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The one-loop corrections to the lattice supersymmetric Ward-Takahashi identity (WTi) are inves-
tigated in the off-shell regime. In the Wilson formulation of the N � 1 supersymmetric Yang-Mills
theory, supersymmetry is broken by the lattice, by the Wilson term, and is softly broken by the presence
of the gluino mass. However, the renormalization of the supercurrent can be realized in a scheme that
restores the continuum supersymmetric WTi (once the on-shell condition is imposed). The general
procedure used to calculate the renormalization constants and mixing coefficients for the local
supercurrent is presented. The supercurrent not only mixes with the gauge invariant operator T�. An
extra mixing with other operators coming from the WTi appears. This extra mixing survives in the
continuum limit in the off-shell regime and cancels out when the on-shell condition is imposed and the
renormalized gluino mass is set to zero. Comparison with numerical results is also presented.
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I. INTRODUCTION

Supersymmetry (SUSY) or fermion-boson symmetry
is one of the most exciting topics in field theory. From a
theoretical point of view, SUSY plays a fundamental role
in string theory. There are many strong phenomenological
motivations for believing that SUSY is realized in nature
in a spontaneously broken form. The SUSY breaking
mechanisms are requested in order to produce a low
energy four-dimensional effective action with a residual
N � 1 SUSY. On the other hand, nonperturbative studies
of supersymmetric gauge theories turn out to have re-
markably rich properties which are of great physical
interest, as has been pointed out in [1]. For this reason,
much effort has been dedicated to formulating a lattice
version of supersymmetric theories (for a recent review in
SUSY on the lattice with a complete list of relevant
references, see [2]). More recently, related interesting
results in SUSY can be found in [3–12]. Some of these
formulations try to realize chiral gauge theories on the
lattice with an exact chiral gauge symmetry [13–16]. The
lattice formalism is a powerful tool to extract nonpertur-
bative dynamics of field theories and may be able to
provide additional information and confirm or improve
theoretical expectations.

To formulate SUSYon the lattice, we follow the ideas of
Curci and Veneziano [17]. They propose to give up mani-
fest SUSY on the lattice, and instead to restore it in the
continuum limit. In [17], the Wilson formulation for the
N � 1 supersymmetric Yang-Mills (SYM) theory, which
is the simplest SUSYgauge theory and corresponds to the
SUSYgluodynamics, is adopted. For SU�Nc� it has �N2c �
1� gluons and the same number of massless Majorana
fermions (gluinos), in the adjoint representation of the
color group.
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SUSY is broken explicitly by the Wilson term and the
finite lattice spacing. In addition, a soft breaking due to
the introduction of the gluino mass is present. In [17], it is
proposed that SUSY can be recovered in the continuum
limit by tuning the bare gauge coupling, g0, and the
gluino mass, m~g0 , to the SUSY point, m~g0 � 0, which
also coincides with the chiral point. In [18–24], the
DESY-Münster-Roma collaboration has investigated
these issues for the SU(2) gauge group [some first results
have been obtained for SU(3) [25] ], simulating the theory
with a dynamical gluino using the multibosonic algo-
rithm [26] with a two-step variant called the TSMB
algorithm [27] (while quenched results are in [28]).

Another independent way to study the SUSY (chiral)
limit in the Wilson formulation of Curci and Veneziano is
through the study of the SUSY WTi. On the lattice, it
contains explicit SUSY breaking terms and the SUSY
limit is defined to be the point in the parameter space
where these breaking terms vanish and the SUSY WTi
recovers its continuum form. These issues have been in-
vestigated numerically in [23] in the on-shell regime.

In this paper, the general procedure used to determine
the renormalization constants and mixing coefficients for
the local definition of the supercurrent in the off-shell
regime is explained. It is shown that, when the operator
insertion involves elementary fields, the supercurrent not
only mixes with the gauge invariant operator T�, as has
been claimed in [17]. The supercurrent contains also non-
Lorentz covariant terms which survive in the continuum,
in the off-shell regime. These non-Lorentz breaking
terms cancel out when the on-shell condition on the
gluino is imposed and the continuum SUSY WTi is
recovered. Preliminary studies have been presented in
[29,30].
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The paper is organized as follows. In Sec. II the Curci
and Veneziano lattice formulation of the N � 1 SYM
theory is presented, together with the lattice action and
the vertices used for the calculation. In Sec. III the SUSY
WTi on the lattice are written and the renormalization
procedure explained. The calculation of the renormaliza-
tion constant for the supercurrent is presented in Sec. IV.
Discussions and outlook are summarized in Sec. V. In
Appendices A, B, and C, some details of the calculation
are shown.
1Our definition of the link variable U��x� differs from that of
[32] [see our definition of the plaquette (2.2)]; the two defini-
tions are related by Hermitian conjugation.
II. LATTICE FORMULATION

In the Wilson formulation of the N � 1 SYM theory
[17], the gluonic part of the action is the standard pla-
quette one:

Sg �
	
2

X
x

X
��

�
1�

1

Nc
ReTrP���x�

�
; (2.1)

where the plaquette operator is defined as [31]

P���x� � Uy
� �x�Uy

��x� �̂�U��x� �̂�U��x�; (2.2)

and the bare coupling is given by 	 � 2Nc=g20. For
Wilson fermions, the fermionic part of the action reads

Sf �
X
x

a4 Tr
�
1

2a
� ��x���� � r�Uy

��x���x� a�̂�U��x�

� ��x� a�̂���� � r�U��x���x�Uy
��x�	

�

�
m0 �

4r
a

�
��x���x�

�
; (2.3)

where m0 is the gluino bare mass and a is the lattice
spacing. The fermionic field (gluino), ��x� � �a�x�Ta, is
a Majorana spinor in the adjoint representation of the
gauge group. The symbol Tr implies the trace over the
color indices. The normalization is given by Tr�TaTb� �
1
2�ab. In this paper, only the case Nc � 2 is considered,
for which the adjoint gluino field is expressed in terms of
Pauli matrices �k as

� �
X3
k�1

1

2
�k�

k: (2.4)

The gluino field ��x� satisfies the Majorana condition

��x� � C �T�x�; (2.5)

where C � �2�0 is the charge conjugation operator. Our
matrix convention for the Euclidean � matrices is as
follow:

�0 �
0 1
1 0

� �
(2.6)

and
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�k �
0 �i�k

i�i 0

� �
: (2.7)

The matrix �5 is defined to be

�5 � �1�2�3�0 �
1 0
0 �1

� �
; (2.8)

and the matrix ��� is

��� �
i
2
���; ��	: (2.9)

