In Ref. [4] various
patterns of the three-quark system were considered with
the distance between quarks in an equilateral triangle, d,
up to 0.8 fm. It was found that at large distances the
Y-Ansatz gives a better description of the three-quark
potential than the �-Ansatz. On the other hand, the au-
thors of Ref. [5] found that at distances d < 0:7 fm the
three-quark potential is described quite well by �-Ansatz,
while it rises like the Y-Ansatz at larger distances,
0:7< d< 1:5 fm.

The Y-Ansatz is also being supported by the field
correlator method [6]. The difference between a �- and
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Y-shape potential is rather small and difficult to detect,
because the underlying Wilson loop decays approximately
exponentially with increasing interquark distance. A
computation of the distribution of the color electric flux
inside the baryon might help to resolve this problem.

In this paper we shall study the static potential and the
flux tube of the 3Q system. The long-distance physics
appears to be predominantly Abelian—being the result
of a yet unresolved mechanism—and driven by mono-
pole condensation. The use of Abelian variables is an
essential ingredient in our work, as it leads to a substan-
tial reduction of the statistical noise. Preliminary results
of this investigation have been reported in Ref. [7].

The paper is organized as follows. In Sec. II we de-
scribe the details of our simulation, including the corre-
lation functions that we are going to compute. The results
of the calculation are presented in Secs. III and IV.
Section III is devoted to the study of the 3Q system at
zero temperature, while Sec. IV deals with the finite
temperature case. Finally, in Sec. V we conclude.
II. SIMULATION DETAILS

We employ the Wilson gauge field action throughout
this paper. In our studies of full QCD we are using non-
perturbatively O�a� improved Wilson fermions,

SF � S�0�F �
i

2
�gcSWa

5
X
s

� �s����F���s� �s�; (1)

withNf � 2 flavors of dynamical quarks, where S�0�F is the
ordinary Wilson fermion action. Further details of the
dynamical runs are given in [8,9].
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The system of three static quarks propagating from A
to B may be described by the ‘‘baryonic’’ Wilson loop

W3Q �
1

3!
"ijk"i0j0k0Uii0 �C1�Ujj0 �C2�Ukk0 �C3�; (2)

where

U�C� �
Y
s;�2C

U�s;�� (3)

is the ordered product of link matrices U 2 SU�3� along
the path C, as shown in Fig. 1. The potential energy of this
system is given by

V � �
1

LT
lim
LT!1

loghW3Qi; (4)

LT being the temporal extent of the loop.
In the following we shall concentrate on Abelian var-

iables, referring to the maximally Abelian gauge (MAG),
and being obtained by standard Abelian projection
[10,11]. To fix the MAG [12], we use a simulated anneal-
ing algorithm described in [9]. We write the Abelian link
variables as

u�s;�� � diag�u1�s;��; u2�s; ��; u3�s; ���;

ui�s;�� � exp�i"i�s;���
(5)

with
FIG. 1. Three-quark Wilson loop.
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"i�s; �� � arg�Uii�s;�� �
1

3

X3
j�1

arg�Ujj�s;��jmod2#;

"i�s; �� 2
�
�

4

3
#;

4

3
#
�
:

(6)

They take values in U�1� �U�1�, and under a general
gauge transformation they transform as

u�s; �� ! d�s�yu�s;��d�s� �̂�;

d�s� � diag�exp�i$1�s�; exp�i$2�s�;

exp��i�$1�s� � $2�s��:

(7)

The Abelian Wilson loop is given by

Wab
3Q �

1

3!
j"ijkjui�C1�uj�C2�uk�C3�; (8)

where u�C� is the Abelian counterpart of (3). Wab
3Q is

invariant under gauge transformations (7).
The physical properties of the 3Q system can be in-

ferred from correlation functions of appropriate operators
with the corresponding Wilson loop. Abelian operators
take the form

O �s� � diag�O1�s�;O2�s�;O3�s� 2 U�1� �U�1�: (9)

