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Free energy of a static quark-antiquark pair and the renormalized Polyakov loop
in three flavor QCD
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We study the free energy of a static quark-antiquark (Q �Q) pair at finite temperature in three flavor
QCD with degenerate quark masses using N� � 4 and 6 lattices with Asqtad staggered fermion action.
The static free energy was calculated for different values of the quark mass and the entropy contribution
at large distances has been extracted. We also calculate the renormalized Polyakov loop following the
approach by Kaczmarek et al.
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TABLE I. The parameters of simulations, ms denotes the
strange quark mass.

lattice mlight T
123 � 4 0:2ms, 0:4ms, 0:6ms 135� 393 MeV
83 � 4 0:2ms, 0:4ms, 0:6ms 135� 412 MeV

123 � 6 0:2ms, 0:4ms, 0:6ms 145� 310 MeV
I. INTRODUCTION

Nonperturbatively the in-medium modification of in-
terquark forces, e.g., screening of fundamental charges at
finite temperature, is usually studied in terms of the free
energy of static (anti)quarks [1–7]. More precisely one
calculates the difference in the free energy of the system
with static quarks and the same system without quarks at
fixed temperature. The free energy of static quark anti-
quark for different color channels (singlet, octet and
averaged) has been studied in great detail in quenched
QCD (pure SU(3) gauge theory) [1,2,4] as well as in
SU(2) gauge theory [3,5]. In the case of full QCD only
the color averaged free energy was extensively studied;
the first results for singlet and octet free energy for two
flavor QCD have appeared only very recently [7]. In this
paper we are going to study the free energy of static
quark-antiquark pair in three flavor QCD using the so-
called Asqtad staggered fermion action [8] with two
different lattice spacings (corresponding to Nt � 4 and
6) at three different quark masses.

Apart from the in-medium modification of interquark
forces the study of the static free energy is interesting as it
can be used to define the renormalized Polyakov loop.
Although the Polyakov loop is not an order parameter in
the presence of dynamical quarks it shows rapid variation
in the transition region and therefore is widely used to
describe the transition (crossover) in full QCD. In par-
ticular, they are useful for constructing effective mean-
field theories [9] and studying the interplay between the
chiral and deconfining aspects of the transition [10]. We
will study the temperature dependence of the renormal-
ized Polyakov loop which shares most of the properties of
the usual Polyakov loop but has a meaningful continuum
limit.

The rest of the paper is organized as follows. In Sec. II
we discuss the lattice setup, parameters of simulations
and the zero temperature potential which turns out to be
crucial for the analysis of the finite temperature free
energies presented in Sec. III. Conclusions are presented
in Sec. IV.
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II. PARAMETERS OF SIMULATIONS AND THE
STATIC POTENTIAL AT ZERO TEMPERATURE

In this section we are going to describe the lattice
parameters for which our analysis have been performed.
In our study we use staggered fermions with Asqtad
action [8]. Our analysis to a large extent is based on the
gauge configurations generated by the MILC collabora-
tion using the Asqtad action. Therefore we adopt their
strategy for fixing the parameters which is described in
Refs. [11–13], namely, the strange quark mass was fixed
by requiring that m�=m� � 0:673, and the temperature
scale (the inverse lattice spacing) was fixed from the scale
r1 defined from the zero temperature static potential as

�
r2
dV�r�
dr

�
r�r1

� 1: (1)

The RG inspired Ansatz for the gauge coupling depen-
dence of the lattice spacing [14] was used for the scale
setting. We use the most recent value of r1 extrapolated to
continuum and to the physical value of the light quark
masses r1 � 0:317 fm [15] to convert the lattice units to
physical units. In Table I we summarize the lattices, quark
masses and the corresponding temperature range used in
our analysis.

The free energy of a static quark-antiquark pair con-
tains a lattice spacing dependent divergent piece and thus
needs to be renormalized. This can be done by normaliz-
ing it to the zero temperature potential at short distances
where the temperature dependence of the free energy can
be neglected [4]. The static quark potential has been
studied by the MILC Collaboration at three different
lattice spacings and various quark masses [13,15–17].
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The zero temperature potential is also defined only up to
some constant which needs to be fixed. As temperature is
varied by varying the lattice spacing we need to specify
the form of the zero temperature potential which is valid
for the whole range of lattice spacing relevant in this
study, i.e., 0:09< a< 0:3 fm. We choose the following
form of the zero temperature potential:

r1V�x� � �
0:44
x

� 0:56 � x�
0:0125

x2 ; x � r=r1: (2)