The anticommutator property is

f��; ��g � 2���: (2.10)

Finally, the Wilson parameter is fixed to be r � 1.
SUSY is not realized on the lattice because, as the

Poincaré algebra, a sector of the superalgebra is lost.
SUSY is explicitly broken in the action (2.1) and (2.3)
by the lattice itself, by the gluino mass term, and by the
Wilson term. Nevertheless, one can still define some
transformations that reduce to the continuum supersym-
metric ones, in the limit a! 0. One choice is [32,33]1:

�U��x� � �ag0U��x� ��x�����x� � ag0 ��x�����x

�a�̂�U��x�;

�Uy
��x� � ag0 ��x�����x�U

y
��x� � ag0U

y
��x� ��x�����x

�a�̂�;

���x� � �
i
g0
���G���x���x�;

� ��x� �
i
g0
��x����G���x�; (2.11)

where ��x� and ��x� are infinitesimal Majorana fermionic
parameters, while G���x� is the clover plaquette operator,

G ���x� � �
1

8a2
�P���x� � P���x� � P��;���x�

� P��;���x� � P�;���x� � P��;��x�

� P��;��x� � P�;���x�	: (2.12)

A weak coupling perturbation theory is developed by
writing the link variable as

U��x� � e�aA��x�; (2.13)

and expanding it in terms of g0. Here the gluon field is
defined to be A��x� � �ig0Ab��x�Tb.

In order to calculate the one-loop corrections to the
SUSY WTi [which correspond to O�g20�], we need two
kinds of gluon-gluino interaction vertices. The gluon-
gluino vertex,
-2
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Vab;c1� �p; q� � g0f
abc

�
�� cos

�p�a
2

�
q�a

2

�
� ir sin

�p�a
2

�
q�a

2

��
; (2.14)

two-gluons-one-gluino vertex,

Vab;cd2�� �k; p� �
1

2
ag20�f

acefebd � fadefebc�
�
i�� sin

�p�a
2

�
q�a

2

�
� r cos

�p�a
2

�
q�a

2

��
���; (2.15)

and the three-gluons vertex,

Gabc3����k; k1; k2� � ig0f
abc

�
��� cos

�
k�a
2

�
sin

�k2�a
2

�
k1�a

2

�
� ��� cos

�
k1�a
2

�
sin

�
k�a
2

�
k2�a
2

�
� ��� cos

�k2�a
2

�
 sin

�
k1�a
2

�
k�a
2

��
: (2.16)

These vertices are similar to QCD, and the only difference is that the fermion is a Majorana fermion in the adjoint
representation of the gauge group instead of the fundamental one.

III. SUSY WTI ON THE LATTICE

The vacuum expectation value of an operator O is defined to be

hOi �
Z
dU d�Oe�Stotal ; (3.1)

where Stotal is the total action on the lattice. By applying an infinitesimal local supersymmetric transformation, with a
localized transformation parameter ��x�, the lattice WTi is written as [29],

hOr�S��x�i � 2m0hO&�x�i �
�
�O

� ��x�

����������0
	
�

�
O
�SGF
� ��x�

����������0
	
�

�
O
�SFP
� ��x�

����������0
	
� hOXS�x�i; (3.2)
where SGF is the gauge fixing term, SFP is the Faddeev-
Popov term, and f��O�=�� ��x�	gj��0 represents the con-
tact terms (see Appendices A and B for definitions). This
WTi is also discussed in [34]. XS�x� is the symmetry
breaking term coming from the fact that the action is
not fully invariant under (2.11). Usually XS�x� is a com-
plicated function of the link variables and the fermionic
variables [32], and its specific form depends on the choice
of the lattice supercurrent.

Let us define the lattice local supercurrent as

S��x� � �
2i
g0
TrfG���x��������x�g; (3.3)

while r� is the symmetric lattice derivative,

r�f�x� �
1

2a
�f�x� a�̂� � f�x� a�̂�	; (3.4)

and &�x� corresponds to the gluino mass term

&�x� �
i
g0
TrfG���x������x�g: (3.5)

In order to renormalize the lattice WTi, the operator
mixing has to be taken into account. The standard way to
renormalize the supercurrent is to define a subtracted XS,
whose expectation value is forced to vanish in the limit
a! 0 [35,36]. In the case in which the operator insertion
O in Eq. (3.2) is gauge invariant, XS mixes with the
following operators of equal or lower dimension [28]:
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XS�x� � XS�x� � �ZS � 1�r�S��x� � 2 ~m&�x�

� ZTr�T��x�; (3.6)

where the current T� reads

T��x� � �
2

g
TrfG���x�����x�g: (3.7)

On the other hand, if the operator insertion O is non-
gauge invariant (i.e., the one involving elementary fields),
the gauge dependence implies that operator mixing with
nongauge invariant terms has to be taken into account in
the renormalization procedure. In this case Eq. (3.6) is
modified as [29,37]

XS�x� � XS�x� � �ZS � 1�r�S��x� � 2 ~m&�x�

� ZTr�T��x� �
X
j

ZBjBj: (3.8)

The Bj’s denote the occurrence of mixing, not only with
nongauge invariant operators but also mixing with gauge
invariant operators which do not vanish in the off-shell
regime (but vanish in the on-shell regime). Consider, for
example, the gauge invariant operator

B0 �
2

g
Trf���D�G���x�	��x�g; (3.9)

which is zero imposing the equations of motion (thus, is
not considered in [23]), but in the off-shell regime is
nonzero and must be considered [38]. Other nongauge
-3
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invariant operators, which should be included in Bj are

B1 �
2

g
@�A�@6 �; B2 �

2

g
A�@�@6 �;

B3 �
2

g
A6 @�@��;

(3.10)

(also reported in [32]). Finally, non-Lorentz covariant
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terms coming from r�S�, the gauge fixing term and
contact terms, which appear in the off-shell regime,
should also be taken into consideration. Because the
Bj do not appear in the tree-level WTi, ZBj should be
O�g2� [29].

Substituting (3.8) in (3.2) we obtain the renormalized
WTi
ZShOr�S��x�i � ZThOr�T��x�i � 2�m0 � ~m�Z�1& hO&R�x�i � ZCT

�
�O

� ��x�

����������0
	
�

ZGF

�
O
�SGF
� ��x�

����������0
	
� ZFP

�
O
�SFP
� ��x�

����������0
	
�

X
j

ZBjhOBji � 0: (3.11)
The contact terms, Faddeev-Popov term, and gauge fix-
ing term should be renormalized; that is why in Eq. (3.11)
the renormalization constants ZCT , ZGF, and ZFP are
introduced. hOBji can in principle do mixing with S�
and T� [29]. This implies that S� not only mixes with T�
as was predicted in [17], but extra mixing with gauge
variant operators and/or gauge invariant operators, which
do not vanish in the off-shell regime, can appear. These
extra mixing vanish by setting the renormalized gluino
mass to zero and by imposing the on-shell condition on
the gluino.