For C-parity even operators O, like the action and mono-
pole densities, the correlator of O�s� with the Abelian
Wilson loop is given by [7,13]

hO�s�i3Q �
hO�s�Wab

3Qi

hWab
3Qi

� hOi: (10)

For C-parity odd operators, like the electric field and
monopole current which carry a color index, the corre-
lator is defined by

hO�s�i3Q �
1

3!

hOi�s�j"ijkjui�C1�uj�C2�uk�C3�i

hWab
3Qi

; (11)

where summation over i; j; k is assumed. It is natural to
use Wilson loop to study the static potential at zero
temperature since it gives directly a singlet potential.
The Polyakov loop correlator gives in general a color-
averaged potential, i.e., a mixture of the singlet and octet
potentials, see e.g. [14]. At nonzero temperature one can
use only the Polyakov loop correlator to study the static
potential and we use the product P3Q of three Polyakov
loops closed around the boundary as baryonic source
instead of W3Q:

Pab
3Q �

1

3!
j"ijkj‘i� ~s1�‘j�~s2�‘k�~s3�; (12)

where

‘i�~s� �
YLT
s4�1

ui�~s; s4; 4� (13)
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is the Abelian Polyakov loop, LT being the temporal
extent of the lattice here. The correlators of O�s� with
P3Q are defined analogously to (10) and (11).

The observables we shall study are the action density
(3Q
A , the color electric field E3Q and the monopole current
k3Q. The action density is given by

(3Q
A �s� �

*
3

X
i;�>�

hcos�"i�s; �; ���i3Q; (14)

where

"i�s; �; �� � arg�ui�s; �; ���;

ui�s; �; �� � ui�s;��ui�s� �̂; ��uyi �s� �̂; ��uyi �s; ��

(15)

is the plaquette angle. The color electric field and mono-
pole current correlators are defined by

E3Q�s; i� � ihdiag�"1�s; 4; i�; "2�s; 4; i�; "3�s; 4; i��i3Q
(16)

and

k3Q��s;�� � 2#ihdiag�k1��s;��; k2��s; ��; k3��s; ���i3Q;

(17)

where ki��s;�� is the monopole current [9,13].
The calculations in full QCD at zero temperature are

performed on the 24348 lattice at * � 5:29, � � 0:1355,
which corresponds to a pion mass of m#=m( � 0:7 and a
lattice spacing of a=r0 � 0:18 [9] (i.e. a � 0:09 fm as-
suming r0 � 0:5 fm). The calculations in full QCD at
finite temperature T are done on the 1638 lattice at * �
5:2 for various hopping parameters ranging from � �
0:1330 to � � 0:1360, which covers the temperature
range [15] 0:8 & T=Tc & 1:2. The critical temperature
Tc corresponds to � � 0:1344�1�. At this � we find
m#=m( � 0:77. For comparison, we also did quenched
simulations at zero temperature on the 16332 lattice at
* � 6:0. At this * the lattice spacing is a=r0 � 0:186,
i.e., it is roughly the same as on our full QCD lattices. To
reduce the statistical noise we smeared the spatial links of
the Abelian Wilson loop using ten sweeps of APE smear-
ing [16] with $ � 2, where $ is a coefficient multiplying
the sum of staples.
III. STATIC POTENTIAL AND BARYONIC FLUX
AT ZERO TEMPERATURE

The minimal Y-type distance between the quarks, i.e.,
the sum of the distance from the quarks to the Fermat
point is [4]

LY �

�
1

2

X
i>j

r2ij � 2
���
3

p
S�

�
1=2
; (18)

where ~ri marks the position of the ith quark, rij � j ~ri �
054506
~rjj and S� is the area of the triangle spanned by the three
quarks. The Y-Ansatz predicts that the confining part of
the baryonic potential is �3Q

Y LY , with string tension �3Q
Y

equal to the Q �Q string tension [17]:

�3Q
Y � �Q �Q: (19)

The full expression describing both large and small dis-
tances is

V3Q�LY� � V3Q
0 �

X
i<j

$3Q

rij
� �3Q

Y LY; (20)

where, similarly to the Q �Q static potential, V3Q
0 is a self

energy term, the Coulomb term with effective coupling
$3Q comprises one gluon exchange as well as a Lüscher
term, recently derived for the baryonic string in [18], and
the confining term has string tension �3Q