In Fig. 1 we show this parametrization of the potential
against lattice data at three different lattice spacings, and
different quark masses. Although in the present paper we
discuss the case of three degenerate flavors, we show the
zero temperature potential also for 2� 1 flavor case as
here more detailed data are available. Because of the very
weak quark mass dependence the case of 2 � 1 flavors
can be used as a good reference. As one can see this
parameterization gives a fair description of the data for
all lattice spacings and quark masses [17]. The last term
in Eq. (2) mimics the effect of the running coupling. In
Fig. 1 we also show the effective coupling constant �s�r�
defined as

�s�r� �
3

4
r2
dV�r�
dr

: (3)

One can see again that Ansatz (2) gives a good description
of the lattice data. We note that in order to reduce the
effects of the breaking of the rotational symmetry in the
heavy quark potential following Refs. [4,18] the separa-
tion r between the static charges was redefined as r �
rI � 	4�CL�r�


�1, where CL�r� is the lattice Coulomb
potential for the Luescher-Weisz action [19]. In what
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FIG. 1. The static potential at zero temperature from the MILC
effective coupling constant �s�r� as a function of distance (left). Bo
heavy (mq � ms) and two light denoted as 2� 1 F are shown.
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follows r will always refer to the modified separation
defined above.

III. THE FREE ENERGY OF STATIC QUARK
ANTI-QUARK

Following Refs. [20,21] the free energy of static quark-
antiquark ( Q �Q) pair, i.e., the free energy difference of
the system with and without static sources at fixed tem-
perature T in the color singlet and octet channels is
defined as

exp	�F1�r; T�=T � C
 � 1
3TrhW� ~r�Wy�0�i; (4)

exp	�F8�r; T�=T � C
 � 1
8hTrW� ~r�TrWy�0�i

� 1
24TrhW� ~r�Wy�0�i: (5)

Here W� ~x� �
QN��1

��0 U0��; ~x� is the temporal Wilson line
and L� ~x� � TrW� ~x� is known as the Polyakov loop. As
W� ~x� is not gauge invariant one needs to fix a gauge in
order to calculate F1 and F8. In this study we use the
Coulomb gauge as for this gauge a transfer matrix can be
constructed and in the zero temperature limit the usual
static potential will be recovered. Alternatively one can
replace the Wilson line W� ~x� by a dressed gauge invariant
Wilson line ~W� ~x� using the eigenvectors of covariant
spatial Laplacian [3]. The dressed Wilson line, however,
is a nonlocal operator. Both definitions turned out to
equivalent [3] (at least numerically). One can also con-
sider the color averaged free energy defined as

exp	�Fav�r; T�=T � C
 � 1
9hTrW� ~r�TrWy�0�i

� 1
9hL� ~r�L

y�0�i; (6)

which can be written as a thermal average of the singlet
and octet free energies
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FIG. 2. The singlet (left) and octet (right) free energy of static Q �Q pair calculated on 123 � 4 lattice at mq � 0:4ms at different
temperature in MeV. The solid line is the parameterization of the zero temperature potential by Eq. (2).
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exp	�Fav�r; T�=T
 �
1
9 exp	�F1�r; T�=T


� 8
9 exp	�F8�r; T�=T
: (7)

This quantity is expressed in terms of local explicitly
gauge invariant operators and for this reason was exten-
sively studied in the past also in full QCD [22,23]. The
normalization constant C needs to be fixed using some
physical normalization condition. As we expect that at
very short distances the free energy of static quark-
antiquark pair is only given by their interaction energy
in the vacuum we fix C by requiring that the singlet free
energy coincides with the zero temperature potential
given by Eq. (2).

We start the discussion of our numerical results with
the case of the quark of mass 0:4ms on the 123 � 4 lattice
1. The corresponding numerical results for the singlet and
octet free energy are shown in Fig. 2. The singlet free
energy approaches a finite value at large distances which
is usually interpreted as string breaking at low tempera-
ture and screening at high ones. Note that the distance
where the free energy effectively flattens is temperature
dependent, it becomes smaller at higher temperatures. At
small distances the singlet free energy is temperature
independent and coincides with the zero temperature
potential. This is intuitively expected as at small dis-
tances medium effects are not important. Similar obser-
vation has been made for quenched QCD [4,6,7]. The
octet free energy shows much stronger temperature de-
pendence. At short distances it is expected to have a
repulsive tail, which is clearly visible at high tempera-
tures. At low temperatures the presence of such a repul-
sive tail is less obvious. The reason for this is the
following. At low temperatures no data is available at
1Most of the configurations used for our measurements were
provided to us by the MILC Collaboration.
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really short distances ( < 0:2 fm) and the (large distance)
asymptotic value of the octet free energy is large com-
pared to the value of the repulsive tail (which naively is
�s=�6r�). Also the statistical accuracy is lowest at low
temperatures. As the temperature increases both the value
of the free energy at large distances is smaller and the
statistical accuracy is higher; in addition more data at
shorter distances become accessible. The numerical re-
sults for other values of the quark masses are similar.