In the continuum, the existence of a renormalized
SUSY WTi,

@�SR� � 2mRZ&&; (3.12)

is generally assumed, where SR is the renormalized super-
current and mR is the renormalized gluino mass. For
mR � 0, we have SUSY while a nonvanishing value of
mR breaks SUSY softly. It is generally assumed that
SUSY is not anomalous [Eq. (3.12) holds] and only the
mass term is responsible for a soft breaking. However, in
[39] the question of whether nonperturbative effects may
cause a SUSYanomaly has been raised.

It is tempting to associate the normalized continuum
supercurrent as

SR� � ZSS� � ZTT�; (3.13)

in analogy with the lattice chiral WTi in QCD. This
analogy fails, as has been pointed out in [36]. Explicit
one-loop calculation may shed some light on this issue. If
the correctly normalized supercurrent coincides with
(3.13), then it is conserved when mR � 0. This is the
restoration of SUSY in the continuum limit [23].

By using general renormalization group arguments
(see, for example, [36]), one can show that ZS, ZT , and
Z&, being power subtraction coefficients, do not depend
on the renormalization scale �, defining the renormal-
ization operator in Eq. (3.6). This implies that ZS �
ZS�g0; m0a�, ZT � ZT�g0; m0a�, and Z& � Z&�g0; m0a�.

In this paper, we are interested in calculating the
renormalization constant for the local supercurrent
(3.11) and compare with Monte Carlo results in [23].
Notice that the relation between the one-loop perturbative
calculation and the numerical one is ZTZ�1S � ZT jone-loop.
This is because, ZS � 1�O�g20�, while ZT � O�g20�. So it
is enough to calculate the coefficient ZT in one-loop
lattice perturbation theory (LPT). The numerical esti-
mates are [23] ZTZ�1S � �0:039�7� for the point-split
current and ZTZ�1S � 0:185�7� for the local current,
both at 	 � 2:3. An estimate of ZTZ�1S for the point-split
current at 	 � 2:3 can be obtained from the one-loop
perturbative calculation in [32]. At order g20 the value is
ZT jone-loop � �0:074 [32]. In this paper, the calculation of
ZT jone-loop for the local supercurrent is presented.

In principle, each matrix element in Eq. (3.11) is pro-
portional to each element of the �-matrix base

� � f1; �5; �/; �5�/; �/�g; (3.14)

but in order to determine ZT it is enough to calculate in
Eq. (3.11) the projections over two elements of the base
(3.14).

IV. RENORMALIZATION CONSTANTS

We are now considering each matrix element in
Eq. (3.11) with O (a nongauge invariant operator) given
by

O :� Ab��y� �a�z�: (4.1)

In Fourier transformation (FT), we choose p as the out-
coming momentum for the gluon field A� and q the
incoming momentum for the fermion field � (see
Fig. 1). Each matrix element can be written as

hAb��y� �
a�z�C�x�i)

FT
DF�q��C�p; q�	ampDB�p��ab; (4.2)

where �C�p; q�	amp can be, i.e., r�S�, r�T�, etc., with
the external propagators amputated,DF�q� andDB�p� are
the full fermion and gluon propagators, respectively,
while �ab is the color structure, similar to all diagrams.
-4



FIG. 1. Diagrams contributing for the supercurrent and the
gauge fixing term. The gray blob corresponds to the operator
insertion in which flows a momentum �p� q�.

SUPERSYMMETRIC WARD-TAKAHASHI IDENTITY IN . . . PHYSICAL REVIEW D 70 054504
The nontrivial part of the calculation is the determination
of �C�p; q�	amp for each matrix element in Eq. (3.11).
hO&�x�i is not considered as we set the renormalized
gluino mass to zero.

In order to determine ZT , one should pick up from each
matrix element of Eq. (3.11) those terms which contain
the same Lorentz structure as S� and T�, to tree level.
Those operators which do not contain the same tree-level
Lorentz structure as S� and T� do not enter in the
determination of ZT . Below, we present the tree-level
values of the different operators of Eq. (3.11). The calcu-
lation is straightforward.

For the case of the supercurrent (3.3), the tree-level
part reads
S�0�� �x� � �
2i
g
Trf�@�A��x� � @�A��x�	�������x�g:

(4.3)
Using Tr�TaTb� � 1
2�ab for the traces and the antisym-

metry of ��� this expression becomes
S�0�� �x� � �2�ab@�A
b
��x�������

a�x�: (4.4)
or in FT,
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~S�0�� �r� �
Z
d4x eir�xS�0�� �x�

� �2i�ab�����
Z
d4x

Z d4p

�22�4


Z d4q

�22�4
ei�r�p�q�xp� ~A

b
��p�~�

a�q�

� �2i�ab�����
Z d4p

�22�4
Z d4q

�22�4
��r� p

�q�p� ~A
b
��p�~�

a�q�; (4.5)

so we can define the vertex

~S ab�;��p; q� � �2i�ab�����p�: (4.6)

Concerning the operator T� in Eq. (3.7), the tree-level
is

T�0�
� �x� � i�ab�@�A

b
��x� � @�A

b
��x�	���

a�x� (4.7)

after the FT; we define the corresponding tree-level ver-
tex,

~T ab�;��p; q� � �ab�6p��� � p����: (4.8)

The tree-level expression for the amputated matrix
element hOr�S��x�i using the notation in Eq. (4.2) is

�r�S��
�0�
amp)

FT
2�p� q�������p�; (4.9)

while the tree-level expression for the amputated matrix
element hOr�T��x�i is

�r�T��
�0�
amp )

FT
i�6pp� � p

2�� � 6pq� � p � q���: (4.10)

In our convention, r� � i�p� q�� is the momentum
transfer of the operator insertion.

From Eqs. (4.9) and (4.10), it is easy to see that, for p �
q, a condition which would greatly simplify the calcula-
tion because implies that the operator insertion is at zero
momentum, �r�S��x�	

�0�
amp � �r�T��x�	

�0�
amp � 0. So the

tree level of r�S� and r�T� cannot be distinguished at
zero momentum transfer. In order to determine ZT , differ-
ent tree-level values of S� and T� are needed. To differ-
entiate these tree-level values, general external momenta,
p and q, are required.