Y . The �-Ansatz
prediction [19] is that the confining part of the potential
is proportional to the perimeter of the triangle formed by
the quarks

L� �
X
i<j

j ~ri � ~rjj: (21)

with string tension

�3Q
� �

1

2
�Q �Q: (22)

The short distance part is of the same form as in Eq. (20).
Thus the full expression for the �-Ansatz potential is

V3Q�L�� � V3Q
0 �

X
i<j

$3Q

rij
� �3Q

� L�: (23)

For short distances perturbation theory arguments relate
the self energy and the Coulomb term coefficient to those
of the Q �Q static potential [5]:

V3Q
0 �

3

2
VQ

�Q
0 ; $3Q �

1

2
$Q �Q: (24)

On the other hand fitting the numerical data including
both long and short distances by (20) or by (23) one may
find results which differ from (24), e.g., due to the Lüscher
term contribution. In Ref. [4] a rough agreement between
the fit parameters and (24) has been found for both
Y-Ansatz and �-Ansatz fits.

In Fig. 2 we show the baryon potential as a function of
LY . An unphysical constant V3Q

0 has been subtracted from
the potentials. For equal distances between the quarks, i.e.
j ~ri � ~rjj � d � LY=

���
3

p
for 8i � j, Eq. (20) becomes

V3Q�LY� � V3Q
0 � 3

���
3

p $3Q

LY
� �3Q

Y LY: (25)

Fitting our data for three quarks in equilateral triangles
by Eq. (25) for distances d < 0:75 fm we found the
Abelian string tension �3Q

Y;aba
2 � 0:038�1� and
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FIG. 2. The Abelian baryon potential in full and quenched
QCD.
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0.0395(12) for the quenched and full theory, respectively.
These values agree within error bars with the Abelian

string tension for the Q �Q flux tube �Q
�Q

ab � 0:039�1� and
0.0402(11) [9] thus supporting the Y-Ansatz. Note, that
both 3Q and Q �Q Abelian string tensions are slightly
higher in full QCD. We found values for the self-energy
and the Coulomb term coefficient smaller than prescribed

by (24): V3Q
0 =VQ

�Q
0 � 1:28�5�; $3Q=$Q �Q � 0:27�4� in full

QCD and V3Q
0 =VQ

�Q
0 � 1:31�6�; $3Q=$Q �Q � 0:31�4� in

quenched QCD. The fits are also shown in Fig. 2.
In Fig. 3 the Abelian and the nonAbelian quenched

potentials are plotted together with respective fits. The
data for the nonAbelian potential is taken from Ref. [4].
Comparison of �3Q

Y;ab with the SU(3) result [4] gives
�3Q
Y;ab=�

3Q
Y � 0:83�3�, which lends further support to the

hypothesis of Abelian dominance.
FIG. 3. Comparison of the Abelian and SU(3) baryon poten-
tial in the quenched approximation on the 16332 lattice at * �
6:0. The SU(3) potential is taken from [4].
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If the confining flux is of Y-shape we would expect the
long-distance part of the potential to be a universal func-
tion of LY. In Fig. 4 we plot the Abelian potential as a
function of LY (top), and as a function of L� (bottom).
The data show a universal behavior when plotted against
LY. This is to a lesser extent the case when plotted against
L�, which supports a genuine three-body force of Y-type.
In Fig. 4 the fits by the Y-Ansatz and by the �-Ansatz for
the quarks in the equilateral triangle are shown in the top
and bottom parts, respectively. Note that for the quarks in
the equilateral triangle these two fits are essentially the
same with �3Q