As N� � 4 lattices correspond to a quite large lattice
spacing, one may worry about lattice artifacts in the static
free energies. Therefore we have compared the singlet free
energies calculated from N� � 4 and N� � 6 lattices at
approximately same temperatures as shown in Fig. 3. As
one can see, there is no sizeable lattice spacing depen-
dence even at the lowest temperatures where the lattice
spacing is the largest. Thus calculations of the quark-
antiquark free energy on N� � 4 lattices are justified.

We also investigate the temperature dependence of the
color averaged free energy. In general, due to the presence
of color octet contribution the temperature dependence of
the color averaged free energy is stronger than that of the
singlet free energy [23]. At small distances, however, it is
expected to be dominated by color singlet contribution
and the approximate relation Fav�r; T� ’ F1�r; T� � T ln9
should hold [4]. Therefore in Fig. 4 we show Fav�r; T� �
T ln9 at different temperatures including results both
from N� � 4 and 6 lattices. As one can see from the
figure for temperatures T < 274 MeV Fav � T ln9 coin-
cides with the zero temperature potential at the shortest
distance available in this study. As at the shortest distance
the zero temperature potential coincides with the singlet
free energy (due to normalization) this in turn implies
that the relation Fav � F1 � T ln9 holds at this distance.

As expected, the temperature dependence of the color
averaged free energy is stronger than of the color singlet
one.
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FIG. 4. The color averaged free energy at different tempera-
tures calculated on N� � 4 (open symbols) and N� � 6 (filled
symbols) lattices. The solid line is the zero temperature poten-
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FIG. 3. The singlet free energy calculated on 83 � 4, 123 � 4,
and 123 � 6 lattices at three different temperatures.
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From Figs. 2 and 4 we see that the free energy for all
color channels reaches a constant value at large distances
Fi
1�T� � limr!1Fi�r; T�; i � 1; 8; av. In the infinite vol-

ume limit we expect that F1
1�T� � F8

1�T� � Fav
1 �T� as at

very large distances the free energy of a static quark and
antiquark should not depend on their relative color ori-
entation. This is in fact confirmed in the deconfined phase
054503
of pure gauge theory [4–6]. On our small lattices, 83 � 4,
123 � 6 we see small differences between F1

1 and F8;av
1

which vanish within statistical errors when we go to
123 � 4 lattice. In practice we determine Fi

1�T� by fitting
the corresponding free energies by a constant at large
distances. The lower limit of the fit range was always
chosen such that the determined value of Fi

1 does not
depend on it within our statistical accuracy.

The Polyakov loop L�x� � TrW�x� is the order parame-
ter for deconfining transition in pure gauge theories. In
full QCD, where dynamical quarks are present, it is no
longer an order parameter as it has nonzero value in low
temperature phase. Nevertheless, it is used to study the
deconfining aspects of the transition in full QCD as well
in effective models [9,10]. The correlator of Polyakov
loops corresponding to the color averaged free energy
satisfies the cluster decomposition

hL�r�Ly�0�ijr!1 � jhL�0�ij2: (8)

Therefore following Ref. [4], we can define the renormal-
ized Polyakov loop as

Lren � exp
�
�
Fav
1 �T�
2T

�
: (9)

The numerical results for Lren�T� will be discussed in
detail at the end of this section. In three flavor QCD for
the quark masses used in this study there is no phase
transition but only a crossover [11–13,24]. Nevertheless,
both the chiral condensate and the unrenormalized
Polyakov loop show a rapid change at approximately
the same temperature [11–13,23] referred to as the tran-
sition temperature Tc. Therefore we can define the tran-
sition temperature as the temperature where @Lren�T�=@T
has a maximum, or equivalently @Fren�T�=@T has a mini-
-4
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mum. We have determined Tc in this way and have found
it to be consistent with the value of Tc defined from the
peak of the chiral susceptibility [11–13]. In the following
discussion we will find instructive to plot different quan-
tities as function of T=Tc, especially when comparing
with calculations done in SU(3) gauge theory.

To characterize the range of interaction in the medium
it is convenient to introduce the effective screening radius
rscr. It is defined as the distance at which the singlet free
energy is only 10% below its asymptotic value F1�r �
rscr; T� � 0:9F1

1�T�. Here F1
1�T� is the asymptotic value

of the singlet free energy at infinite separation. In Fig. 5.
we show the values of rscr for three different quark
masses and 123 � 4 lattices. Certainly as F1�r; T� has
statistical errors, it is difficult to determine exactly at
which distance r the equation F1�r � rscr; T� �
0:9F1

1�T� holds. We have tried to estimate these uncer-
tainties in the values of rscr and show them in Fig. 5 as
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errors bars. At small temperatures the value of the screen-
ing radius is about 0:9 fm and is temperature independent.
As we increase the temperature rscr decreases reaching
the value of 0:5 fm at the highest temperature. Note that
the temperature dependence of rscr is roughly the same for
all quark masses. In Fig. 5 we also show the effective
screening radius for 0:4ms and quenched QCD estimated
from the singlet free energies of Ref. [4] as function of
T=Tc. Close to Tc the screening radius in quenched QCD
is considerably higher than in three flavor QCD but at
higher temperatures they are comparable.