The value of the projections over �/ and �/�5 for the
different matrix elements in Eq. (3.11) has been per-
formed. Denoting 1

4 tr��/�r�S��amp	 the projection over
�/ and 1

4 tr��/�5�r�S��amp	 the projection over �/�5 (tr
is the trace over the gamma matrices which should not be
confused with Tr, the trace over the color indices), it is
easy to demonstrate that

1
4tr��/�r�S��

�0�
amp	 )

FT
2i�p/p� � p/q� � p

2�/�
�p � q�/��; (4.11)
-5
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where 1
4 tr������ � ��� and 1

4 tr��5��������� � "����,
while

1
4 tr��/�5�r�S��

�0�
amp	 )

FT
2ip�q�"�/��: (4.12)

Also,

1
4tr��/�r�T��

�0�
amp	 )

FT
i�p/p� � p/q� � p

2�/�
�p � q�/�� (4.13)

and

1
4 tr��/�5�r�T��

�0�
amp	 )

FT
0: (4.14)

Concerning the gauge fixing term, the tree-level value
can be read from Eq. (B9)

�

�
�SGF
���x�

����������0
�
�0�

amp
)
FT

� 2i 6pp�; (4.15)

and the projections are

�
1

4
tr
�
�/

�
�SGF
���x�

����������0
�
�0�

amp

�
)
FT
F� 2ip/p�; (4.16)

and

1

4
� tr

�
�/�5

�
�SGF
���x�

����������0
�
�0�

amp

�
)
FT
0: (4.17)

For the contact terms, the tree level can be seen directly
from Eq. (B2) (with a! 0)�
�O
���x�

����������0
	
�0�

� 2i��x� y���h�
a�y� �b�z�i

���x� y�hAa��y����G
b
���z�i (4.18)

or in FT (in the limit m0 ! 0)

2i��

�
1

i6q

�
�ab � 2ip�

1

p2
����ab: (4.19)

The projections are

1

4
tr
�
�/

�
�O
���x�

����������0
�
�0�

amp

�
)
FT
2i�p/q� � p � q��/

�p2�/�� (4.20)
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and

1

4
tr
�
�/�5

�
�O
���x�

����������0
�
�0�

amp

�
)
FT

� 2ip�q�"�/��: (4.21)

Finally, the tree-level vertex for the operator in Eq. (3.9)
is

� ~B0�
ab
� �p; q� � i�ab�p�p� � p

2������ (4.22)

while the projection is

1
4 tr��/�B0�

�0�
amp	 )

FT
i�p/p� � p

2�/��: (4.23)

For the operators in Eq. (3.10) we have

1
4tr��/�B1�amp	 )

FT
ip�q/;

1
4tr��/�B2�amp	 )

FT
iq�q/;

1
4tr��/�B3�amp	 )

FT
iq2�/�; (4.24)

and

1
4 tr��/�5�B0;1;2;3�

�0�
amp	 )

FT
0: (4.25)

The renormalization constants can be written as a
power of g0

Zoperator � Z�0�operator � g
2
0Z

�2�
operator � � � � ; (4.26)

and also for the operators a similar expansion can be
done:

hOperatori � hOperatori�0� � g20hOperatori
�2� � � � � ;

(4.27)

where hOperatori�2� is the one-loop correction while
hOperatori�0� is the tree-level value.

Substituting Eqs. (4.26) and (4.27) into Eq. (3.11), to
order g20, we obtain
�1� g20Z
�2�
S ��hOr�S��x�i�0� � g20hOr�S��x�i�2�	 � g20Z

�2�
T hOr�T��x�i�0� � �1� g20Z

�2�
CT�

��
�O

� ��x�

����������0
	
�0�

�

g20

�
�O

� ��x�

����������0
	
�2�
�
� �1� g20Z

�2�
GF�

��
O
�SGF
� ��x�

����������0
	
�0�

� g20

�
O
�SGF
� ��x�

����������0
	
�2�
�
�

g20Z
�2�
FP

�
O
�SFP
� ��x�

����������0
	
�0�

� g20
X
j

Z�2�Bj hOBj�x�i
�0� � 0:

(4.28)

At tree level we have Z�0�S � 1; Z�0�T � 0; Z�0�CT � 1; Z�0�GF � 1; Z�0�FP � 0; Z�0�Bi � 0, so the lattice WTi is
-6
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hOr�S��x�i�0� �
�
�O

� ��x�

����������0
	
�0�

�

�
O
�SGF
� ��x�

����������0
	
�0�

� 0; (4.29)

which holds in our lattice calculation. Equation (4.29) was previously determined in the continuum [40]. To order g20 the
lattice WTi is

hOr�S��x�i�2� � Z
�2�
S hOr�S��x�i�0� � Z

�2�
T hOr�T��x�i�0� �

�
�O

� ��x�

����������0
	
�2�

� Z�2�CT

�
�O

� ��x�

����������0
	
�0�

�

Z�2�GF

�
O
�SGF
� ��x�

����������0
	
�0�

�

�
O
�SGF
� ��x�

����������0
	
�2�

�
X
j

Z�2�Bj hOBj�x�i
�0� � 0: (4.30)

Notice that the Faddeev-Popov term hO��SFP=� ��x�	j��0i
�0� in Eq. (4.28) is already O�g20� (see Appendix B)

and does not contribute to one-loop order. In Fig. 1, the Feynman diagrams for hOr�S��x�i
�2� and

hO��SGF=� ��x�	j��0i�2� are shown, while in Fig. 2 the nonzero contribution to contact terms are presented.
Let us substitute the tree-level values of the operators in Eq. (4.30) using the projections over �/,

1

4
tr��/�r�S��

�2�
amp	 � Z

�2�
S 2i�p/p� � p/q� � p

2�/� � p � q�/�� � Z
�2�
T i�p/p� � p/q� � p

2�/� � p � q�/�� �

1

4
tr
�
�/

�
�O

� ��x�

����������0
�
�2�

amp

�
� Z�2�CT2i�p/q� � p � q�/� � p2�/�� � Z

�2�
GF2ip/p� �

1

4
tr
�
�/

�
�SGF
� ��x�

����������0
�
�2�

amp

�
�

1

4
Z�2�Bj trh�/OBji

�0� � 0;

(4.31)

and the projections over �/�5,

1

4
tr��/�5�r�S��

�2�
amp	 � Z

�2�
S 2ip�q�"�/�� � Z�2�CT2ip�q�"�/�� �

1

4
tr
�
�/�5

�
�O

� ��x�

����������0
�
�2�

amp

�
�

1

4
tr
�
�/�5

�
�SGF
� ��x�

����������0
�
�2�

amp

�
�
1

4
Z�2�Bj trh�/�5OBji

�0� � 0: (4.32)
Our claim is that, in order to calculate Z�2�T we
can substitute 1

4Z
�2�
Bi
trh�/OBii�0� ! Z�2�B0 i�p/p��

p2�/�� � Z
�2�
B1
ip�q/ � Z

�2�
B2
iq�q/ � Z

�2�
B3
iq2�/�, and

1
4Z

�2�
Bi
Trh�/�5OBji�0� ! 0, where ZBj correspond to the

renormalization constant in Eqs. (4.23), (4.24), and
(4.25). No other ZBj are needed, because there are no
other Bj’s that would contribute with the same Lorentz
structures appearing in the tree-level of Eqs. (4.31) and
(4.32).