� � 1��
3

p �3Q
Y and equal self energy and

Coulomb coefficient.
In Fig. 5 and 6 we show further comparison of our data

with � and Y-Ansätze for full and quenched QCD. The
data for the three-quark potential are plotted as a func-
FIG. 4. The Abelian baryon potential in full QCD, together
with its monopole and photon part, as a function of LY (top)
and L� (bottom), respectively. The curves show fits (25) (top)
and (23) (bottom) to the data with equal distances between the
static sources.
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FIG. 6. Same as Fig. 5 for quenched QCD.
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tion of distance d for equilateral triangle. In the same
figures the curves showing respective Y-Ansatz and
�-Ansatz predictions are plotted. We fix all parameters
in the Ansätze using relations (19), (22), and (24). We see
that for both full and quenched QCD at distances d <
0:5 fm the three-quark potential data agree with the
�-Ansatz, while at larger distances it agrees with
Y-Ansatz up to an additive constant indicating that the

string tension �3Q
Y;ab is equal to �Q

�Q
ab as was already dis-

cussed above. Similar findings were presented for the
quenched nonAbelian potential in [3]. Thus we conclude
that our data for the Abelian potential confirm the
Y-Ansatz for large distances. The agreement with the
�-Ansatz at short distances, which was also observed in
[3], is probably a coincidence since the �-Ansatz predic-
tion Eq. (22) is formulated for large quark separations. On
the other hand, the proximity of the potential to the
�-Ansatz at distances which are relevant for the spectrum
calculations might be important for the phenomenolo-
gists since the calculations with the �-Ansatz potential
are much simpler. The disagreement with the Y-Anzatz at
small distances was first clearly observed in Ref. [5]. One
can guess that the finite size of the junction play the role
in appearance of this discrepancy. Although our data for
the static potential at small distances behave similar to
that of Ref. [5] we are not in a position to make strong
statements about the short distances since we are using
the Abelian projection which, as many earlier observa-
tions suggest, gives correct description of the static po-
tentials at large distances only.

Although the results for the static potential are in favor
of the Y-Ansatz, the difference from the �-Ansatz pre-
FIG. 5. The Abelian three-quark potential and � and
Y-Ansätze in full QCD for quarks in equilateral triangles as
function of quark separation d � LY=

���
3

p
� L�=3. The solid

line is a fit to the data, the dotted line is the �-Ansatz
prediction Eq. (23) and the dashed line is the Y-Ansatz pre-
diction Eq. (25). For both Ansätze Eq. (24) was used.
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diction is rather small. Thus it is worthwhile to study the
color flux distribution. In Fig. 7 we show the distribution
of the color electric field ~E3Q, and its surrounding mono-
pole currents k3Q, on the 24348 lattice in full QCD. The
time direction of theWilson loop has been taken in one of
the spatial directions of the lattice. Points on the hyper-
plane orthogonal to the time direction of the Wilson loop
are marked by �x; y; z�. The static quarks are placed at
�x; y; z� � �20; 10; 8�, (25, 18, 8) and (30, 10, 8), respec-
tively, i.e., they lie in the �x; y� plane. The color index of
the electric field operator [cf. Equation (16)] is identified
with the color index of the quark in the bottom-right
corner (in the center bottom figure). Note that the sum
of the electric field over the three color indices vanishes
at any point. As expected, the flux emanates from the
quark in the bottom-right corner and at about the center
FIG. 7. Distribution of the color electric field ~E3Q in the �x; y�
plane on the 24348 lattice (center bottom figure), together with
the monopole currents k3Q in the �x; z� and �y; z� planes (ad-
jacent figures), respectively, at the position marked by the
respective solid lines. The magnitude of E3Q and k3Q is in-
dicated by the length of the arrows.
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of the 3Q system splits into two parts. The flux lines are
schematically drawn in Fig. 8. A similar picture holds for
the top and bottom-left quark and their respective fluxes.
In the adjacent figures we show the monopole current in
the planes perpendicular to the electric flux lines, i.e., the
�x; z� and �y; z� planes. They form a solenoidal current, as
in the case of the Q �Q system, in agreement with the dual
superconductor picture of confinement.