Now we are going to investigate the temperature and
quark mass dependence of the asymptotic value of the
free energy and identify the entropy contribution to it. In
the following discussion we will take the asymptotic
value of the free energy in the infinite volume limit to
be given by the color averaged value F1�T� � Fav

1 �T� and
also skip the index i in the following discussion. The
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numerical results for F1�T� at three different quark
masses are shown in Fig. 6. One immediately notices
that the quark mass dependence may vanish at small
temperatures (T < 150 MeV) and definitely negligible at
high temperatures (T > 250 MeV) while large mass de-
pendence is observed in the transition region. One may
wonder to which extent this mass dependence is due to the
mass dependence of the transition temperature Tc.
Therefore in Fig. 6 we also show the data forF1�T� versus
T=Tc which shows that up to T=Tc � 1 there is no mass
dependence. This is in accordance with finding of
Ref. [23] where for quark masses below the strange quark
mass the mass dependence of F1 is quite small for T=Tc
close to 1. Thus for temperatures below Tc the mass
dependence of F1�T� can be understood in terms of
mass dependence of Tc. However, as one can also see
from Fig. 6, for T=Tc > 1 substantial mass dependence
is seen.

In the case of very small temperatures we expect F1�T�
to be temperature independent and related to twice the
binding energy of a heavy-light (D� or B� ) meson
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2Ebin � 2MD;B � 2mc;b. More precisely, it should be the
binding energy of a static-light system as found in the 3D
SU(2) Higgs model which is quite similar to QCD [25].
Because of the heavy quark symmetry we expect the
binding energy of a heavy-light meson to be the same
as of the static-light system. Based on this observation it
has been argued in Ref. [26] that the decrease of F1�T�
with the temperature close to Tc implies the decrease of
the MD;B leading to quarkonium suppression. However,
one should keep in mind that F1�T� also contains an
entropy contribution. The entropy due to the presence of
a static Q �Q pair can be calculated as

S1�T� � �
@F1�T�
@T

: (10)

We also can calculate the energy induced by a static Q �Q
pair U1 � F1 � TS1. Numerically the derivative with
respect to the temperature in Eq. (10) was estimated using
forward differences. In Fig. 7 we show the entropy S1 and
energy U1 as functions of temperature. Both the entropy
and the energy show a strong increase near Tc and with
our definition of Tc peak exactly at Tc. This large increase
in entropy and energy is probably due to many body
effects and makes the interpretation of U1 as the binding
energy of heavy-light meson not very plausible.

The numerical results for F1�T� can be easily con-
verted to the numerical results for the renormalized
Polyakov loop Lren�T� which are shown in Fig. 8. The
mass dependence of Lren�T� is the same as for F1, when
plotted versus temperature in physical units it shows mass
dependence for 150 MeV< T < 250 MeV and when
plotted as function of T=Tc mass dependence for T=Tc >
1. The renormalized Polyakov loop should not depend on
the lattices spacing. To check this we have calculated
Lren�T� also on 123 � 6 and 83 � 4 lattices. The results
are summarized in Fig. 8, and as one can see the N�
(lattice spacing) dependence of Lren�T� is quite small.
IV. CONCLUSIONS

In this paper we have presented calculations of the free
energy of a static quark-antiquark pair in three flavor
QCD for several quark masses. We have found that the
free energy gets screened beyond some distance for all
temperatures, as expected. For small temperature this
distance, the effective screening radius, does not depend
on the temperature and is about 0:9 fm. As the tempera-
ture increases the effective screening radius decreases.
Using the asymptotic value of the free energy we have
defined the renormalized Polyakov loop and proved its
scaling with the lattice spacing. We have also identified
the entropy contribution to the free energy as well as the
internal energy at large distances and found that they
show strong increase at Tc. We have found substantial
quark mass dependence in the vicinity of the transition.
In the future it will be certainly interesting to extend this
-6
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study to larger lattices and to study the dependence of the
entropy contribution as function of the separation which
because of the limited statistics was not possible here.
Many properties of the static quark-antiquark free ener-
gies presented in this three flavor study turn out to be
similar to the preliminary findings in two flavor case by
the Bielefeld group reported in Ref. [7].
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