Each matrix element in Eqs. (4.31) and (4.32) has been
calculated for general p and q (off-shell regime). To deal
with the IR divergencies and renormalize to one-loop
order, the Kawai procedure is used [41], with the help of
tabulated results in [42,43]. Once p and q have been
extracted from the propagators through the Kawai proce-
dure, the rest of the integral depends on the loop momenta
which is numerically integrated. A similar renormaliza-
tion procedure has been used to calculate the three-loop
beta function in QCD with Wilson fermions [44] and the
054504
three-loop free energy in QCD with Wilson fermions
[45,46] (for a complete study of the off-shell WTi in
QCD see [47]). Typically, each matrix element contains
� 1000 terms (in particular dilogarithm functions de-
pending on both external momenta which come from the
diagrams with three propagators in Fig. 1). After the
numerical integration, one can simplify the results in
order to read the value of ZT by setting

p2 � q2 and p � q � 0; (4.33)

(see Appendix C). This is still an off-shell condition
(because even if p2 � q2, there are no other conditions
on this expression, i.e., q2 � 0), but drastically reduces
the number and difficulty of the expressions (for example,
the dilogarithm terms simplify).

Let us introduce, for simplicity, the notation
! � Or�S��x� � f��O�=�� ��x�	gj��0 � Of��SGF�=
�� ��x�	gj��0. Using Eq. (4.33), we get the following de-
pendence on p and q for trh�/!i�2� and trh�/�5!i�2�,
-7
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t rh�/!i�2� )
FT
A1q2p̂/p̂�� A2q2p̂/q̂�� �A3�M3�q2�/��M1q2p̂�q̂/�M2q2q̂/q̂�� P1q2p̂2���/� P2q2q̂2���/� � � �

(4.34)

and
t rh�/�5!i

�2� )
FT
A4q

2p̂�q̂�"�/��; (4.35)

where the dots in Eq. (4.34) indicate that, because the simplification in Eq. (4.33) is used, some momenta dependence are
missing or mixed with others, i.e., p � q��/ does not appear, while p2��/ is mixed with q2��/, (see Appendix C for
notation).

It is also interesting to see the Lorentz structure of the supercurrent,

trh�/S�i�2� )
FT
N1qp̂�p̂�p̂/ � N2qq̂�p̂�p̂/ � N3qp̂�q̂�p̂/ � N4qq̂�q̂�p̂/ � N5qp̂�p̂�q̂/ � N6qq̂�p̂�q̂/ � N7qp̂�q̂�q̂/
�N8qq̂�q̂�q̂/ �Q1qp̂/��� �Q2qq̂/��� �Q3qp̂���/ �Q4qq̂���/ �Q5qp̂���/ �Q6qq̂���/
�R1qp̂����/ � R2qq̂����/ � � � � ; (4.36)
where the coefficients Ai;Mj;Qk, are typically of the
form

�Cn � CmLn�a2q2�	; (4.37)

while Pi; Nj; Rk, do not contain Ln�a2q2� terms. Here, Cn
are lattice constants or numbers coming from the numeri-
cal integration and Cm are rational numbers coming from
the Kawai procedure. Notice that the Lorentz structures
multiplying Pi; Rk in Eqs. (4.34) and (4.36) are non-
Lorentz covariant, even in the continuum limit �a! 0�.

From Eqs. (4.31), (4.32), (4.34), and (4.35), the follow-
ing conditions can be derived:

A1 � �2iZ�2�S � iZ�2�T � 2iZ�2�GF � iZ
�2�
B0
;

A3 �M3 � 2iZ�2�S � iZ�2�T � 2iZ�2�CT � iZ
�2�
B0

� iZ�2�B3 ;

M1 � �iZ�2�B1 ; M2 � �iZ�2�B2 (4.38)

and

A2 � 2iZ�2�S � iZ�2�T � 2iZ�2�CT;

A4 � �2iZ�2�S � 2iZ�2�CT:
(4.39)

The last two conditions can be explicitly solved for Z�2�T :
FIG. 2. Nonzero diagrams contributing to the contact terms.

054504
Z�2�T � �iA2 � iA4: (4.40)

Equation (4.40) is the only possible solution of the system
(4.31) and (4.32) for Z�2�T . Our result is Z�2�T jone-loop �
0:664. A VEGAS Monte Carlo routine to perform the
one-loop integration with 200 106 points, using the
GNU Scientific Library2 is used. To estimate the error,
we take the value given by the program which is �10�5

for each integral. The calculation, once p and q has been
extracted from the propagators, involves around 1300
different one-loop integrals. For each diagram, typically
we have 100 different integrals. That means that the error
is around 10�3.

Let us compare our perturbative result with the nu-
merical one [23], ZNUMT � ZT=ZS � 0:185�7�. One has to
observe that the definition used here for S� is not the
same as in [23]. It is easy to demonstrate that ZNUMT �
1
2Z

PT
T [48]. To compare with the numerical results, one has

to divide the perturbative value by two which gives
ZPTT � 1

2Z
�2�
T jone-loop � 0:332. We are currently increasing

the precision of the numerical integration to 400 106

points. A detailed presentation of the results in Eqs. (4.34)
and (4.35) together with the result of each diagram is
under way [49].