We may decompose the Abelian gauge field into a
monopole and photon part according to the definition
[20,21]

"i�s;�� � "mon
i �s;�� � "phi �s; ��;

"mon
i �s;�� � 2#

X
s0
D�s� s0�r���

$ mi�s
0; $; ��;

(26)

where D�s� � ��1�s� is the lattice Coulomb propagator,
r���
� is the lattice backward derivative, and mi�s;�; ��

counts the number of Dirac strings piercing the plaquette
ui�s; �; ��. If one computes ki��s;�� from "mon

i �s;�� one
recovers almost all monopole currents. In Fig. 4 we see
that the monopole part is largely responsible for the
linear behavior of the potential, as was found already in
case of the Q �Q potential [9]. The ratio of monopole to
Abelian string tension turns out to be 0.81(3).

In Fig. 9 we show the distribution of the Abelian color
electric field and its monopole and photon parts. The
photon part shows a Coulomb-like distribution, while
the monopole part has no sources. Outside the flux tube
the monopole and photon parts of the color electric field
FIG. 8. Schematic view of the color electric field.

FIG. 9. Distribution of the Abelian color electric field ~E3Q

(top) broken into monopole (middle) and photon parts (bottom)
on the 24348 lattice in full QCD. The color index of the electric
field operators corresponds to that of the quark in the bottom-
right corner. Only part of the lattice is shown here.

054506
largely cancel. The middle figure shows clearly that the
flux lines are attracted to a Y-type geometry.

In Fig. 10 we show the action density (3Q
A of the 3Q

system in full QCD. Also shown is the monopole and
photon part of (3Q

A separately. Let us first look at the (full)
Abelian density. It clearly displays a Y-type geometry of
the color forces. This is, of course, indistinguishable from
a geometry of purely two-body forces with strongly at-
tracting flux lines. The monopole part of the action den-
sity shows no sources. Apart from that, it appears that the
action density originates almost entirely from the mono-
pole part. The sources show up in the photon part of the
action density as expected.
-6
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FIG. 12. The Abelian action density of the 3Q system as
predicted by the �-Ansatz in full QCD.
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FIG. 10. The Abelian action density of the 3Q system in full
QCD, together with the monopole and photon part.
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We have done similar calculations (to the ones shown
in Figs. 4, 7, 9, and 10) in quenched QCD as well. Part of
our findings have been reported in [7], and we refrain
from repeating them here. Qualitatively, we found the
same results as in full QCD at m#=m( � 0:7. In Fig. 11
we compare the action density of full and quenched QCD.
We see that at the center of the flux tube the action density
FIG. 11. The action density (3Q
A r

4
0 of Fig. 10 plotted across the

flux tube at the distance 3a from the quark and 2a from the
junction.

054506
in full QCD is slightly higher than for the quenched case,
while the shapes are rather similar. The same feature has
been observed for theQ �Q flux tube [9].We have estimated
the width 2 of the flux tube using a Gaussian fit [9]. The
result is 2 � 0:30�4� fm and 0.36(11) fm in full and
quenched QCD, respectively. This is to be compared
with the width of the Q �Q flux tube, which turned out to
be 0.29(1) fm in full and quenched QCD [9].We found that
the width increases closer to the junction. So the numbers
quoted above are only to tell that the width of the baryon
flux tube, away from the junction is not very different
from that of the Q �Q flux tube. For a more precise deter-
mination of the width larger quark separation is
necessary.

It is interesting to compare the action density shown in
Fig. 10 with the action density constructed out of three
Q �Q flux tube action densities multiplied, in agreement
with (22), by a factor 1

2 to take into account that we are
dealing with pairs of quarks rather than with Q �Q pairs.
Such a comparison has been done in Ref. [5] for the Potts
model. For the Q �Q action density we used the results of
Ref. [9]. The resulting density is shown in Fig. 12.
Figures 10 and 12 look rather different. The most impor-
tant difference is that the measured density has a bump in
the center, while the �-Ansatz density has a dip. This
comparison gives further support to the Y-Ansatz.
IV. BARYONIC FLUX AT FINITE
TEMPERATURE

We expect the flux tube to disappear and the color
electric field to become Coulomb- or Yukawa-like above
the finite temperature phase transition Tc and when the
string breaks in full QCD. This phenomenon has been
observed in case of the Q �Q system in the pure SU(2)
gauge theory for temperatures T > Tc [22] and in full
QCD for T just below and above Tc [23]. Throughout this
Section we shall use the Polyakov loop (12) to create a
baryon.