V. DISCUSSION AND CONCLUSIONS

In this paper, the SUSY WTi in one-loop LPT has been
investigated. A general procedure in order to get the
renormalization constant for the supercurrent has been
presented. In LPT it is possible to determine the value of
the renormalization constant for the supercurrent from
the off-shell regime of the SUSY WTi. The computation
of each matrix elements of the WTi has been carried out
using the symbolic language MATHEMATICA. The pro-
grams were completely written by the author together
with the numerical code used for the integration. All the
2http//:www.gnu.org/software/gsl/
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contributions have been calculated in the off-shell regime
and, in order to get the value of the renormalization
constant, a simplification in the external momenta (which
still keeps the off-shell regime) has been applied. We are
currently increasing the precision of the numerical inte-
gration, and a detailed presentation of the results is the
subject of a forthcoming paper [49]. A reasonably good
agreement of our perturbative result for the renormaliza-
tion constant, ZPTT � 0:332, in comparison with the nu-
merical one ZNUMT � 0:185�7�, has been achieved, taking
into consideration the fact that in the numerical simula-
tion g20 � 4=2:3, which still corresponds to the nonper-
turbative region. We observe that, at least at one-loop
order in perturbation theory, ZT is finite. This result
may have some theoretical implications which we are
currently investigating. Also, the determination of ZS,
using another kind of gamma projection, is under inves-
tigation. It would be interesting to calculate ZS in order to
check the trace anomaly and the exact renormalization
expression for Eq. (3.13). An important point to stress
here is that, even in the continuum limit, we observe in
Eq. (4.34) Lorentz breaking terms, which comes from the
fact that we substituted XS by Eq. (3.8). It would be
interesting to see whether Eq. (4.34) is the continuum
off-shell WTi. The nice point is that, once the ZT has
been determined, we can impose the on-shell condition
on the gluino mass. The Lorentz breaking terms cancel
out from Eq. (4.34) and the continuum WTi is recovered.
At least to one-loop order, we do not observe a SUSY
anomaly inN � 1 SYM, although a more careful study is
required.
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APPENDIX A: PERTURBATIVE CALCULATION

In this appendix, we follow the lines of [29,40]. The
lattice SUSY transformations of the gauge field A��x� are
not equal to the continuum ones. On the lattice the trans-
formation of the gauge link U��x� determines the trans-
formation properties of A��x�. Writing the link variable
as
U��x� � e�aA��x��a=2��̂	; (A1)
054504
for the SUSY transformations of the gauge link we use
the symmetric choice [33]

�U��x� � �ag0U��x� ��x�����x� � ag0 ��x

� a�̂�����x� a�̂�U��x�:

These two equations determine the transformation behav-
ior of the field A��x� [29]. The FT for the gauge field is
defined in the usual way:

Ab��x� �
Z
d4k ~Ab��k�eik��x��a=2��̂	: (A2)

Collecting all terms until order g20, we can write down the
variation of the gauge field Ab��x� as [29]

�Ab��x� � i� ��x����
b�x� � ��x� a�̂����

b�x� a�̂�	

�
i
2
ag0fabc� ��x����

c�x� � ��x� a�̂����
c�x

�a�̂�	Aa� �
i
24
a2g20�2�ab�cd � �ac�bd

��ad�bc�Ac�Ad�� ��x����a�x� � ��x

�a�̂����a�x� a�̂�	; (A3)

which reduces to the continuum SUSY transformation
�Aa��x� � 2i ����

a�x� in the continuum limit a! 0.
Because in this paper we fix Nc � 2, some simplifications
appear:

TrfTaTbTcTdg � 1
8��ab�cd � fabefcde�;

fabefcde � ��ac�bd � �ad�bc�:
(A4)

Using Eq. (A3), it is possible to determine the different
pieces of the WTi in Eq. (3.11), i.e., the contact terms, the
gauge fixing term, and the Faddeev-Popov term. They are
necessary in order to calculate the Feynman rules for
one-loop order calculation. In Appendix B, the vertices
coming from these pieces are presented together with the
ones coming from the supercurrent.
APPENDIX B: VERTICES

Let us determine the contact terms f��O�=�� ��x�	gj��0.
First of all, the variation of the operator insertion, O �
Aa��y� �b�z�, is

�O � �Aa��y� �b�z� � Aa��y�� �b�z�: (B1)

Substituting (A3) into (B1), after some algebra, we obtain
-9
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�
�O

� ��x�

����������0
	
� i��x� y���h�a�y� �b�z�i � i��x� y� a�̂���h�a�y� a�̂� �b�z�i

�
i
2
ag0fdac��x� y���h�

c�y�Ad��y� �
b�z�i �

i
2
ag0fdac��x� y� a�̂���h�

c�y� a�̂�Ad��y� �
b�z�i

�
i
24
a2g20�2�ae�cd � �ec�ad � �ed�ac���x� y�hA

c
��y�A

d
��y��

e�y� �b�z�i �
i
24
a2g20�2�ae�cd � �ec�ad

��ed�ac���x� y� a�̂�hA
c
��y�A

d
��y��

e�y� a�̂� �b�z�i � ��x� y�hAa��y����G
b
���z�i; (B2)

where G���z� � �ig0G
b
���z�T

b.
The part of the lattice action corresponding to the gauge fixing is defined as

SGF �
a2

2

X
x

�X
�

�Ac��x� � Ac��x� a�̂�	
�
2
�
a4

2

X
x

�X
�

rback� Ac��x�
�
2
�
a4

2

X
x

�X
�

rback� Ac��x�
��X

�

rback� Ac��x�
�
; (B3)

where rback� f�x� � 1
a �f�x� � f�x� a�̂�	. The variation of the gauge fixing term (B3) can be written as

�SGF � a4
X
x

�X
�

rback� �Ac��x�
��X

�

rback� Ac��x�
�
: (B4)

This results in the contribution of the gauge fixing term into the WTi as

�

�
O
�SGF
���x�

����������0
	
� i��

�
h�c�x�rforw� rback� �Ac��x� � Ac��x� a�̂�	Aa��y� �b�z�i �

i
2
ag0fecf��h�f�x��Ae�rforw� rback� Ac��x�

� Ae��x� a�̂�rforw� rback� Ac��x� a�̂�	Aa��y� �b�z�i �
i
24
a2g20���2�ec�fd � �ef�cd � �ed�fc�

 h�e�x��Af�Ad�r
forw
� rback� Ac��x� � A

f
��x� a�̂�Ad��x� a�̂�r

forw
� rback� Ac��x� a�̂�	A

a
��y� �

b�z�i
�
;

(B5)

where rforw� f�x� � 1
a �f�x� a�̂� � f�x�	.

Finally, the expansion of the Faddeev-Popov action can be written as

SFP � a2
X
x;�<>0

�
9a�x�

�
�ab �

1

2
ag0Ac�facb �

1

12
a2g20A

c
�Ad�facefedb

�
9b�x� � 9a�x�

�
�ab �

1

2
ag0Ac�facb

�
1

12
a2g20A

c
�A

d
�f
acefedb

�
9b�x� a�̂�

�
; (B6)

and the contribution of the Faddeev-Popov term into the WTi is

�

�
O
�SFP
� ��x�

����������0
	
� �

ig0
2a
fgch

X
�

��hf 9
g�x��c�x��9h�x� � 9h�x� a�̂�	 � 9g�x� a�̂��c�x��9h�x� a�̂� � 9h�x�	

� 9g�x� a�̂��c�x��9h�x� a�̂� � 9h�x�	 � 9g�x��c�x��9h�x� � 9h�x� a�̂�	gAa��y� �b�z	i

�
ig20
4
fgchfdcf

X
�

��hf 9
g�x��f�x�Ad��9

h�x� � 9h�x� a�̂�� � 9g�x� a�̂��f�x�Ad��x� a�̂��9
h�x

�a�̂� � 9h�x�� � 9g�x� a�̂��f�x�Ad��9h�x� a�̂� � 9h�x�� � 9g�x��f�x�Ad��x� a�̂��9h�x�

�9h�x� a�̂��	Aa��y� �
b�z�i �

ig20
12
fgcefedh

X
�

��hf 9
g�x���c�x�Ad� � A

c
��

d�x�	�9h�x� � 9h�x� a�̂�	

� 9g�x� a�̂���c�x�Ad��x� a�̂� � Ac��x� a�̂��d�x�	�9h�x� a�̂� � 9h�x�	 � 9g�x� a�̂�

��c�x�Ad��x� � A
c
��x��

d�x�	�9h�x� a�̂� � 9h�x�	 � 9g�x���c�x�Ad��x� a�̂� � A
c
��x

�a�̂��d�x�	�9h�x� � 9h�x� a�̂�	gAa��y� �
b�z�i; (B7)
054504-10
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where Ac� � Ac��x�
a�̂
2 �. It is possible to calculate the vertices and the corresponding Feynman diagrams, up to order g20,

from Eqs. (B2), (B5), and (B7) in FT.
Regarding the contact terms in Eq. (B2), all the contributions to order g20 are zero except for the last line of Eq. (B2).

The corresponding nonzero Feynman diagrams are shown in Fig. 2. The vertices used here are the two-gluons vertex,

~Gabc
2���k1; k2� � �

1

2
g0fabc



���

�
cos

�k1�a
2

�
k2�a

2

�
cos

�k1�a
2

�
cos

�
k1�a
2

� k2�a
�
� cos

�
k1�a
2

�
k2�a
2

�
cos

�
k2�a
2

�
 cos

�k2�a
2

� k1�a
�
� sin

�k1�a
2

�
k2�a

2

�
sin

�k1�a
2

�
cos

�
k1�a
2

�
� sin

�
k1�a
2

�
k2�a
2

�
sin

�
k2�a
2

�
 cos

�k2�a
2

��
� ���

X
/

�/� sin
�
k1�a
2

�
k2�a
2

�
�sin�k1/a� � sin�k2/a�	

�
; (B8)
and the three-gluons vertex, which we do not report here
and gives a zero contribution to the last diagram of Fig. 2.

For the gauge fixing terms in Eq. (B5), we need the
vertex with one-gluon-one-gluino, which is similar to
Eq. (4.15) in the continuum limit,

gGF ab1���p; k� � �
4i

a2
�ab�� sin�k�a� sin

�
k�a
2

�
; (B9)

the vertex with two-gluons-one-gluino,

gGFfce2���p; q; k� � 2g0
a
fecf



�� sin

�k�a
2

�
q�a

2

�
sin

�q�a
2

�
 sin

�
q�a
2

�
� �� sin

�
k�a
2

�
q�a
2

�
 sin

�
k�a
2

�
sin

�k�a
2

��
; (B10)

and finally the three-gluons-one-gluino vertex (nonsym-
metrized),

gGFefdc3����p; k; q; t� � �
1

3
g20�2�ec�fd � �ef�cd � �ed�fc�

����� sin
�k�a
2

�
q�a

2
�
t�a

2

�
 sin

�t�a
2

�
sin

�
t�a
2

�
: (B11)

For the Faddeev-Popov terms in Eq. (B7), we need
one-gluino-ghost-antighost vertex
054504
fFPcgh� �p;�q; k� �
4g0
a
fgch

X
�

�� cos
�k�a
2

�
sin

�q�a
2

�

 cos
�k�a
2

�
q�a

2

�
(B12)

and one-gluino-one-gluon-ghost-antighost vertex

fFP cdgh1� �p; t;�q; k� � �
2i
3
g20�f

gcefedh

� fgdefech���



sin

�k�a
2

�
sin

�q�a
2

�
 cos

�k�a
2

�
t�a

2
�
q�a

2

��
:

(B13)

As we can see from Eqs. (B12) and (B13), the vertices are
already order g0 and g20, so plugging into Eq. (4.28) is
already more than O�g20�. This implies that the Faddeev-
Popov terms do not contribute to order g20.

Concerning the vertices of S� for a one-loop calcula-
tion, we need the vertices corresponding to one-gluon-
one-gluino, the two-gluons-one-gluino, and finally the
three-gluons-one-gluino. They can be calculated from
(3.3). The vertex one-gluon-one-gluino [using Eq. (4.5)] is

~S abc1�;���q; p� � �
2i
a
�ab����� cos

�
p�a
2

�
sin�p�a�;

(B14)

which reduces to the continuum one in the limit a! 0
[see Eq. (4.6)], while the vertex two-gluons-one-gluino is
~Sabc2�;���q; p1; p2� �
1

2
g0fabc



�����

�
cos

�p1�a
2

�
p2�a

2

�
cos

�p1�a
2

�
cos

�
p1�a
2

� p2�a
�
� cos

�
p1�a
2

�
p2�a
2

�
cos

�
p2�a
2

�
 cos

�p2�a
2

� p1�a
�
� sin

�p1�a
2

�
p2�a

2

�
sin

�p1�a
2

�
cos

�
p1�a
2

�
� sin

�
p1�a
2

�
p2�a
2

�
sin

�
p2�a
2

�
 cos

�p2�a
2

��
� ���

X
/

�/��� sin
�
p1�a
2

�
p2�a
2

�
�sin�p1/a� � sin�p2/a�	

�
: (B15)

We do not present here the three-gluons-one-gluino vertex because its contribution to the last Feynman diagram for the
supercurrent, in Fig. 1, is zero by color considerations.
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APPENDIX C: OFF-SHELL REGIME

In order to separate the contribution of T� and S� at
tree level, we cannot impose p � q, which would greatly
simplify the calculation. We are forced to use general
external momenta p and q [while the momentum transfer
of the operator insertion is �p� q� � 0, see Fig. 1]. Once
the external momenta has been extracted from the propa-
gators, in order to get the value of ZT , the simplifications
p2 � q2 and p � q � 0 are used. This is still an off-shell
regime which simplifies the dilogarithm functions.