In Fig. 13 we show the baryon potential on the 1638
lattice at * � 5:2 for several values of �. At this * value

T / exp��2:81=��: (27)
-7



FIG. 15 (color online). The color electric field (top) and
monopole currents (bottom) on the 1638 lattice at � � 0:1335
(left), 0.1344 (middle) and 0.1360 (right). The three quarks lie
in (what we call) the �x; y� plane. The bottom figures show the
monopole currents in the �x; z� plane at the position marked by
the solid lines in the top figures.
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FIG. 13 (color online). The monopole part of the baryon
potential at finite temperature in full QCD as a function of
LY (T � Tc) and L� (T > Tc), respectively.
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Increasing � thus increases the temperature. We cross the
finite temperature phase transition at � � 0:1344 [15]. We
see that the potential flattens off while we approach the
transition point. However, the distances we were able to
probe are not large enough to make any statement about
string breaking.

To compute the action density (3Q
A and the electric field

and monopole correlators E3Q and k3Q, respectively, we
need to reduce the statistical noise. We do that by averag-
ing over time slices and using extended operators

(3Q
A �s� ���! 1
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f(3Q

A �s� � (3Q
A �s� 1̂� 2̂� 3̂�

�(3Q
A �s� 1̂� 2̂� � (3Q

A �s� 1̂� 3̂�

�(3Q
A �s� 2̂� 3̂� � (3Q

A �s� 1̂�

�(3Q
A �s� 2̂� � (3Q

A �s� 3̂�g; (28)
E3Q�s; i� ���! 1

2
fE3Q�s; i� � E3Q�s� î; i�g; (29)
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FIG. 14 (color online). The Abelian action density in the
deconfined phase at � � 0:1360.

054506
k3Q��s; �� ���! 1

2
fk3Q��s; �� � k3Q���s� 2̂�; �g; � � 1; 3

(30)

where (again) we have assumed that the quarks lie in the
�x; y� plane, and we consider the monopole current in the
�z; x� plane.

In Fig. 14 we plot the Abelian action density in the
deconfined phase at � � 0:1360. As was to be expected,
the action density shows three Coulomb-like peaks at
the position of the quarks, similar to the photon part
of the action density at zero temperature as shown in
Fig. 10.

In Fig. 15 we show the monopole part of the electric
field, averaged over the color components, and the ac-
companying monopole current for three values of �,
corresponding (from left to right) to the confined case,
to T � Tc and to the deconfined phase. In the confinement
phase (� � 0:1335) we find the flux to be of Y-shape,
similar to the zero temperature case where we used
Wilson loop correlators. Note that the Polyakov lines do
not have a Y-shape junction like the Wilson loop does,
which excludes the possibility that the flux is being
induced by the color lines. Just below Tc (� � 0:1344)
we still see a Y-shape flux, while in the deconfined phase
(� � 0:1360) the electric field becomes Coulomb-like.

V. CONCLUSIONS

We have studied the 3Q system in the maximally
Abelian gauge in full QCD at zero and at finite tempera-
ture. Among the quantities we have looked at are the
Abelian baryon potential as well as the flux distribution
and the action density. While on the basis of the potential
-8
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it is hard to decide whether the long-range potential is of
�- or Y-type, the distribution of the color electric field
and the action density clearly shows a Y-shape geometry.
As in the Q �Q system, we identified the solenoidal mono-
pole current to be responsible for squeezing the color
electric flux into a narrow tube. Little difference to the
quenched theory was found. In the deconfined phase the
flux tube disappears, and the color electric field assumes a
Coulomb-like form. Our results are in qualitative agree-
ment with the predictions of the dual Ginzburg-Landau
model [24]: the baryon flux has Y-shape, and the sole-
noidal monopole currents are clearly observed.
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