At one-loop order, two propagator integrals are tabu-
lated in [41,42] while three propagator integrals on the
lattice are tabulated in [43] in terms of lattice constants
plus the following continuum counterparts:

I0;1�;2��;3����p; q� �
1

22
Z
d4k

1; k�; k�k�; k�k�k�
k2�k� p�2�k� q�2

:

(C1)

With the help of [50,51], one can give the expression for
I0�p; q� and write down recursively I1��p; q�, I2���p; q�,
I3����p; q� in terms of the scalar functions p2, q2, p � q,
and I0, plus Lorentz structures. As an example [49],
I0�p; q� is a complicated function of p and q, in terms
of the dilogarithm as follows:

I0�p; q� �
1

!

�
Li2

�
p � q� !

q2

�
� Li2

�
p � q�!

q2

�
�
1

2
Ln

�
p � q�!

p � q�!

�
Ln

�
�q� p�2

q2

��
; (C2)

where ! is the triangle function defined as

!2 � �p � q�2 � p2q2 (C3)

and

Li 2�x� � �
Z x

1

Lnt
t� 1

dt (C4)

is the dilogarithm.
Following Ref. [51], where a tensor decomposition of

I1��p; q�, I2���p; q�, I3����p; q� is used, it is shown that
all the integrals can be written in terms of I0 and others
scalars:
054504
I1� � I1�p; q�p� � I1�q; p�q�; (C5)

where

I1�p; q� �
1

!2

�
q2Ln

�
�q� p�2

q2

�
� p � qLn

�
�q� p�2

p2

�
�
q2p � �q� p�

2
I0

�
: (C6)

The integral I2�� is symmetric in � and � as well as
under p$ q and, hence, has the following tensor decom-
position:

I2�� � ���IA �
�
p�p� �

���
4
p2

�
IB�p; q� �

�
p�q�

�q�p� �
���
2
p � q

�
IC �

�
q�q� �

���
4
q2
�

IB�q; p�; (C7)

where IA, IB, and IC are symmetric under p$ q and
tabulated in [51]. In this reference an explicit expression
for I3��� is presented, which is quite complicated and we
do not report here.

The general result for arbitrary p and q using (C2),
(C6), and (C7) and the corresponding expression for I3���
(in [51]) contains huge quantities or terms (sometimes up
to 1000 terms). Therefore a simplification which still
leaves us in the off-shell regime is required. Let us rewrite
(C3) in the following way:

!2 � �p2q2
�
�

�p � q�2

p2q2
� 1

�
; (C8)

where p � q � pq cos/, where 0</<2. This implies
that �p� q�2 � p2 � q2 � 2pq cos/.

By using Eq. (C8), it is possible to simplify I0, I1, I2,
and I3. In fact,

! � i

����������������������������������������
p2q2

�
1�

�p � q�2

p2q2

�s
� i

������
p2

q �����
q2

q ����������������������
1� cos/2

p
:

(C9)

Substituting (C9) in (C2), we have
I0 �
1

ipq
����������������������
1� cos/2

p

�
Li2

�
pq cos/� ipq

����������������������
1� cos/2

p

q2

�
� Li2

�
pq cos/� ipq

����������������������
1� cos/2

p

q2

�

�
1

2
Ln

�
pq cos/� ipq

����������������������
1� cos/2

p

pq cos/� ipq
����������������������
1� cos/2

p

�
Ln

�
p2 � q2 � 2pq cos/

q2

��
: (C10)

Simplifying, we have

I0 �
1

ipq sin/



Li2

�
p
q
�cos/� i sin/�

�
� Li2

�
p
q
�cos/� i sin/�

�
�
1

2
Ln

�
cos/� i sin/
cos/� i sin/

�
Ln

�
p2

q2
� 1�

2p
q
cos/

��
;

(C11)
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3Notice that the substitution p! q is made after the external
momenta from the diagrams has been extracted from the
propagators, and the IR have been dealt, using the Kawai
procedure. The calculation of each diagram has been done in
a completely off-shell regime, but in order to read the values of
the renormalization constants a proper simplification should be
done. Only at the very end of the calculation is the substitution
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and finally

I0 �
1

ipq sin/


�
Li2

�
p
q
exp�i/

�
� Li2

�
p
q
expi/

��
�
1

2
Ln�exp�2i/�Ln

�
p2

q2
� 1�

2p
q
cos/

��
; (C12)

or

I0 �
1

pq sin/



1

i

�
Li2

�
p
q
exp�i/

�
� Li2

�
p
q
expi/

��
�/Ln

�
p2

q2
� 1�

2p
q
cos/

��
: (C13)

Using Eq. (C13), we can now simplify the recursive
expressions for I1, I2, and I3. Let us define
054504
p̂ � �
p�������
p2

p ; (C14)

where clearly jp̂�j � 1. The simplification in Eq. (4.33)
corresponds to / � 2

2 (then, we have cos/ � 0 and
sin/ � 1) and p2 � q2, which corresponds to the substi-
tution p! q in all the results.3
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[16] M. Lüscher, J. High Energy Phys. 06 (2000) 028.
[17] G. Curci and G. Veneziano, Nucl. Phys. B292, 555

(1987).
[18] I. Montvay, Nucl. Phys. B, Proc. Suppl. 53, 853

(1997).
[19] G. Koutsoumbas, I. Montvay, A. Pap, K. Spanderen, D.

Talkenberger, and J. Westphalen, Nucl. Phys. B, Proc.
Suppl. 63, 727 (1998).

[20] R. Kirchner, S. Luckmann, I. Montvay, K. Spanderen,
and J. Westphalen, Nucl. Phys. B, Proc. Suppl. 73, 828
(1999).
[21] R. Kirchner, S. Luckmann, I. Montvay, K. Spanderen,
and J. Westphalen, Phys. Lett. B 446, 209 (1999).

[22] DESY-Münster Collaboration, I. Campos et al., Eur.
Phys. J. C 11, 507 (1999).

[23] DESY-Münster-Roma Collaboration, F. Farchioni et al.,
Eur. Phys. J. C 23, 719 (2002).

[24] I. Montvay, Int. J. Mod. Phys. A 17, 2377 (2002).
[25] DESY-Münster Collaboration, A. Feo et al., Nucl. Phys.

B, Proc. Suppl. 83, 661 (2000).
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